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Abstract

In many classification procedures, the classification function is obtained (or trained)
by minimizing a certain empirical risk on the training sample. The classification is then
based on the sign of the classification function. In recent years, there have been a host
of classification methods proposed in machine learning that use different margin-based
loss functions in the training. Examples include the AdaBoost procedure, the support
vector machine, and many variants of them. The margin-based loss functions used in
these procedures are usually motivated as upper bounds of the misclassification loss,
but this can not explain the statistical properties of the classification procedures. We
consider the margin-based loss functions from a statistical point of view. We first show
that under general conditions, margin-based loss functions are Fisher consistent for
classification. That is, the population minimizer of the loss function leads to the Bayes
optimal rule of classification. In particular, almost all margin-based loss functions that
have appeared in the literature are Fisher consistent. We then study margin-based
loss functions in the method of sieves and the method of regularization. We show that
the Fisher consistency of margin-based loss functions often leads to consistency and
rate of convergence (to the Bayes optimal risk) results under general conditions. The
common notion of margin-based loss functions as upper bounds of the misclassification
loss is formalized and investigated. It is shown that the hinge loss is the tightest convex
upper bound of the misclassification loss. Simulations are carried out to compare some
commonly used margin-based loss functions.

Key Words: Consistency for classification, Bayes rule of classification, rate of conver-
gence, method of sieves, method of regularization.

1 Introduction

We consider the binary classification problem studied extensively in statistics and machine
learning. Suppose we are given a training set of observations Dn = {(xi, yi), i = 1, ..., n},
assumed to be i.i.d. realizations of a random pair (X, Y ). Here X ∈ X is the explanatory
or input vector and Y is the class label that takes values in {−1, 1}. A classification rule
φ is a mapping from the input space X to {−1, 1}. The generalization error of φ is the
expected misclassification rate R(φ) = P{φ(X) 6= Y }. This is the evaluating criterion for
the performance of classifiers. Let p(x) = P (Y = 1|X = x) be the conditional probability
of the positive class given X = x, and g(x) = log[p(x)/(1 − p(x))] be the log odds function.
Then the decision-theoretically optimal classification rule with the smallest generalization
error is φ∗(x) = sign[p(x) − 1/2] = sign[g(x)]. This optimal rule is called the Bayes optimal
rule. The generalization error of the Bayes optimal rule R∗ = R(φ∗) is called the Bayes
optimal risk. When p(x) = 1/2, it does not matter how you classify a subject, as the
misclassification rate is the same. To avoid technicality, we assume throughout this paper
p(x) 6= 1/2, a.s ..
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In practice we do not know the underlying probability distribution, and need to learn
a good classification rule from the training sample. A common approach is to derive a
classification function f(x) by minimizing an empirical risk on the training sample. The
classification rule is then taken to be sign[f(x)]. For a given training loss function ℓ(y, f(x)),
the empirical risk is 1/n

∑

i ℓ(yi, f(xi)). In the traditional logistic regression, the training loss
function is the conditional negative log-likelihood log[1+e−yf(x)]. In recent years, there have
been a host of classification methods proposed in the machine learning literature that use
different loss functions based on the concept of the margin. Given a classification function f ,
the margin of a subject (x, y) achieved by the classification function is defined as yf(x). It is
easy to see that a subject is classified correctly by the classification rule sign[f(x)] if and only
if its margin is positive. The concept of margin is commonly used in machine learning. A
large margin is often taken to indicate a confident classification, and many machine learning
methods are often motivated by the notion of increasing the margin.

The misclassification loss of a classification rule sign[f(x)] can be written as a function
of the margin: [−yf(x)]∗, where the function (·)∗ takes value 1 for positive arguments and 0
for negative arguments. Intuitively, the misclassification loss should be used as the training
loss, since it is the loss function used to evaluate the performances of classifiers. However,
the function (·)∗ is not convex and not continuous, and causes problems for computation.
Therefore many other margin-based loss functions are used as training loss functions in
many classification procedures. Examples include the exponential loss exp[−yf(x)] used in
AdaBoost, the hinge loss [1−yf(x)]+ used in the support vector machine, and many others.
A brief overview of these loss functions is given in section 2.

In the machine learning literature, margin-based loss functions are usually motivated as
approximations to or upper bounds of the misclassification loss. However, this does not
explain why such loss functions give good performance statistically, since minimizing an
upper bound is quite different from minimizing the original function, especially since these
upper bounds are not very tight. Many theoretical results on procedures based on margin-
based loss functions have been derived in the computational learning literature. We do not
attempt to give a complete list, but refer to Vapnik (1995), Schapire, Freund, Bartlett, and
Lee (1998), Bartlett and Shawe-Taylor (1999), Cristianini and Shawe-Taylor (2000), and
Mason, Baxter, Bartlett, and Frean (2000) for references. Such results typically bound the
generalization error with quantities related to the empirical margins of the training sample
points. It is not clear how the generalization error or its upper bound compare with the
Bayes optimal risk R∗.

Jiang (2001) argued forcefully that when data are noisy, it is more appropriate to study
the difference between the generalization error and the Bayes optimal risk, rather than
the generalization error itself. In most practical situations the Bayes optimal risk R∗ is
greater than zero, therefore the generalization error of any classifier can not be going to zero
as the sample size goes to infinity. The magnitude of the generalization error alone does
not give a complete picture of the performance of the classifier. The same generalization
error of say 0.2 may mean an excellent performance in situations where the classes have
a serious overlap; it can also mean a very poor performance in a simple situation where
the classes are almost linearly separated. Thus the Bayes optimal risk should be used as a
benchmark for the performance of classifiers. A sequence of classifiers is said to be consistent

2



if their misclassification errors converge to the Bayes optimal risk. Formally, Let φn be a
sequence of classifiers based on data Dn. Let R(φn) = P{φn(X, Dn) 6= Y |Dn} be the
generalization error of φn. Then φn is consistent for a family of distributions of (X, Y ), if for
every member of the family, we have R(φn) −→ R(φ∗) in probability. See Devroye, Györfi,
and Lugosi (1996). Marron (1983) and Mammen and Tsybakov (1999) studied the rate with
which the generalization error of classification rules goes to the Bayes optimal risk. Marron
(1983) showed the optimal rate of convergence to the Bayes optimal risk, under smoothness
conditions on the class densities, is the same as that of the mean integrated squared error
(going to zero) in function estimation, and the (density) plug in rule achieves the optimal
rate of convergence. Mammen and Tsybakov (1999) studied the rates under smoothness
conditions on the decision boundary. The optimal rates they obtained is much fast. They
further showed that such rates can be achieved by decision rules based on minimization of
empirical risk over the whole class of sets or over sieves. These methods, however, are hard
to implement.

In this paper we consider the consistency and rate of convergence (to the Bayes opti-
mal risk) properties of classifiers based on general margin-based loss functions. In section
3, we motivate a notion of Fisher consistency for classification, and established the Fisher
consistency for a very general class of margin-based loss functions. It is also noted there
an interesting connection between kernel smoothing in classification and a method of reg-
ularization with a particularly simple margin-based loss function. In section 4, we connect
Fisher consistency with consistency, and use this connection to derive some theoretical re-
sults on consistency and rate of convergence (to the Bayes optimal risk) for classifiers based
on margin-based loss functions.

In section 5 we look at some of the commonly used convex margin-based loss functions
in more detail. In particular, the hinge loss is shown to be the tightest convex upper bound
of the misclassification loss. Some simulations are carried out to compare the performance
of several commonly used convex margin-based loss functions in the context of boosting and
the method of regularization. A summary and discussions are given in section 6. Proofs are
given in section 7.

2 Examples of margin-based loss functions

Boosting and the support vector machine are two examples of recently proposed machine
learning procedures that involve margin-based training loss functions. Each has a number
of variants with different margin-based loss functions.

Boosting was proposed in the Computational Learning Theory literature. See Schapire
(1990), Freund (1995), and Freund and Schapire (1996). The basic idea is to combine
weaker learners to improve performance. Freund and Schapire (1996) introduced the popu-
lar AdaBoost procedure. It has been noted that boosting can be seen as a gradient descent
algorithm in the function space. See Breiman (1999), Mason et al (2000), Friedman, Hastie,
and Tibshirani (2000), Collins, Schapire, and Singer (2000). Friedman, Hastie, and Tibshi-
rani (2000) showed that AdaBoost can be viewed as a stage-wise additive fitting with the
exponential loss function exp[−yf(x)]. This loss function appeared in Schapire and Singer
(1998), and was motivated as an upper bound on the misclassification loss. Friedman,
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Hastie, and Tibshirani (2000) further proposed LogitBoost procedure based on the nega-
tive log-likelihood log[1 + e−yf(x)]. Friedman (2001) introduced a gradient boosting method
MART for regression and classification. Mason et al (2000) proposed AnyBoost classification
procedures that perform gradient descent in the function space with general loss functions
of the margin. They gave a list of some of the margin-based loss functions used in existing
boosting type methods. Other than the loss functions mentioned earlier, the list include
[1 − yf(x)]5 used in the ARC-X4 procedure (Breiman, 1998), and [1 − yf(x)]2 used in con-
structive NN algorithm (Lee, Bartlett, and Williamson, 1996) [this is actually the same as
the common square loss (y − f(x))2]. See Figure 1, top left panel, for the graphs of these
two loss functions and the exponential loss function. The graphs of all the loss functions
discussed in this section are given in Figure 1.

Mason, Bartlett, and Baxter (1999) introduced a notion of B-admissibility of margin-
based loss functions. A family {CN : N = 1, 2, ...} of margin cost functions is B-admissible
for B ≥ 0 if for all N there is an interval I ∈ R of length no more than B and a function
ΦN : [−1, 1] → I that satisfies

[−α]∗ ≤ E[ΦN (Z)] ≤ CN(α)

for all α ∈ [−1, 1], where Z = (1/N)
∑N

I=1 ZI with ZI ∈ {−1, 1} i.i.d. and P (ZI = 1) =
(1+α)/2. They motivated this notion by deriving an upper bound of the generalization error
for procedures based on B-admissible margin cost functions. Based on the upper bound, they
proposed a family of margin-based loss functions. These are smooth non-convex functions
that follow the misclassification loss closely, and are not easy to deal with computationally.
For computational considerations, Mason et al (1999) proposed using:

Cθ(α) =











(1.2 − γ) − γα : −1 ≤ α ≤ 0
(1.2 − γ) − (1.2 − 2γ)α/θ : 0 ≤ α ≤ θ
γ/(1 − θ) − γα/(1 − θ) : θ ≤ α ≤ 1

with γ fixed at 0.1. Mason et al (2000) further proposed using the so called normalized
sigmoid cost function 1− tanh[λyf(x)]. See Figure 1, top right panel, for the graphs of these
functions.

The support vector machine was first proposed in Boser, Guyon, and Vapnik (1992).
The hard margin linear support vector machine (Boser, Guyon, and Vapnik, 1992) simply
finds the optimal separating hyper-plane in the simple situation of linearly separable classes.
In the soft margin support vector machine (Cortes and Vapnik, 1995) nonnegative slack
variables are used to deal with overlapping classes. The linear support vector machine is
then extended to the nonlinear support vector machine by mapping the data into high (even
infinite) dimensional feature space, and applying the linear support vector machine in the
feature space. Through a reproducing kernel trick, the computation of the linear support
vector machine in the high (or infinite) dimensional feature space can be carried out in the
original input space, and we do not have to explicitly implement the mapping into the feature
space. The support vector machine has the advantage that the solution is usually sparse,
and has been used on very large datasets. Several authors, including Vapnik (1995) and
Shawe-Taylor and Cristianini (1998) have derived upper bounds on the generalization error
of the SVM based on the quantities related to the sample margins.
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It is now well known that the nonlinear support vector machine can be seen as a special
case of the method of regularization. See Wahba (1999), Evgeniou, Pontil, and Poggio (1999).
For a general loss function ℓ(y, f(x)), the method of regularization solves

arg min
f∈F

1/n
n

∑

i=1

ℓ[yi, f(xi)] + λnJ(f), (1)

where F is a reproducing kernel Hilbert space of functions, J(·) is a penalty (regularization)
functional, often a norm or semi-norm in F . The smoothing parameter λn depends on the
sample size n. The penalized logistic regression is one example of the method of regularization
with the (logistic) loss function log[1 + e−yf(x)]. The support vector machine is another
example with the corresponding training loss function being [1−yf(x)]+. Here (τ)+ = τ , for
τ > 0; and is 0 otherwise. This loss function is also referred to as the hinge loss. Once the
SVM solution f is found, the classification rule is sign[f(x)]. Some variants of the support
vector machine use the loss function [1 − yf(x)]q+ with q > 1, especially with q = 2. See
Burges (1998), Lee and Mangasarian (2001). See Figure 1, bottom left panel for a display
of the logistic loss, the hinge loss, and the hinge loss with q = 2.

Shen, Zhang, Tseng, and Wong (2001) proposed the generalization machine, which is a
method of regularization with a margin-based loss function ψ(yf), where ψ(z) is 2 if z < 0,
1 − z if 0 < z < 1, and 0 if z ≥ 1. See Figure 1, bottom right panel for a display of this
loss function. They proved some interesting theoretic results for the generalization machine,
including some rate of convergence (to the Bayes optimal risk) results.

3 Fisher consistency of margin-based loss functions

We show that under general conditions, margin-based loss function ℓ(y, f(x)) = V (yf(x))
satisfies the condition that the minimizer of Eℓ(Y, f(X)) has the same sign as sign[2p(x)−1].
Such a condition can be seen as the Fisher consistency for classification problems. In the
traditional parameter estimation situation, Fisher consistency means that the estimation
procedure in the population space will produce the target of the estimation. For example,
let Zi, i = 1, 2, ..., n be a random sample from a distribution f(z, θ0). An M-type estimate
of θ0 is the minimizer of 1/n

∑n
i=1 ℓ(zi, θ), for some loss function ℓ. The estimation proce-

dure is said to be Fisher consistent if the minimizer of Eℓ(Z, θ) is θ0. See, for example,
Duan and Li (1989). Fisher consistency usually implies strong consistency under suitable
regularity conditions. One obvious example is the maximum likelihood estimation. In non-
parametric function estimation, Fisher consistency means that the population minimizer of
the estimation criterion is the underlying true function to be estimated.

In the context of classification, in order for a classification rule sign[f(x)] to achieve the
Bayes optimal risk, the classification function f must have the same sign as sign[p(x)−1/2].
Therefore Fisher consistency for a classification procedure based on a loss function can be
defined to be that the population minimizer of the loss function have the same sign function
as sign[p(x) − 1/2].

Example 3.1 The method of regularization (1). There is a large body of literature on the
method of regularization in function estimation. See e.g., Silverman (1982), Wahba (1990),
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Cox and O’Sullivan (1990), Van de Geer (1990), Gu and Qiu (1993), Shen (1998) for
references. Cox and O’Sullivan (1990) provided a general abstract framework for studying
the asymptotic properties of such methods. In general, let the minimizer of Eℓ[Y, f(X)] be
denoted by f̄ , then under the condition that f̄ is in the reproducing kernel Hilbert space F
under study, and some other regularity conditions, the solution f̂ to (1) goes to f̄ . If f̄ has
the same sign as sign[p(x) − 1/2], then we can expect the method of regularization estimate
approaches the Bayes optimal rule.

Example 3.2 The method of sieves. The method of sieves solves

arg min
f∈Fn

1/n
n

∑

i=1

ℓ[yi, f(xi)], (2)

where Fn is an increasing sequence of subspaces (approximating spaces) of F . There is a
large body of literature on the method of sieves in nonparametric function estimation. See
e.g., Grenander (1981), Geman and Hwang (1982), Shen and Wong (1994) for references.
A popular special case of the method of sieves takes the approximating spaces to be the span
of polynomial spline functions and their tensor products. See Stone, Hansen, Kooperberg,
and Truong (1997), Huang (1998) for the asymptotic theory of these methods. In general,
the target of the estimation is the population minimizer of ℓ[y, f(x)]. Therefore, for the
sieve method to perform well for classification, the minimizer of Eℓ[Y, f(X)] should have
the same sign as sign[p(x) − 1/2]. Many classification and regression procedures including
MARS (Friedman, 1990) are often viewed as greedy, adaptive implementations of the method
of sieves, though the properties of the adaptive procedures can not be fully explained through
the existing asymptotic theory of the method of sieves. In this sense boosting is related to the
method of sieves with the approximating spaces being the linear spaces spanned by the weak
learning functions. The method of regularization is also related to the method of sieves. The
minimization problem (1) is equivalent to (2) with Fn = {f ∈ F : J(f) ≤Mn} for some Mn.

Consider a function V satisfying the following assumptions:

1. V (z) < V (−z), ∀z > 0.

2. V ′(0) 6= 0 exists.

We have the following

Theorem 3.1 Let V be some function satisfying assumptions 1 and 2. If EV [Y f(X)] has
a global minimizer f̄(x), then sign[f̄(x)] = sign[p(x) − 1/2], a.s ..

Several special cases are well known in the literature: the population minimizer of [1−yf(x)]2

is 2p(x) − 1; the population minimizer of the logistic loss is the log odds function g(x) =
log[p(x)/(1 − p(x))], which has the same sign as that of p(x) − 1/2; Friedman, Hastie, and
Tibshirani (2000) showed that the population minimizer of the exponential loss is half of
the log odds function. Lin (1999) showed that the population minimizer of the hinge loss is
sign[p(x) − 1/2].
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Remark 3.1 Notice we do not require the global minimizer to be unique. Also, the global
minimizer is allowed to take on values ∞ or −∞. One example is the normalized sigmoid
loss 1−tanh(λyf(x)). It can be checked that the population minimizer is ∞ when p(x) > 1/2,
and is −∞ when p(x) < 1/2.

Remark 3.2 Assumption 2 is only used to guarantee that f̄(x) 6= 0, a.s ., and can be relaxed.
For example, consider the misclassification risk E[−Y f(X)]∗. It is minimized by any function
that has the same sign as sign[p(x) − 1/2], though the function (·)∗ is not differentiable at
0. Another example is the loss function used in the generalization machine (Shen et al,
2001). The loss is not differentiable at 0. It can be seen that the population minimizer of
the loss function is any number greater than 1 when p(x) > 1/2, and is any number smaller
than −1 when p(x) < 1/2. Thus the population minimizer has the same sign as that of
sign[p(x) − 1/2].

We can relax assumption 1 to
Assumption 1’: there exists a positive number a such that V (z) > V (a) for any z > a,

and V (z) > V (−a) for any z < −a, and that V (z) < V (−z), ∀z ∈ (0, a].

Theorem 3.2 Let f̄(x) be any global minimizer of EV [Y f(X)] for some function V satis-
fying assumptions 1’ and 2. Then we have sign(f̄) = sign(p− 1/2), a.s ..

We can see assumption 1 can be seen as a special case of assumption 1’ with a = ∞. It
is interesting to see that loss functions that put very serious penalty on classifications that
are too correct (margin larger than 1), while putting very slight penalty on misclassification
are still Fisher consistent.

Here we note a connection between kernel smoothing and a method of regularization in
classification. Silverman (1984) showed that in regression the smoothing spline (a method
of regularization with the cubic spline reproducing kernel) corresponds approximately to
smoothing by a variable bandwidth kernel. It turns out in classification the connection be-
tween kernel smoothing and the method of regularization is much more straightforward. Con-
sider the simplest margin-based training loss function −yf(x). The minimizer of E[−Y f(X)]
is ∞ when p(x) > 1/2, and is −∞ when p(x) < 1/2. This loss function has not been used
in any existing classification procedure in the literature. Let us consider (1) with this loss
function. Let F be a reproducing kernel Hilbert space with reproducing kernel K(x,x′),
x,x′ ∈ X . Let the penalty term J(f) be the norm of f in F . By the representer the-
orem (Kimeldorf and Wahba, 1971), the solution to (1) is in the finite dimensional space
spanned by {K(xi, ·), i = 1, ..., n}. Write f(x) =

∑

i ciK(xi,x). Now let y = (y1, ..., yn)′,
c = (c1, ..., cn)′, f = (f(x1), ..., f(xn))′ and K be the n by n matrix with ijth entry being
K(xi,xj). The quantity in (1) becomes

−y′Kc/n+ λnc
′Kc,

and the minimizer is ĉ = y/(2nλn). Therefore f̂(x) =
∑

i yiK(xi,x)/(2nλn), and the
classification rule is sign[f̂(x)] = sign[

∑

i yiK(xi,x)]. This is exactly kernel smoothing in
classification. For example, let the reproducing kernel be the Gaussian reproducing kernel
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K(x,x′) = exp[(x−x′)2/σ2], then the resulting classification is the same as the classification
resulted from the kernel smoothing with Gaussian kernel. Thus the kernel smoothing tech-
nique in classification corresponds to a method of regularization with a particularly simple
margin-based loss function.

4 Some asymptotic results

There exist well established framework for deriving asymptotic results for function estimation
problems. These frameworks are especially applicable to situations in which the loss function
is convex. We demonstrate that these frameworks can be used to derive rate of convergence
(to the Bayes optimal risk) results in classification, once the Fisher consistency of the training
loss is established. The following lemma shows that the convergence of the generalization
error to the Bayes optimal risk can be studied through studying the convergence in function
estimation.

Lemma 4.1 Let V be a function satisfying assumptions 1 [or 1’], 2, and V ′′(z) > 0, ∀z. If
f̄ is the global minimizer of EV [Y f(X)], then for any function f ,

R[sign(f)] − R∗ ≤ c
∫

|f(x) − f̄(x)|d(x)dx ≤ c{
∫

|f(x) − f̄(x)|2d(x)dx}1/2,

where c is a constant depending only on V , and d(x) is the density function of X.

Remark 4.1 For the special case in which f̄(x) is [p(x) − 1/2], this lemma is well known.
See Theorem 2.2 of Devroye, Györfi, and Lugosi (1996), and the references listed there.
Lemma 4.1 represents a generalization that is applicable to more general target functions.
Much of the proof of Lemma 4.1 is to establish the inequality

|p(x) − 1/2| ≤ c|f̄(x)| (3)

for some positive c that does not depend on x.

Remark 4.2 The condition V ′′(z) > 0, ∀z, in Lemma 4.1 can be relaxed. The key of the
proof is (3). For the hinge loss, we have f̄(x) = sign[p(x) − 1/2], therefore (3) is trivially
satisfied, and result of Lemma 4.1 applies. Other examples include the generalization machine
loss and the normalized sigmoid loss.

Existing frameworks in function estimation problems can then be applied directly to establish
asymptotic results in classification. For example, combining Lemma 4.1 and a straightfor-
ward application of the framework in Shen and Wong (1994) gives

Theorem 4.1 Let ℓ(y, f) = V (yf) be the loss function in the method of sieves, with V
satisfying assumptions 1 [or 1’], 2, and V ′′ is continuous and positive. Let f̄ be the minimizer
of Eℓ(Y, f(X)). Let F be a function space and the functions in F are bounded uniformly by a
constant C in the L∞ norm. Assume f̄ ∈ F . Let Fn be a sequence of approximating subspaces
(sieve) of F satisfying H(ǫ, Fn) ≤ An2r0ǫ−r for some constants r0 <

1
2
, A > 0, and all small
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ǫ > 0. Here H(ǫ, Fn) is the L∞-metric entropy of the space Fn, that is, exp(H(ǫ, Fn)) is the
number of ǫ-balls in the L∞-metric needed to cover the space Fn. Then for the sieve estimate
fn, we have

R[sign(fn)] −R∗ = Op(max(n−τ , ρ(πnf̄ , f̄))).

Here ρ(πnf̄ , f̄) = inff∈Fn

∫

(f − f̄)2d(x)dx, and

τ =























1−2r0

2
− log log n

2 log n
, if r = 0+;

1−2r0

2+r
, if 0 < r < 2;

1−2r0

4
− log log n

2 log n
, if r = 2;

1−2r0

2r
if r > 2,

where ǫ−0+

is taken to represent log(1/ǫ).

Remark 4.3 The condition that the functions in F are uniformly bounded by a constant C
in the L∞ norm is introduced for convenience. This condition is reasonable when V satisfies
assumption 1’ with a finite a > 0, since in that case f̄ is always bounded by a. In cases of
exponential loss and logistic loss, additional assumptions such as that p(x) is bounded away
from 0 and 1 is required for f̄ to be bounded.

Remark 4.4 Theorem 4.1 is a direct application of Theorem 1 of Shen and Wong (1994).
Stronger results (with weaker conditions) can be obtained by applying Theorem 2 of Shen and
Wong (1994). We do not pursue this here.

Thus the rate of convergence to the Bayes optimal risk is controlled by the size of ap-
proximating space and the sieve approximation error ρ(πnf̄ , f̄). The best rate is determined
by the complexity of the function space F .

Results on the method of regularization can be established through Theorem 4.1 by
making use of the connection between the method of regularization and the method of sieves.
However, it is usually more straightforward to combine Lemma 4.1 and the framework in Cox
and O’Sullivan (1990). Suppose V is a function satisfying assumptions 1 [1’], 2, V ′′(z) > 0,
∀z, and V ′′′ exists and is continuous. Then the population minimizer of the loss function
V (yf) is unique. Assume it is in a reproducing kernel Hilbert space F . For the classifier
obtained through (1), the rate of convergence of the generalization error to the Bayes optimal
risk depends on the rate of decay of the eigenvalues of the reproducing kernel corresponding
to F , which can be seen as another measure of the complexity of the function space F .

Results like Theorem 4.1 concerns the plug-in method in which a smooth classification
function is obtained, and then the classification is based on the sign of the classification
function. The rate of convergence of such plug-in methods to the Bayes optimal risk is the
same as the rate in function estimation. The results in Marron (1983) suggests that this is the
optimal rate for classification problems under global smoothness conditions. Mammen and
Tsybakov (1999) considered the classification problem under smoothness conditions on the
classification boundary instead of the classification function, and showed that it is possible
to achieve faster rate of convergence than that of function estimation. However, the methods
discussed in that paper are hard to implement.
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Remark 4.5 Nonparametric methods for classification typically involve smoothing param-
eters. In the method of regularization (1), the smoothing parameter is λ. In the method
of sieves (2), the smoothing parameter is the dimension of the approximating space (and
related characteristics of the approximating space). In the following discussion let us gen-
erally denote the smoothing parameter by λ. While the training loss functions is usually
different from the misclassification loss, the tuning of the smoothing parameter is typically
based on the misclassification loss. A direct consequence is that the classifiers picked by the
tuning may not be close to the target function of the training (i.e., the population minimizer
of the training loss), but they are still consistent with respect to the misclassification loss.
Consider a common scenario in which we have an independent tuning set of size m. Let
the classification function obtained with the smoothing parameter λ be denoted by fλ and
the corresponding classification rule is φλ = sign[fλ]. We choose the classifier φλ̂ with the
smallest misclassification error on the tuning set over Ck = {φλ : λ = 2−k, ..., 1, 2, ..., 2k}.
Devroye, Györfi, and Lugosi (1996) considered this formulation of tuning smoothing parame-
ter and showed (in section 25.2) that if the classification rule φλ is consistent, then the tuned
classifier is consistent if n→ ∞, k → ∞, m→ ∞, and log(k) = o(m).

One way to look at this is to consider the models built by the training process as a paramet-
ric family of models parametrized by λ. For margin-based loss functions, the discussions in
earlier sections show that under some conditions, there exists some members of the paramet-
ric family built by the training that is close to the optimal in terms of function estimation,
and thus in terms of classification by Lemma 4.1. However, these members may not be
the closest to the optimal in terms of classification. This is because for good classification
it is not necessary to have a good estimation of the target function. All that is needed is
that the estimate has the same sign as the target function. The tuning may actually pick
some other members in the parametric family that might be closer to the optimal in terms of
classification.

5 Some comparison studies

As can be seen from earlier sections, many different margin-based loss functions lead to
consistent classification. It is of practical interest to compare their performances in different
situations. In this section we compare different loss functions with simulation. Margin-based
loss functions have usually been motivated as upper bounds of the misclassification loss,
and it seems there is a common notion that tighter upper bounds give better classification
performance. Another goal of this section is to investigate this notion.

We concentrate on convex loss functions, as they are generally easy to work with com-
putationally. Common examples include the square loss, the exponential loss, the logistic
loss, and the hinge loss. In the context of boosting, Friedman, Hastie, and Tibshirani (2000)
remarked that the square loss usually perform quite well, but are generally inferior to the
monotone decreasing margin-based loss functions, as it penalizes the classifications that are
too correct. The exponential loss is particularly suited to the boosting procedure computa-
tionally, and is used in the popular procedure AdaBoost. Friedman, Hastie, and Tibshirani
(2000) provided manageable algorithms for LogitBoost with the logistic loss. Bühlmann and
Yu (2001) studied the properties of boosting with the square loss (called L2Boost in that
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paper). They found comparable performances between L2Boost and LogitBoost. The hinge
loss has the nice property that it often leads to sparse solutions as in the support vector ma-
chine. All of these convex loss function can be seen as upper bounds of the misclassification
loss.

The notion of being an upper bound of the misclassification loss is not well defined,
since it is possible to make any function that is bounded from below an upper bound of the
misclassification loss by adding a large constant to it. However, it is possible to compare
different loss functions as upper bounds of the misclassification loss if we take into account
the equivalence between loss functions. Two loss functions are equivalent for a classification
procedure if the procedure based on the two losses give identical classification rules. For the
method of regularization and the method of sieves, it can be seen that the loss functions
ℓ(y, f) and aℓ(y, bf) + c are equivalent for any a > 0, b > 0, and c ∈ R. For example, let
J(f) be a semi-norm in a reproducing kernel Hilbert space F , and denote the solution to
(1) by f̂ . Then the solution to (1) with ℓ replaced by aℓ(y, bf) + c and λ replaced by λab2

is f̂/b. Therefore the two solutions have the same sign, and the resulting classification rules
are identical.

Proposition 5.1 For any convex function V that satisfies condition 1 (or 1’) and 2, that
is an upper bound of the misclassification loss, there exists a function W such that W ≤ V
everywhere, and W (yf) is equivalent to the hinge loss. The equal sign holds everywhere only
when V is equivalent to the hinge loss.

Proof: Let U be the tangent line of V at (0, V (0)). Then U ≤ V everywhere since V is convex.
By condition 1 (or 1’) and 2, it is easy to see U has a negative slope. Let W = max(U, 0).
Then W ≤ V everywhere since V ≥ 0 everywhere. It is easy to see that W is equivalent to
the hinge loss.

Proposition 5.1 establishes the hinge loss as the tightest convex margin-based upper
bound of the misclassification loss. However, whether this translates into advantages in
terms of classification performance is not clear and deserves further study.

In the following we compare the classification performance of classification procedures
based on different loss functions through simulation studies. We first compare boosting
procedures based on different convex losses. We concentrate on MART algorithms introduced
in Friedman (1999, 2001). Five different loss functions are considered: the square loss, the
logistic loss, the absolute deviation loss |1 − yf |, the exponential loss, and the hinge loss.

MART is a boosting algorithm with regression trees as the base learner. Given a loss
function ℓ(y, f), the procedure can be described as in the following (c.f. Friedman, 2001).
Initialize with a constant function

arg min
ρ

n
∑

i=1

ℓ(yi, ρ), (4)

then iterate through the following steps (denote the fitted function at the m-th iteration by
Fm):

1. Calculate current residuals defined as

ỹi = −

[

∂ℓ(yi, F (xi))

∂F (xi)

]

F (x)=Fm−1(x)

, i = 1, 2, ..., n.
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2. Fit a J-node regression tree to the current residuals to obtain the tree terminal nodes
Rjm, j = 1, 2, ..., J .

3. For each terminal node, find

γjm = arg min
γ

∑

xi∈Rjm

ℓ(yi, Fm−1(xi) + γ)

4. Update the current fit:

Fm(x) = Fm−1(x) + r
J

∑

j=1

γjm1(x ∈ Rjm)

Here the constant r in the last step is a regularizing factor. The regression tree in step 2
is induced with the square loss for computational simplicity, though it is possible to fit the
tree in step 2 with loss functions other than the square loss, especially ℓ(y, f).

The derivative in step 1 is straightforward to evaluate. For example, for the hinge loss
(1−yf)+, the derivative is −y[sign(1−yf)+1]/2. The minimization in the initialization (4)
and step 3 has been worked out in the cases of the square loss, the logistic loss, the exponential
loss, the absolute deviation loss, and Huber’s loss function. See Friedman (2001), Hastie,
Tibshirani, and Friedman (2001). In the logistic loss and the exponential loss cases, a single
Newton-Raphson step is preferred as an approximation to the update in step 3. Here we
give the corresponding result for the hinge loss. Consider the problem

arg min
γ

n
∑

i=1

ℓ(yi, γ + fi), (5)

For the hinge loss, we have

Lemma 5.1 The solution to (5) with ℓ(y, f) = (1 − yf)+ is any number in the interval
[(y−f)(n+), (y−f)(n++1)], where n+ is the number of 1’s in {yi, i = 1, 2, ..., n}, and (y−f)(k)

denotes the k-th smallest number in {yi − fi, i = 1, 2, ..., n}.

In our simulation we consider four conditional probability functions in the eight dimen-
sional space:

p1(x) = [| sin(2πx1)|
x3 + x2x4 + x5]/3;

p2(x) = eg/(1 + eg) with g(x) = 4(|sin(2πx1)|
x3 + x2x4 + x5) − 6;

p3(x) = {sign[4(|sin(2πx1)|
x3 + x2x4 + x5) − 6] + 2}/4;

p4(x) = {sign[4(|sin(2πx1)|
x3 + x2x4 + x5) − 6] + 2}/4 + 0.2.

These functions are simple transformations of a regression function used as an example in
Friedman (1999). The transformations are used to make sure that the conditional probability
function p(x) takes value in (0, 1). The first two probability functions are continuous, and the
last two are discontinuous. For each of the four function, we generate 500 uniform random
points in (0, 1)8 for the input vector X, and then generate the y’s according to the conditional
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probability functions. We run MART algorithms with the square loss, the logistic loss, the
exponential loss, the absolute deviation loss, and the hinge loss on the generated data. We
fix the regularizing factor r at 0.1, and use 6-node regression trees. The simulations are
run in R. The simulation is repeated 100 times for each of the four conditional probability
functions.

In MART we need to tune the number of iterations. Since we know the true conditional
probability function in the simulation, to eliminate randomness in tuning we use the true
expected misclassification loss in tuning as we want to concentrate on the performance of
different training loss functions. That is, we find the smoothing parameter with the smallest
E[−Y fλ(X)]∗. The evaluation of E[−Y fλ(X)]∗ involves an integral that is sometimes hard
to compute, so we actually use a discrete approximation of E[−Y fλ(X)]∗:

1/n
n

∑

i=1

E{[−Y fλ(X)]∗|X = xi}

= 1/n
n

∑

i=1

[1 − p(xi)][(sign(fλ(xi)) + 1]/2 + p(xi)[1 − sign(fλ(xi))]/2.

Here xi’s are the realized x values. Notice this is not the resubstitution error, and is a good
approximation of the expected generalization error.

The results are summarized in Figure 2. From the boxplots we see that the square
loss, logistic regression loss, and the exponential loss have very similar performances, and
they perform better than the hinge loss, which in turn performs better than the absolute
deviation loss. We formally conduct a Bonferonni pairwise comparison with paired t-test.
The overall level of the test is 0.05. For each of the four simulations, the exponential loss,
the logistic loss and the square loss perform significantly better than the hinge loss and the
absolute deviation loss. In the first and third simulation, the exponential loss, the logistic
loss and the square loss have comparable performances, and the hinge loss and the absolute
deviation loss have comparable performances. In the second simulation, the exponential loss
performs significantly better than the logistic loss and the square loss. The latter two show
no significant difference. In the fourth simulation, the logistic loss performs significantly
better than the exponential loss and the square loss. The latter two show no significant
difference. In both the second and fourth simulations, the hinge loss performs significantly
better than the absolute deviation loss.

From the above simulation we see that loss functions that are tighter upper bounds of
the misclassification loss does not necessarily lead to better classification performance. One
possible reason why the hinge loss and the absolute deviation loss do not perform well might
be that they are not compatible with the square loss, which is used to induce the regression
tree structure in MART procedures (step 2). Another possible reason might be the greedy
nature of the tree building process. Breiman, Friedman, Olshen, and Stone (1984) discussed
the use of several loss functions in the tree building process. The misclassification loss is
found to be not a good choice. Therefore being close to the misclassification loss will not
give any advantage.

Now let us turn to the method of regularization, which does not have the greedy nature of
the regression tree. We conjecture that in such a situation the performance of different loss
functions is related to the complexity of the corresponding target function (the population
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minimizer of the training loss). To illustrate this we compare the method of regularization
with the square loss and with the hinge loss. These correspond to the penalized least square
method and the support vector machine. We first consider two one dimensional examples.
The conditional probability functions in the examples are

p5(x) =
exp[g(x)]

1 + exp[g(x)]
, where g(x) = 2 sin(3πx2) + x− 0.5.

p6(x) = sign[g(x)]/4 + 1/2.

The function g(x) is chosen to ensure that the conditional probability functions cross 1/2
multiple times. This is important for one dimensional examples since otherwise the optimal
classification rule depends only on one cross point and is too simple. Notice we do not take
p6 to be sign[g(x)]/2 + 1/2. This is because in that case the probabilities are 0 or 1, the
positive and negative classes are clearly separable, and the method of regularization with
smoothing parameter 0 will perform perfectly.

For these two examples we take the reproducing kernel Hilbert space in (1) to be the
second order Sobolev Hilbert space

H2 = {f |f, f ′ abs. cont., f ′′ ∈ L2},

as is usually done in the smoothing spline literature. For the penalized least square method,
the common practice is not to penalize linear functions; while for the support vector machine,
the common practice is to only leave the constant unpenalized. For comparison purpose, we
only leave the constant unpenalized in both cases. The penalized least square method with
linear functions unpenalized perform very similar to that with only constants unpenalized
in our examples. The corresponding reproducing kernel is:

K(s, t) = k1(s)k1(t) + k2(s)k2(t) − k4(|s− t|).

where k1(·) = · − 0.5, k2 = (k2
1 − 1/12)/2, and k4 = (k4

1 − k2
1/2 + 7/240)/24. See Wahba

(1990), Gu (1993). The solution to (1) with the square loss is obtained with the standard
procedure for solving the penalized least square problem. See Wahba (1990), section 1.3.
The solution to the support vector machine is obtained by going to the dual setup of the
problem. See Burges (1998), Wahba, Lin and Zhang (2000). The simulations are done in
Matlab to make use of the quadratic programming function in Matlab.

We generate 100 uniform random numbers in (0, 1) for the input variable x. We then
generate y’s according to the conditional probability functions. We search for the tuning
parameter among numbers of the form 2j, j ∈ Z. For each conditional probability function
and each training loss function we run the simulation one hundred times. For the example
with p5, a paired t-test applied to the results found no significant difference between the
method of regularization with the square loss and the hinge loss. For the example with p6,
the hinge loss is significantly better.

We next look at two two-dimensional examples. The conditional probability functions
are:

p7(x) = (x1 + x2)/2;
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p8(x) = sign(x1 + x2 − 1)/4 + 0.5

In these examples we use the Gaussian kernel exp(−‖s−t‖2

σ2 ). This is the reproducing kernel
commonly used in the support vector machine. Again we leave the constants unpenalized.
There are two parameters to be tuned: λ and σ. We search for λ among {2−14, ..., 25}, and
σ among {0.03125, 0.0625, ..., 1.6}.

We generate 100 uniform random numbers in (0, 1)2 for the input variable x. We then
generate y’s according to the conditional probability functions. For each conditional proba-
bility function and each training loss function we run the simulation one hundred times. For
the example with p7, a paired t-test applied to the results found the square loss to be sig-
nificantly better than the hinge loss. For the example with p8, the hinge loss is significantly
better. The results for examples p5 through p8 are given in Figure 3.

6 Summary and discussion

In the context of binary classification, the Fisher consistency of a classification procedure
based on a loss function ℓ(y, f(x)) can be defined as that the minimizer of Eℓ[Y f(X)] has
the same sign as sign[p(x) − 1/2]. We showed that under very general conditions, margin-
based loss functions are Fisher consistent. This gives an explanation why margin-based loss
functions generally work well. The Fisher consistency of the margin-based loss functions
often leads to the consistency and rate of convergence (to the Bayes optimal risk) results
of the corresponding classifiers. The training loss and the tuning loss are usually different.
While this does not destroy the consistency property for classifiers, it has the effect that
the classification function picked by tuning may not be close to the target function of the
training loss.

The hinge loss is shown to be the tightest convex upper bound of the misclassification
loss. However, whether this translate into advantages in terms of classification performance
depends on the classification procedure used and the complexity of the target function, as
suggested by our simulations. Our simulations can only serve as the first step for comparing
the loss functions in terms of classification efficiency. A lot more experience is needed before
we can draw any definitive conclusion. However, our simulation results seem to indicate
several interesting points. In the framework of boosting procedures, the logistic loss, expo-
nential loss, and the square loss seem to give comparable performances, and they perform
better than the hinge loss, which in turn outperforms the absolute deviation loss. The weak
performance of the hinge loss might be related to the greedy nature of the tree building
process. In the framework of the method of regularization, we compared the classification
performance of the square loss and the hinge loss. It seems that in situations where the
underlying conditional probability function p(x) is very smooth, the square loss outperforms
the hinge loss. An intuitive explanation is that in such situations the target function of the
square loss is 2p(x) − 1, which is simpler than the target function of the hinge loss, which
is sign[p(x) − 1/2]. In situations such as examples 6 and 8 in our simulation, the function
p(x) is not smooth, and the complexity of sign[p(x) − 1/2] is similar to the complexity of
2p(x) − 1, the hinge loss outperforms the square loss.
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7 Proofs

Proof of Theorem 3.1: For any fixed x, we define

A(z) = p(x)V (z) + [1 − p(x)]V (−z).

It is easy to check that E[V (Y f(X))|X = x] = A[f(x)]. Therefore z̄ = f̄(x) minimizes A(z).
Since V ′(0) 6= 0 exists, we have A′(0) = p(x)V ′(0)−[1−p(x)]V ′(0) = [2p(x)−1]V ′(0) 6= 0.

Thus 0 is not a minimizer of A. Therefore f̄(x) 6= 0.
Since f̄(x) is a global minimizer of A(z), we have,

0 ≥ A[f̄(x)] − A[−f̄(x)] = [2p(x) − 1]{V [f̄(x)] − V [−f̄(x)]}

Now if p(x) > 1/2, then V [f̄(x)] − V [−f̄(x)] ≤ 0. Since f̄(x) 6= 0, by assumption 1, we get
f̄(x) > 0. Therefore sign[f̄(x)] = sign[p(x) − 1/2].

If p(x) < 1/2, the same line of argument as above leads to sign[f̄(x)] = sign[p(x)− 1/2].
Proof of Theorem 3.2: Consider A(z) as defined in the proof of Theorem 3.1. From

the assumptions it is easy to check that if z > a, then A(z) > A(a); and if z < −a, then
A(z) > A(−a). Therefore the minimizer of A(z) has to be in the interval [−a, a]. That is,
f̄(x) is in [−a, a]. Now apply the same argument as in the proof of Theorem 3.1.

Proof of Lemma 4.1: Lemma 4.1 is a generalization Theorem 2.2 of Devroye, Györfi,
and Lugosi (1996), which states: For any function f ,

R[sign(f)]−R∗ ≤ 2
∫

[|p(x)−1/2|1sign[f(x)]6=sign[p(x)−1/2]]d(x)dx ≤ 2
∫

|f(x)−(p(x)−1/2)|d(x)dx.

(6)
Now let us prove Lemma 4.1. For any fixed x, we have

E[V (Y f(X))|X = x] = p(x)V [f(x)] + [1 − p(x)]V [−f(x)]. (7)

This is strictly convex in f(x), therefore there always exists a unique minimizer f̄(x), if we
allow f̄(x) to be ±∞.

We now establish (3) in section 4. This is obviously true when |f̄(x)| = ∞. Now we
consider the case when f̄(x) is finite. In this case, since f̄(x) is the minimizer of (7), taking
derivative at f̄(x), we have,

p(x)V ′[f̄(x)] − [1 − p(x)]V ′[−f̄(x)] = 0. (8)

From assumptions 1 [or 1’], and that V ′′(z) > 0, ∀z, we know that V either has a
minimizer at some 0 < b < ∞, or it is monotone decreasing. In the former case the same
argument as that in the proof of Theorem 3.2 leads to f̄(x) ∈ [−b, b]. Therefore in both cases
we have V ′[−f̄(x)] ≤ 0 and V ′[f̄(x)] ≤ 0. By the strict convexity of V the two equal signs
can not hold at the same time since f̄(x) is not 0 (as shown in the proof of Theorem 3.1).
Therefore V ′[−f̄(x)]+V ′[f̄(x)] 6= 0, a.s., and we can solve (8) to get |p(x)−1/2| = |B[f̄(x)]|,
where B(·) is defined as

B(z) = 1/2
V ′(−z) − V ′(z)

V ′(−z) + V ′(z)
.
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It is easy to see that B(z)/z → V ′′(0)
2V ′(0)

as z → 0. Therefore there exist δ > 0 and C > 0

only depending on V such that |B(z)| ≤ C|z| for z ∈ [−δ, δ]. Therefore if f̄(x) ∈ [−δ, δ],
then |p(x) − 1/2| = |B[f̄(x)]| ≤ C|f̄(x)|. On the other hand, if f̄(x) is not in [−δ, δ], then
|p(x) − 1/2| ≤ 1/2 ≤ 1

2δ
|f̄(x)|. So (3) is proved.

By Theorem 3.1, 3.2, (6), and (3), we have

R[sign(f)] −R∗

≤ 2
∫

[|p(x) − 1/2|1sign[f(x)]6=sign[f̄(x)]]d(x)dx

≤ 2c
∫

[|f̄(x)|1sign[f(x)]6=sign[f̄(x)]]d(x)dx

≤ 2c
∫

[|f̄(x) − f(x)|1sign[f(x)]6=sign[f̄(x)]]d(x)dx

≤ 2c
∫

|f̄(x) − f(x)|d(x)dx

≤ 2c
{

∫

[f̄(x) − f(x)]2d(x)dx
}1/2

.

Proof of Theorem 4.1: Define ρ2(f1, f2) =
∫

(f1 − f2)
2d(x)dx. By Lemma 4.1 all we

need to establish is ρ(fn, f̄) = Op(max(n−τ , ρ(πnf̄ , f̄))). To do that we apply Theorem 1 in
Shen and Wong (1994) with ℓ(y, f) = V (yf), by checking the conditions C1, C2, and C3 in
that theorem.

Since f̄(x) is the minimizer of E[V (Y f(X))|X = x] = p(x)V (f(x))+(1−p(x))V (−f(x)),
using a Taylor expansion at f̄(x) we get

E[V (Y f(X)) − V (Y f̄(X))] ≥ c1ρ
2(f, f̄),

for all f ∈ F . Here c1 = inf [−C,C] V
′′/2 > 0. Therefore condition C1 is satisfied with α = 1.

For any f1, f2 ∈ F , we have |V (yf1(x))−V (yf2(x))| ≤ c2|yf1(x)−yf2(x)| = c2|f1(x)−f2(x)|,
where c2 = sup[−C,C] V

′. Here we used the fact that y ∈ {−1, 1}. From this it is easy to
check that condition C3 is satisfied, and condition C2 is satisfied with β = 1.

Proof of Lemma 5.1: With the hinge loss, the quantity to be minimized in (5) is a
piecewise linear function of γ:

n
∑

i=1

[1 − yi(γ + fi)]+. (9)

The joint points of the piecewise linear function are (yi − fi), i = 1, 2, ..., n. To the left of
(yi − fi)(1), the smallest of the joint points, (9) is a linear function with derivative −n+.
Moving γ from left to right, every time a joint point is passed, the derivative of the piecewise
linear function (9) increases by 1. This is true both for any joint points corresponding to
positive examples, and for any joint points corresponding to negative examples. Therefore
the derivative of the piecewise linear function (9) is 0 in the interval [(yi−fi)n+

, (yi−fi)n++1],
and (9) is minimized by any point in this interval. The minimizer is unique if and only if
(yi − fi)n+

= (yi − fi)n++1.
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Figure 1: Examples of margin-based loss functions. Top left: The exponential loss, the
square loss and the loss function in ARC-X4 [Breiman (1999)]. Top right: The normalized
sigmoid loss and a piecewise linear loss. Bottom left: The hinge loss, the hinge loss with
q = 2, and the logistic loss. Bottom right: The generalization machine loss.
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Figure 2: The generalization error of boosting procedures with the absolute deviation loss,
the hinge loss, the square loss, the exponential loss and the logistic regression loss.
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Figure 3: The generalization error of the method of regularization with the hinge loss and
the square loss.
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