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Abstract

We review some of the basic ideas of Support Vector Machi8¥8/’s) for clas-
sification, with the goal of describing how these ideas canaihfortably inside
the statistical literature in decision theory and penali#eelinood regression. We
review recent work on adaptive tuning of SVMs, discussingggalizations to the
nonstandard case where the training set is not represangatd misclassification
costs are not equal. Mention is made of recent results in thlégategory case.

1.1 Introduction

This paper is an expanded version of the the talk given by btlee@uthors (GW)
at the Mathematical Sciences Research Institute Berketmakahlop on Nonlin-
ear Estimation and Classification, March 20, 2001. In thjzgpave review some
of the basic ideas of Support Vector Machines(SVMs) withgbal of describing
how these ideas can sit comfortably inside the statistitgabkure in decision the-
ory and penalized likelihood regression, and we review sofr@ir own related
research.

Support Vector Machines (SVM’s) burst upon the classifaraticene in the
early 90’s, and soon became the method of choice for mangresers and prac-
titioners involved in supervised machine learning. Thd @ Tommi Poggio
at the Berkeley workshop highlights some of the many intergsapplica-
tions. The websitéttp://kernel-machines.org is a popular repository
for papers, tutorials, software, and links related to SVMBsrecent search in
http://www.google.com for ‘Support Vector Machines’ leads to ‘about
10,600’ listings. Recent books on the topic include [23]][E], and there is
a section on SVM's in [10]. [5] has an incredible (for a teataiibook) ranking in
amazon.com as one of the 4500 most popular books.

The first author became interested in SVM's at the AMS-IM848IJoint
Summer Research Conference on Adaptive Selection of M@dwlsStatistical
Procedures, held at Mount Holyoke College in South Hadley iM8une 1996.
There, Vladimir Vapnik, generally credited with the inviemt of SVM’s, gave
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an interesting talk, and during the discussion after hik tabecame evident
that the SVM could be derived as the solution to an optimimaproblem in a
Reproducing Kernel Hilbert Space (RKHS), [25], [29] [137], thus bearing
a resemblance to penalized likelihood and other regul@mizanethods used in
nonparametric regression. This served to link the rapidlyetbping SVM lit-
erature in supervised machine learning to the now obviouslgted statistics
literature. Considering the relatively recent developtr@r5VM'’s, compared to
the 40 or so year history of other classification methods,df interest to question
theoretically why SVM’s work so well. This question was ratlg answered in
[18], where it was shown that, provided a rich enough RKHSsed1the SVM is
implementing the Bayes rule for classification. Convergenates in some special
cases can be found [19]. An examination of the form of the SVl that it is
doing the implementation in a flexible and particularly ééfi¢ manner.

As with other regularization methods, there is always omel sometimes
several tuning parameters which must be chosen well in dolaave efficient
classification in nontrivial cases. Our own work has focusedhe extension of
the Generalized Approximate Cross Validation (GACV) [38}] [8] from pe-
nalized likelihood estimates to SVM’s, see [21] [20] [32P]2At the Berkeley
meeting, Bin Yu pointed GW to théx method of Joachims [12], which turned
out to be closely related to the GACV. Code for the estimate is available
in SV M9kt http://ais.gmd.de/ thorsten/svm Jlight/ . At about
this time there was a lot of activity in the development ofitignmethods, and
a number of them [26] [11] [22] [12] [2] turned out to be reldtender various
circumstances.

We first review optimal classification in the two-categorgsdification prob-
lem. We describe the standard case, where the training sinssentative of the
general population, and the cost of misclassification isstn@e for both cate-
gories, and then turn to the nonstandard case, where netttiegse assumptions
hold. We then describe the penalized likelihood estimatd&rnoulli data, and
compare it with the standard SVM. Next we discuss how the Siilléments the
Bayes rule for classification and then we turn to the GACV fming the standard
SVM. The GACV and Joachimg'«a method are then compared. Next we turn to
the nonstandard case. We describe the nonstandard SVMhawchew both the
GACYV and the¢a method can be generalized in that case, from [31]. A modest
simulation shows that they behave similarly. Finally, weefly mention that we
have generalized the (standard and nonstandard) SVM to titecategory case
[15].

1.2 Optimal Classification and Penalized Likelihood

Let h4(-), hg(-) be densities of for class.A and clas$3, and letr 4 = proba-
bility the next observatiorfY") is an.4, and letrz = 1 — w4 = probability that

the next observation is & Thenp(z) = prob{Y = Alz} = A .
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Let C4 = cost to falsely call & an.4 andCi = cost to falsely call amd a B.
A classifierg is a maps(z) : © — {A, B}. The optimal (Bayes) classifier, which
minimizes the expected cost is

A if 5 pa) 5 Ca
popr(z) = {B iz {;ﬂ) - EA (1.1)
To estimatep(x), or alternatively the logif (z) = logp(z)/(1 — p(x)), we use a
training sef{y;, z; }"_,,v; € {A, B}, z; € T, whereT is some index set. At first
we assume that the relative frequency4$ in the training set is the same as in
the general populatiory. can be estimated (nonparametrically) in various ways.
If C4/Cps =1, andf is the logit, the optimal classifier is

f(z) > 0 (equivalently,p(z) — £ > 0) — A
f(z) < 0 (equivalently,p(z) — % <0)—B

In the usual penalized log likelihood estimationfgfthe observations are coded

as
1 if A
_ ) 12
Y {o it B. (1.2)

The probability distribution function fog | p is then

ify=1
L=pv(1—p)v=1" ! .
p/(1=p) {(1—])) ify=20

Usingp = ef/(1 + e) gives the negative log likelihood log £L = —yf +
log(1 + ef). For comparison with the support vector machine we will ditcr
a somewhat special case (General cases are in [13], [17]3&]). The penal-
ized log likelihood estimate of is obtained as the solution to the problem: Find
f(z) = b+ h(zx) with h € Hx to minimize

—Z[ fai) +log(1+ /@) 4+ AlInl, (13)

where A > 0, and’Hx is the reproducing kernel Hilbert space (RKHS) with
reproducing kernel

K(s,t), s,teT. (1.4)

For more on RKHS, see [1] [28]. RKHS may be tailored to manyliegfions
since any symmetric positive definite function @nx 7 has a unique RKHS
associated with it.

Theorem: [13]f,, the minimizer of (1.3) has a representation of the form

—b—l—zzcZ T, ;). (1.5)
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It is a property of RKHS that

n

B3 = > cici K (i, ). (1.6)
i,j=1
To obtain the estimatg,, (1.5) and (1.6) are substituted into (1.3), which is then
minimized with respect td andc = (cy,...,c,). Given positive), this is a

strictly convex optimization problem with some nice feaispecial to penalized
likelihood for exponential families, provided thatis not too neaf or 1. The
smoothing parameteX, and certain other parameters which may be ingidmay
be chosen by Generalized Approximate Cross Validation (&yfor Bernoulli
data, see ([17]) and references cited there. The target A&\Gis to minimize
the Comparative Kullback-Liebler (CKL) distance of theimstte from the true
distribution:

CKL(/\) = Et'rue Z _ynew‘if/\(fﬂi) + IOg(l + ef)‘(mi)), (17)
i=1

wherey,..,.; IS a new observation with attribute vector.

1.3 Support Vector Machines (SVM’s)

For SVM’s, the data is coded differently:

+1 if A,
_ 1.8
Y {_1 it B. (1.8)

The support vector optimization problem is: Fiffiflc) = b+ h(x) with h € H
to minimize
LSS0 =y + Al (19)
=1

where(r)+ = 7, if 7 > 0, and0 otherwise. The original support vector machine
(see e. g. ([26]) was obtained from a different argument,ibig well known
that it is equivalent to (1.9), see ([29], [25]). As beforeetSVM f, has the
representation (1.5). To obtain the classiffgrfor a fixed A > 0, (1.5) and (1.6)
are substituted into (1.9) resulting in a mathematical m@ogning problem to be
solved numerically. The classifier is thgp(xz) > 0 — A, fi(z) <0 — B.

We may compare the penalized log likelihood estimate ofdagélog p/(1—p)
and the SVM (the minimizer of (1.9)) by codingin the likelihood as

N S G |
Y7121 i B

Then—yf +1log(1+el) becomesog(1 +e~9f), wheref is the logit. Figure 1.1
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Figure 1.1. Adapted from [29]. Comparison[efr]., (1 — 7)+ andloge(1 + e~ 7).

comparesog(1 + e~¥f), (1 — yf), and[—yf]. as functions of- = y f where

[T]*_{l if 7 >0,

0 otherwise

Note that[—yf]. is 1 or 0 according agy and f have the same sign or not.
Calling [y f]« the misclassification counter, one might consider miningzhe
misclassification count plus some (quadratic) penalty tional on f but this is
a nonconvex problem and difficult to minimize numericallyuriNerous authors
have replaced the misclassification counter by some congprruound to it.
The support vector, or ramp functidi — y f) is a convex upper bound to the
misclassification counter, and Bin Yu observed that (1+¢~7) is also a convex
upper bound. Of course it is also possible to use a penalizelihbod estimate
for classification see [33]. However, the ramp function (modhe slope) is the
‘closest’ convex upper bound to the misclassification ceymthich provides one
heuristic argument why SVM'’s work so well in the classificatiproblem.

Recall that the penalized log likelihood estimate was tumed criteria which
chose\ to minimize a proxy for the CKL of (1.7) conditional on the sam. By
analogy, for the SVM classifier we were motivated in [20] [229] [32] to say
that it is optimally tuned if\ minimizes a proxy for the Generalized Comparative
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Kullback-Liebler distance (GCKL), defined as

GCKL(\) = Etme% D (1 = Ynewifa(xi)+- (1.10)
i=1

That is, A (and possibly other parametersif) are chosen to minimize a proxy
for an upper bound on the misclassification rate.

1.4 Why is the SVM so successful?

There is actually an important result which explains why 8 is so success-
ful: We have the Theorem:

Theorem [18]: The minimizer ovelf of Eyue(l — Ynewf(2))+ IS sign
(p(z) — 3), which coincides with the sign of the logit.

As a consequence, Tk is a sufficiently rich space, the minimizer of (1.9)
where X is chosen to minimize (a proxy foyC K L()), is estimating the sign
of the logit. This is exactly what you need to implement they@&aclassifier!

Eprue(1 — Ynew f)+ IS given by

p(l - f/\)7 f)\ < -1

Etrue(l_ynewf)\)Jr = p(l_fk)"i'(l_p)(l_’_f/\)a -1< f)\ <+1
(L=p)(1+ fr), fr >+L

(1.11)

Since the true is only known in a simulation experimen&C K L is also only
known in experiments. The experiment to follow, which isriefed from [18],
demonstrates this theorem graphically. Figure 1.2 givesitiderlying conditional
probability functionp(xz) = Prob{y = 1|z} used in the simulation. The function
sign(p(x) —1/2)is 1, for0.25 < = < 0.75; —1 otherwise. A training set sample
of n = 257 observations were generated with theequally spaced oft), 1], and

p according to Figure 1.2. The SVM was computed gnd given in Figure 1.3
forn\ = 271272 ... 272% in the plots left to right starting with the top row
and moving down. We see that solutifiis close to sigrip(z) —1/2) whenn A\ is

in the neighborhood dt—'8. 2—'8 was the minimizer of th€/C K L, suggesting
that it is necessary to tune the SVM to estimate sjgn:) — 1/2) well.

1.5 The GACV for choosing (and other parameters in
K)

In [29], [32], [20], [21] we developed and tested the GACV faning SVM’s.
In [29] a randomized version of GACV was obtained using a is¢iarargument
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Figure 1.2. From [18]. The underlying conditional probékgil function
p(z) = Prob{y = 1|z} in the simulation.
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related to the derivation of the GCV [4], [9] for Gaussian @bstions and for the
GACYV for Bernoulli observations [35]. In [32], [20], [21] was seen that a direct
(non-randomized) version was readily available, easy tomde, and worked
well. At about same time, there were several other tuninglt®$3] [11] [12]
[22] [26] which are closely related to each other and to thedO¥An one way or
another. We will discuss these later. The arguments beltawid32]. The goal
here is to obtain a proxy for the (unobservabl&)' K L(\) of (1.10). Letfi_’“]
be the minimizer of the fornf = b + h with h € Hx to minimize

LS )+ AR
1=1
ik
Let
Vo(A) = %Z(l —yify @)+
k=1
We write
Vo(A) = OBS(A) + D), (1.12)
where
0BS) = = 3 (1~ yifa () (113)
k=1
and
DO == 00 - s — (0= pehaen)] (1.14)

k=1

Using a rather crude argument, [32] showed théh) ~ D()\) where

(3

A 1 Ofa(xs) Ofr(x;)
D) = — ooy Y SeY L (115)
" yifa(wi)<—1 Oy yifa(zi)€[—1,1]

In this argumenty; is treated as though it is a continuous variate, and the lack o
differentiability is ignored. Then

Vo(A) = OBS(A) + D()\). (1.16)
D()\) may be compared to tracé()\) in GOV and unbiased risk estimates.
How shall we interpretwg‘—qf") ? Let Ky = {K(z,z;)},D, =
(1 Ia(z1) 1
: , : = Kc+eb , e = - |- We will ex-
Yn fk(xn) 1

amine the optimization problem for (1.9): Fir{d, c) to minimize 1 >°" | (1 —
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yifr(2:))+ + A’ Kec. The dual problem for (1.9) is known to be: Find =

(5] 0

: to minimize 1o/ (525 DyKD,) o — ¢’ subject to | : <

o, 0

a1 1 Y1

: < | : | andy'a = 0, wherey = |, andc = 55 Dya.

Qp 1 Yn
a(z1)

Then : = 5~ KDy + eb, and we interpre?fa*;?i) as afgé?i) =

Ia(@n)

1 L
o K (w4, 2;) o, resulting in

- 1 oy Q;
D) = L Z 2n)\K(a:,»,:z:,») + Z 2n}\K(Ii7Ii)
yifa(zi)<—1 yifa(zi)€[-1,1]

(1.17)
and

GACV(X\) = OBS(\) + D(\). (1.18)

Let 0, = 55 K (zk, ), and note that ify, fx(zx) > 1, thenag, = 0. If
a = 0, leaving out theith data point does not change the solution. Otherwise,
the expression foﬁ()\) in (1.17) is equivalent in a leaving-out-one argument, to
approximating {x () —ykf,[\_k] (z)] by Ok if yr fr(2x) € [-1,1] and by20),
if yrfa(zr) < —1. Jaakkola and Haussler, [11] in the special caseltigmtaken
as0 proved tha¥;, is an upper bound fonj, f (zx) — ykfi’k] ()] and Joachims
[12] proved in the case considered here, thatfk (zx) — ykfﬁk] (zx)] < 204.
Vapnik [26] in the case thdtis set equal to 0, an@BS = 0, proposed choosing
the parameters to minimize the so-called radius-margimbo@his works out
to minimizing ). #; when K (x;, ;) is the same for all. Chapelle and Vapnik
[2] and Opper and Winther [22] have related proposals foroshwy the tuning
parameters. More details on some of these comparisons mayibe in [3].

1.6 Comparing GACV and Joachim&x method for
choosing tuning parameters.

Let gl = (1 — yif)\i)%»a andKij = K(ZL’Z, (Ej). The GACV is then

n 2nA
yifri<—1 yi fri€[—1,1]

GACV(A):% iﬁﬁ-? > gaKu+ Y. g5Ka
i=1

(1.19)
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A more direct target thanGCKL(\) is the misclassification rate, defined
(conditional on the observed set of attribute variables) as
1 n
MI LA AN=FE rue i 2 = z 1 1 — DPi i
SCLASS(A) = Ey n; [—vifxil« Z{P — il pi)[fil+}-
(1.20)
Joachims [12], Equation (7) proposed tfe (to be calledX A here) proxy for
MISCLASS as:
1 n
= -1 .
XAQ) = ; [52 + 2 - ) (1.21)
wherep = 2 and here (With some abuse of notatidk)is an upper bound on
Ki; — K;j;. Letting; = p5c K, it can be shown that the sum XA ()) counts
all of the samples for WthIg,f,\, < ;. Sincey; fri > 1 = a; = 0, XA may
also be written

XA = 2 S ewpide + 3 T i) | (1.22)

n |
1=1 yzf>w<1

whereljg)(7) = 1if 7 € (0,6] and0 otherwise. Equivalently the sum iK' A
counts the misclassified cases in the training set plus tleoddases wheng f; €
(0, p55 K (adopting the convention that ff; is exactly0 then the example is
considered misclassified). In some of his experiments Joscfempirically) set
p = 1 because it achieved a better estimate of the misclasdificedte than did
the XA with p = 2. Let us go over how estimates of the difference between a
target and its leaving out one version may be used to contgstinates when the
fit’ is not the same as the target - here the ‘fit(ls— y; f;)+, While the ‘target’
forthe XA is[—y; fai]«. We will use the argument in the next section to generalize
the XA to the nonstandard case in the same way that the GAC¥risrglized to
its nonstandard verS|on

Let fg’ = f{l (z;). Suppose we have the approximatigify; ~ yzfil 1y
0;, with 8; > 0. A leaving out one estimate of the misclassification ratenisry
by Vo(A) = £ 37 [=wifs; V. Now Vo(A) = £ 577 [~y i) + D(A) where
here

DY) = & S {l-wi ) = [uifail). (129

Now, theith term inD(\) =0 Un|eSSy1:f>;i] andy; f; have different signs. For
6; > 0 this can only happen if; fn; € (0, 6;]. Assuming the approximation

.
—— K 1.24
2n\ ( )
tells us thatl D <t S K”](yzf/\z) can be taken as an approximation to

D(\) of (1.23), resulting in (1 22). This provides an alternag¢givhtion as well
as an alternative interpretation of XA with= 1, K replaced byK;.

Yifri = yz'f,\?] +
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1.7 The Nonstandard SVM and the Nonstandard GACV

We now review the nonstandard case, from [21].£&tandr} be the relative fre-
guencies of thed andB classes in the training (sample) set. Recall thagndrs
are the relative frequencies of the two classes in the tagm@tlation,C' 4, andCs
are the costs of falsely calling/aan.4 and falsely calling amd a 5 respectively,
andh 4 (z) andhp(z) are the the densities ofin the.4 andB5 classes, and that the
probability that a subject from the target population wittnibute = belongs to the
Aclass isp(z) = — A However, the probability that a subject with

i maha(z)+rshs(z)” . o .
attributex chosen from a population with the same distribution as theitrg set,

belongs to the4 class, isps(z) = T’uﬂ% Letting ¢(«) be the deci-

sion rule coded as a map frome X to {—1,1}, wherel = Aand—1 = B, the
expected cost, using(z) is B, {Cip(e)[~¢(@)]. + Ca(l — p(@))[6(x)]. },
where the expectation is taken over the distribution: @fi the target population.
The Bayes rule, which minimizes the expected cost is (froh)[%(x) = +1 if

15(;&) > g—;‘ and—1 otherwise. Since we don't observe a sample from the true
distribution but only from the sampling distribution, weetkto express the Bayes

rule in terms of the sampling distributign. It is shown in [21] that the Bayes

rule can be written in terms gf; as¢(z) = +1 if 15;("20) > %ﬁ%:—f‘ and
s B

—1 otherwise. LetL(—1) = Cymp /7 andL(1) = Cgma/7%. Then the Bayes

rule can be expressed agx) = sign {ps(x) — % . [21] proposed the

nonstandard SVM to handle this nonstandard case as:

min 3 L) [(1~ s ()] + Al (1.25)
i=1

over all the functions of the fornfi(x) = b+ h(x), with h € Hg. This definition
is justified there by showing that, if the RKHS is rich enougti & is chosen

suitably, the minimizer of (1.25) tends to si%ps(:c) — %} In [7] and
references cited there, the authors considered the nat@sthoase and proposed
a heuristic solution, which is different than the one dismgshere.

The minimizer of (1.25) has same form as in (1.5). [20] shoet the dual
problem becomes minimizéa’ (5D, KD,) o — e'a subject to0 < a; <
L(y;), i=1,2,..,n, and y'a =0, andc = 5 D,a. The GACV for non-
standard problems was proposed there, in an argument diemeyahe standard
case, as:

D Ly&+2 Yy L(yi);—q;\f(iz‘*- > L(yi)%Kii]-

i=1 yifri<—1 yifri€[—1,1]

GACV()) =

SN

(1.26)

11
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It was shown to be a proxy for the nonstandard GCKL given bynibrestandard
version of GCKL of (1.10), which can be written as:

GOKL(N) = - S {LWpa)(1 — frids + LD = palwd) (14 )}
i=1
(1.27)

(Compare (1.11).) We now propose a generalization, BRXAhefXA as a com-
putable proxy for the Bayes risk in the nonstandard casdingutogether the
arguments which resulted in the the GACV of (1.19), the XAha form that it
appears in (1.22) and the nonstandard GACYV of (1.26), wenbta BRXA:

BRXA()) =

S|

n
DLWyl + D0 Ly 2 g (Wifxi)
i=1 yifai<l

(1.28)

The BRXA is a proxy for BRMISCLASS, given by

BRMISCLASS()) = % Y ALW)ps(@i)[= fride + L=1)(1 = ps(@) [fr}-
i=1
(1.29)

5H true 4 5H true

— GACV — GACV

- - XA — - BRXA o
4|~ MmISCLASS ] [ — BRMISCLASS

o

x2
T

Figure 1.4. Observations, and true, GACV, XA and MISCLASSB®n Curves for the
Standard Case (Left) and true, GACV, BRXA and BRMISCLASS Bien Curves for the
Nonstandard Case (Right).
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1.8 Simulation Results and Conclusions

The two panels of Figure 1.4 show the same simulated traisgigThe sam-
ple proportions of the4 (+) and B (0) classes are .4 and .6 respectively. The
conditional distribution ofc given that the sample is from thé class is bivari-
ate Normal with mean (0,0) and covariance matrix diag (1The distribution
for « from the B class is bivariate Normal with mean (2,2) and covariancg dia
(2,1). The left panel in Figure 1.4 is for the standard cassuming that mis-
classification costs are the same for both kinds of misdlaabn, and the target
population has the same proportions of thend B as the sample. For the right
panel, we assume that the costs of the two types of errorsifeeecdt, and that
the target population has different relative frequenciemtthe training set. We
tookCy =1Cp =2,714 =0.1, 75 = 0.9. As before;r% = 0.4, andr; = 0.6,
yielding L(—1) = Camp/7m = 1.5, andL(1) = Cgma/75 = 0.5. Since the
distributions generating the data and the distributiortheftarget populations are
known and involve Gaussians, the theoretical best decrsil@s (for an infinite
future population) are known, and are given by the curveskathitrue’ in both
panels.

The Gaussian kernek (z,2') = exp{—|z — 2'||?>/20%} was used, where
x = (x1,22), ando is to be tuned along withh. The curves selected by the
GACYV of (1.19) and the XA of (1.22) in the standard case arevshim the left
panel, along with MISCLASS of (1.20), which is only known isianulation ex-
periment. The right panel gives the curves chosen by thetandard GACV of
(1.26), the BRXA of (1.28) and the BRMISCLASS of (1.29). Th#timal (A, o)
pair in each case for the tuned curves was chosen by a globalisdt can be
seen from both panels in Figure 1.4 that the MISCLASS curvechvis based on
the (finite) observed sample is quite close to the theoldtiga curve (based on
an infinite future population), we make this observationause it will be easier
to compare the GACV and the XA against MISCLASS than agalmestrue, sim-
ilarly for the BRMISCLASS curve. In both panels it can be s#d&t the decision
curves determined by the GACV and the XA(BRXA) are very close

We have computed the inefficiency of these estimates withesto MIS-
CLASS(BRMISCLASS), by inefficiency is meant the ratio of MBBASS(BRMISCLASS)
at the estimated), o) pair to its minimum value, a value df means that the
estimated pair is as accurate as possible, with respece tutttomputable) min-
imizer of MISCLASS(BRMISCLASS). The results for the stardl@ase were:
GACV :1.0064, XA : 1.0062 — 1.0094 (due to multiple neighboring minima
in the grid search, the 1.0062 case is in Figure 1.4); anch®onbnstandard case:
GACV :1.151,BRX A : 1.166.

Figure 1.5 gives contour plots for GCKL, GACV, BRMISCLASSHhBRXA
as a function of\ ando in the nonstandard case. It can be seen that the GACV
and BRXA curves have nearly the same minima. The GCKL and BRBUIASS
curves both have long, shallow, tilted cigar-shaped miniamal the GACV and
BRXA minima are near the lower right end. For the standara ¢dast shown)
the minima are somewhat more pronounced and the GACV and X¥nmai are

13



14 1. Optimal Properties and Adaptive Tuning of Standardmiastandard Support Vector Machines

closer to the MISCLASS minimum, and this is reflected in imédfincies nearer
to 1. (BR)MISCLASS curves in other simulation studies weéhdane show this
same behavior. We have observed (as did Joachims) that liire XA in the
standard case is a good estimate of the value of MISCLASS atiitimizer, only
slightly pessimistic. The GACV at its minimizer is an estimaf twice the mis-
classification rate. The value of one half the GACV is somewlare pessimistic.
We note that once one obtains the solution to the problemdimpatation of both
GACV and (BR)XA are equally trivial.

logloG’CKL lOgloGACV

-10 -5

-0.5

log2(sigma)
o = N w S Ul o
log2(sigma)

S w N = o = N w S o o

|
n
o

-15 -10
log2(lambda) log2(lambda)

lOgl()BRMISCLASS lOgloBRXA
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I -1.1
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15
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log2(sigma)
o = N w S [3,] [=2]
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!
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-4
-20 -

-10 -5 0 -15 -10 -5
Figure 1.5. GCKL, GACV, BRMISCLASS, BRXA as functions of and o2, for the
nonstandard example. Note different logarithmic scalesamdo.

The GACV in (quadratically) penalized likelihood cases gafly scatters
about the minimizer of its target (analogous to GCKL)(se&)[®ut here, both
the GACV and the BRXA (along with the standard case) appehetbiased to-
wards larger. The (BR)MISCLASS surfaces are so flatinn our examples this
does not seem to be a serious problem (less so in the staratse} c

Recently we have obtained a generalization of the SVM toitreategory
case, which solves a single optimization problem to obtaireetor f)(z) =
(fix(x),..., fux(x)) where the category classifier is the componenf dfat is
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largest, see [14]. Usual muticategory classification s@®do one-vs-many or
(’;) pairwise comparisons, and the multicategory SVM has adwgga# in certain
examples. The GACV has been been extended to the nonstandé#icategory
SVM case and it appears that the BRXA can also be extendedliBsh like-
lihood estimates which estimate a vector of logits simutarsly could also be
used for classification, [16], but again, if classificatisrthie only consideration,
one can argue that an appropriate multicategory SVM is pabfe.

Recently [6] compared the GACV, the XA, five-fold cross valion and sev-
eral other methods for tuning, using the standard two-caye§VM on four data
sets with large validation sets available. It appears frioginformation given that
the authors may not have always found the minimizihgo) pair. However, we
note the authors’ conclusions here. With regard to the coisqa between the
GACV and the XA, essentially similar conclusions were oféal as those here,
namely that they behaved similarly, one slightly betterame examples the other
slightly better on the other examples. However five-foldssrealidation appeared
to have a better accuracy record on three of the examplesyasdied with the
GACYV on the fourth. Several other methods were studied, néndich appeared
to be related to any leaving out one argument, and those dipanform well. The
five-fold cross validation will cost more in computer timeythwith todays com-
puting speeds, that is not a real consideration. In some 10bwa experiments
we have found that the ten-fold cross validation beats aegwith the GACV.
It is of some theoretical interest to understand what apgpabe a systematic
overestimation o\ when using the Gaussian kernel and tunirigalong with \,
by methods which are based on the leaving-out-one arguraemtad (1.24), es-
pecially since corresponding tuning parameter estimatggenalized likelihood
estimation generally appear to be unbiased in numericahples.
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