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Abstract

We review some of the basic ideas of Support Vector Machines (SVM’s) for clas-
sification, with the goal of describing how these ideas can sit comfortably inside
the statistical literature in decision theory and penalized likelihood regression. We
review recent work on adaptive tuning of SVMs, discussing generalizations to the
nonstandard case where the training set is not representative and misclassification
costs are not equal. Mention is made of recent results in the multicategory case.

1.1 Introduction

This paper is an expanded version of the the talk given by one of the authors (GW)
at the Mathematical Sciences Research Institute Berkeley Workshop on Nonlin-
ear Estimation and Classification, March 20, 2001. In this paper we review some
of the basic ideas of Support Vector Machines(SVMs) with thegoal of describing
how these ideas can sit comfortably inside the statistical literature in decision the-
ory and penalized likelihood regression, and we review someof our own related
research.

Support Vector Machines (SVM’s) burst upon the classification scene in the
early 90’s, and soon became the method of choice for many researchers and prac-
titioners involved in supervised machine learning. The talk of Tommi Poggio
at the Berkeley workshop highlights some of the many interesting applica-
tions. The websitehttp://kernel-machines.org is a popular repository
for papers, tutorials, software, and links related to SVM’s. A recent search in
http://www.google.com for ‘Support Vector Machines’ leads to ‘about
10,600’ listings. Recent books on the topic include [23] [24] [5], and there is
a section on SVM’s in [10]. [5] has an incredible (for a technical book) ranking in
amazon.com as one of the 4500 most popular books.

The first author became interested in SVM’s at the AMS-IMS-SIAM Joint
Summer Research Conference on Adaptive Selection of Modelsand Statistical
Procedures, held at Mount Holyoke College in South Hadley MAin June 1996.
There, Vladimir Vapnik, generally credited with the invention of SVM’s, gave
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an interesting talk, and during the discussion after his talk it became evident
that the SVM could be derived as the solution to an optimization problem in a
Reproducing Kernel Hilbert Space (RKHS), [25], [29] [13], [27], thus bearing
a resemblance to penalized likelihood and other regularization methods used in
nonparametric regression. This served to link the rapidly developing SVM lit-
erature in supervised machine learning to the now obviouslyrelated statistics
literature. Considering the relatively recent development of SVM’s, compared to
the 40 or so year history of other classification methods, it is of interest to question
theoretically why SVM’s work so well. This question was recently answered in
[18], where it was shown that, provided a rich enough RKHS is used, the SVM is
implementing the Bayes rule for classification. Convergence rates in some special
cases can be found [19]. An examination of the form of the SVM shows that it is
doing the implementation in a flexible and particularly efficient manner.

As with other regularization methods, there is always one, and sometimes
several tuning parameters which must be chosen well in orderto have efficient
classification in nontrivial cases. Our own work has focusedon the extension of
the Generalized Approximate Cross Validation (GACV) [35] [17] [8] from pe-
nalized likelihood estimates to SVM’s, see [21] [20] [32] [29]. At the Berkeley
meeting, Bin Yu pointed GW to theξα method of Joachims [12], which turned
out to be closely related to the GACV. Code for theξα estimate is available
in SV M light http://ais.gmd.de/ thorsten/svm light/ . At about
this time there was a lot of activity in the development of tuning methods, and
a number of them [26] [11] [22] [12] [2] turned out to be related under various
circumstances.

We first review optimal classification in the two-category classification prob-
lem. We describe the standard case, where the training set isrepresentative of the
general population, and the cost of misclassification is thesame for both cate-
gories, and then turn to the nonstandard case, where neitherof these assumptions
hold. We then describe the penalized likelihood estimate for Bernoulli data, and
compare it with the standard SVM. Next we discuss how the SVM implements the
Bayes rule for classification and then we turn to the GACV for tuning the standard
SVM. The GACV and Joachims’ξα method are then compared. Next we turn to
the nonstandard case. We describe the nonstandard SVM, and show how both the
GACV and theξα method can be generalized in that case, from [31]. A modest
simulation shows that they behave similarly. Finally, we briefly mention that we
have generalized the (standard and nonstandard) SVM to the multicategory case
[15].

1.2 Optimal Classification and Penalized Likelihood

Let hA(·), hB(·) be densities ofx for classA and classB, and letπA = proba-
bility the next observation(Y ) is anA, and letπB = 1 − πA = probability that
the next observation is aB. Thenp(x) ≡ prob{Y = A|x} = πAhA(x)

πAhA(x)+πBhB(x) .
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Let CA = cost to falsely call aB anA andCB = cost to falsely call anA aB.
A classifierφ is a mapφ(x) : x → {A,B}. The optimal (Bayes) classifier, which
minimizes the expected cost is

φOPT(x) =

{

A if p(x)
1−p(x) > CA

CB
,

B if p(x)
1−p(x) < CA

CB
.

(1.1)

To estimatep(x), or, alternatively the logitf(x) ≡ log p(x)/(1− p(x)), we use a
training set{yi, xi}

n
i=1, yi ∈ {A,B}, xi ∈ T , whereT is some index set. At first

we assume that the relative frequency ofA’s in the training set is the same as in
the general population.f can be estimated (nonparametrically) in various ways.
If CA/CB = 1, andf is the logit, the optimal classifier is

f(x) > 0 (equivalently,p(x) − 1
2 > 0) → A

f(x) < 0 (equivalently,p(x) − 1
2 < 0) → B

In the usual penalized log likelihood estimation off , the observations are coded
as

y =

{

1 if A,

0 if B.
(1.2)

The probability distribution function fory | p is then

L = py(1 − p)1−y =

{

p if y = 1

(1 − p) if y = 0
.

Using p = ef/(1 + ef ) gives the negative log likelihood− logL = −yf +
log(1 + ef ). For comparison with the support vector machine we will describe
a somewhat special case (General cases are in [13], [17], [8], [34]). The penal-
ized log likelihood estimate off is obtained as the solution to the problem: Find
f(x) = b + h(x) with h ∈ HK to minimize

1

n

n
∑

i=1

[

−yif(xi) + log(1 + ef(xi))
]

+ λ‖h‖2
HK

(1.3)

whereλ > 0, andHK is the reproducing kernel Hilbert space (RKHS) with
reproducing kernel

K(s, t), s, t ∈ T . (1.4)

For more on RKHS, see [1] [28]. RKHS may be tailored to many applications
since any symmetric positive definite function onT × T has a unique RKHS
associated with it.

Theorem: [13]fλ, the minimizer of (1.3) has a representation of the form

fλ(x) = b +

n
∑

i=1

ciK(x, xi). (1.5)
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It is a property of RKHS that

‖h‖2
HK

≡

n
∑

i,j=1

cicjK(xi, xj). (1.6)

To obtain the estimatefλ, (1.5) and (1.6) are substituted into (1.3), which is then
minimized with respect tob and c = (c1, . . . , cn). Given positiveλ, this is a
strictly convex optimization problem with some nice features special to penalized
likelihood for exponential families, provided thatp is not too near0 or 1. The
smoothing parameterλ, and certain other parameters which may be insideK may
be chosen by Generalized Approximate Cross Validation (GACV) for Bernoulli
data, see ([17]) and references cited there. The target for GACV is to minimize
the Comparative Kullback-Liebler (CKL) distance of the estimate from the true
distribution:

CKL(λ) = Etrue

n
∑

i=1

−ynew.ifλ(xi) + log(1 + efλ(xi)), (1.7)

whereynew.i is a new observation with attribute vectorxi.

1.3 Support Vector Machines (SVM’s)

For SVM’s, the data is coded differently:

y =

{

+1 if A,

−1 if B.
(1.8)

The support vector optimization problem is: Findf(x) = b + h(x) with h ∈ HK

to minimize

1

n

n
∑

i=1

(1 − yif(xi))+ + λ‖h‖2
HK

(1.9)

where(τ )+ = τ , if τ > 0, and0 otherwise. The original support vector machine
(see e. g. ([26]) was obtained from a different argument, butit is well known
that it is equivalent to (1.9), see ([29], [25]). As before, the SVM fλ has the
representation (1.5). To obtain the classifierfλ for a fixedλ > 0, (1.5) and (1.6)
are substituted into (1.9) resulting in a mathematical programming problem to be
solved numerically. The classifier is thenfλ(x) > 0 → A, fλ(x) < 0 → B.

We may compare the penalized log likelihood estimate of the logit log p/(1−p)
and the SVM (the minimizer of (1.9)) by codingy in the likelihood as

ỹ =

{

+1 if A,

−1 if B.

Then−yf + log(1+ ef ) becomeslog(1+ e−ỹf ), wheref is the logit. Figure 1.1
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Figure 1.1. Adapted from [29]. Comparison of[−τ ]∗, (1 − τ)+ andloge(1 + e−τ ).

compareslog(1 + e−yf ), (1 − yf)+ and[−yf ]∗ as functions ofτ = yf where

[τ ]∗ =

{

1 if τ ≥ 0,

0 otherwise.

Note that[−yf ]∗ is 1 or 0 according asy and f have the same sign or not.
Calling [−yf ]∗ the misclassification counter, one might consider minimizing the
misclassification count plus some (quadratic) penalty functional onf but this is
a nonconvex problem and difficult to minimize numerically. Numerous authors
have replaced the misclassification counter by some convex upper bound to it.
The support vector, or ramp function(1 − yf)+ is a convex upper bound to the
misclassification counter, and Bin Yu observed thatlog2(1+e−τ ) is also a convex
upper bound. Of course it is also possible to use a penalized likelihood estimate
for classification see [33]. However, the ramp function (modulo the slope) is the
‘closest’ convex upper bound to the misclassification counter, which provides one
heuristic argument why SVM’s work so well in the classification problem.

Recall that the penalized log likelihood estimate was tunedby a criteria which
choseλ to minimize a proxy for the CKL of (1.7) conditional on the samexi. By
analogy, for the SVM classifier we were motivated in [20] [21][29] [32] to say
that it is optimally tuned ifλ minimizes a proxy for the Generalized Comparative
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Kullback-Liebler distance (GCKL), defined as

GCKL(λ) = Etrue

1

n

n
∑

i=1

(1 − ynew·ifλ(xi))+. (1.10)

That is,λ (and possibly other parameters inK) are chosen to minimize a proxy
for an upper bound on the misclassification rate.

1.4 Why is the SVM so successful?

There is actually an important result which explains why theSVM is so success-
ful: We have the Theorem:

Theorem [18]: The minimizer overf of Etrue(1 − ynewf(x))+ is sign
(p(x) − 1

2 ), which coincides with the sign of the logit.

As a consequence, ifHK is a sufficiently rich space, the minimizer of (1.9)
whereλ is chosen to minimize (a proxy for)GCKL(λ), is estimating the sign
of the logit. This is exactly what you need to implement the Bayes classifier!
Etrue(1 − ynewfλ)+ is given by

Etrue(1 − ynewfλ)+ =







p(1 − fλ), fλ < −1
p(1 − fλ) + (1 − p)(1 + fλ), − 1 < fλ < +1
(1 − p)(1 + fλ), fλ > +1.







(1.11)

Since the truep is only known in a simulation experiment,GCKL is also only
known in experiments. The experiment to follow, which is reprinted from [18],
demonstrates this theorem graphically. Figure 1.2 gives the underlying conditional
probability functionp(x) = Prob{y = 1|x} used in the simulation. The function
sign(p(x)− 1/2) is 1, for0.25 < x < 0.75;−1 otherwise. A training set sample
of n = 257 observations were generated with thexi equally spaced on[0, 1], and
p according to Figure 1.2. The SVM was computed andf is given in Figure 1.3
for nλ = 2−1, 2−2, . . . , 2−25, in the plots left to right starting with the top row
and moving down. We see that solutionf is close to sign(p(x)−1/2) whennλ is
in the neighborhood of2−18. 2−18 was the minimizer of theGCKL, suggesting
that it is necessary to tune the SVM to estimate sign(p(x) − 1/2) well.

1.5 The GACV for choosingλ (and other parameters in
K)

In [29], [32], [20], [21] we developed and tested the GACV fortuning SVM’s.
In [29] a randomized version of GACV was obtained using a heuristic argument
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Figure 1.2. From [18]. The underlying conditional probability function
p(x) = Prob{y = 1|x} in the simulation.
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related to the derivation of the GCV [4], [9] for Gaussian observations and for the
GACV for Bernoulli observations [35]. In [32], [20], [21] itwas seen that a direct
(non-randomized) version was readily available, easy to compute, and worked
well. At about same time, there were several other tuning results [3] [11] [12]
[22] [26] which are closely related to each other and to the GACV in one way or
another. We will discuss these later. The arguments below follow [32]. The goal
here is to obtain a proxy for the (unobservable)GCKL(λ) of (1.10). Letf [−k]

λ

be the minimizer of the formf = b + h with h ∈ HK to minimize

1

n

∑

i = 1
i 6= k

(1 − yif(xi))+ + λ‖h‖2
K .

Let

V0(λ) =
1

n

n
∑

k=1

(1 − ykf
[−k]
λ (xk))+.

We write

V0(λ) ≡ OBS(λ) + D(λ), (1.12)

where

OBS(λ) =
1

n

n
∑

k=1

(1 − ykfλ(xk))+. (1.13)

and

D(λ) =
1

n

n
∑

k=1

[(1 − ykf
[−k]
λ (xk))+ − (1 − ykfλ(xk))+] (1.14)

Using a rather crude argument, [32] showed thatD(λ) ≈ D̂(λ) where

D̂(λ) =
1

n





∑

yifλ(xi)<−1

2
∂fλ(xi)

∂yi

+
∑

yifλ(xi)∈[−1,1]

∂fλ(xi)

∂yi



 . (1.15)

In this argument,yi is treated as though it is a continuous variate, and the lack of
differentiability is ignored. Then

V0(λ) ≈ OBS(λ) + D̂(λ). (1.16)

D̂(λ) may be compared to traceA(λ) in GCV and unbiased risk estimates.
How shall we interpret ∂fλ(xi)

∂yi
? Let Kn×n = {K(xi, xj)}, Dy =







y1

. . .
yn






,







fλ(x1)
...

fλ(xn)






= Kc + eb , e =







1
...
1






. We will ex-

amine the optimization problem for (1.9): Find(b, c) to minimize 1
n

∑n
i=1(1 −
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yifλ(xi))+ + λc′Kc. The dual problem for (1.9) is known to be: Findα =






α1

...
αn






to minimize 1

2α′
(

1
2nλ

DyKDy

)

α − e′α subject to







0
...
0






≤







α1

...
αn






≤







1
...
1






andy′α = 0, wherey =







y1

...
yn






, andc = 1

2nλ
Dyα.

Then







fλ(x1)
...

fλ(xn)






= 1

2nλ
KDyα + eb, and we interpret∂fλ(xi)

∂yi
as ∂fλ(xi)

∂yi
=

1
2nλ

K(xi, xi)αi, resulting in

D̂(λ) =
1

n



2
∑

yifλ(xi)<−1

αi

2nλ
K(xi, xi) +

∑

yifλ(xi)∈[−1,1]

αi

2nλ
K(xi, xi)





(1.17)

and

GACV (λ) = OBS(λ) + D̂(λ). (1.18)

Let θk = αk

2nλ
K(xk, xk), and note that ifykfλ(xk) > 1, thenαk = 0. If

αk = 0, leaving out thekth data point does not change the solution. Otherwise,
the expression for̂D(λ) in (1.17) is equivalent in a leaving-out-one argument, to
approximating [ykfλ(xk)−ykf

[−k]
λ (xk)] by θk if ykfλ(xk) ∈ [−1, 1] and by2θk

if ykfλ(xk) < −1. Jaakkola and Haussler, [11] in the special case thatb is taken
as0 proved thatθk is an upper bound for [ykfλ(xk)−ykf

[−k]
λ (xk)] and Joachims

[12] proved in the case considered here, that [ykfλ(xk) − ykf
[−k]
λ (xk)] ≤ 2θk.

Vapnik [26] in the case thatb is set equal to 0, andOBS = 0, proposed choosing
the parameters to minimize the so-called radius-margin bound. This works out
to minimizing

∑

i θi whenK(xi, xi) is the same for alli. Chapelle and Vapnik
[2] and Opper and Winther [22] have related proposals for choosing the tuning
parameters. More details on some of these comparisons may befound in [3].

1.6 Comparing GACV and Joachims’ξα method for
choosing tuning parameters.

Let ξi = (1 − yifλi)+, andKij = K(xi, xj). The GACV is then

GACV (λ) =
1

n





n
∑

i=1

ξi + 2
∑

yifλi<−1

αi

2nλ
Kii +

∑

yifλi∈[−1,1]

αi

2nλ
Kii



 .

(1.19)
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A more direct target thanGCKL(λ) is the misclassification rate, defined
(conditional on the observed set of attribute variables) as

MISCLASS(λ) = Etrue

1

n

n
∑

i=1

[−yifλi]∗ ≡
1

n

n
∑

i=1

{pi[−fλi]∗ + (1 − pi)[fλi]∗}.

(1.20)

Joachims [12], Equation (7) proposed theξα (to be calledXA here) proxy for
MISCLASS as:

XA(λ) =
1

n

n
∑

i=1

[

ξi + ρ
αi

2nλ
K − 1

]

∗
(1.21)

whereρ = 2 and here (with some abuse of notation)K is an upper bound on
Kii − Kij . Lettingθi = ρ αi

2nλ
K, it can be shown that the sum inXA(λ) counts

all of the samples for whichyifλi ≤ θi. Sinceyifλi > 1 ⇒ αi = 0, XA may
also be written

XA(λ) =
1

n





n
∑

i=1

[−yifλi]∗ +
∑

yifλi≤1

I[
ραi
2nλ

K](yifλi)



 , (1.22)

whereI[θ](τ ) = 1 if τ ∈ (0, θ] and0 otherwise. Equivalently the sum inXA
counts the misclassified cases in the training set plus all ofthe cases whereyifλi ∈
(0, ρ αi

2nλ
K] (adopting the convention that iffλi is exactly0 then the example is

considered misclassified). In some of his experiments Joachims (empirically) set
ρ = 1 because it achieved a better estimate of the misclassification rate than did
the XA with ρ = 2. Let us go over how estimates of the difference between a
target and its leaving out one version may be used to construct estimates when the
‘fit’ is not the same as the target - here the ‘fit’ is(1 − yifλi)+, while the ‘target’
for the XA is [−yifλi]∗. We will use the argument in the next section to generalize
the XA to the nonstandard case in the same way that the GACV is generalized to
its nonstandard version.

Let f
[−i]
λi = f

[−i]
λ (xi). Suppose we have the approximationyifλi ≈ yif

[−i]
λi +

θi, with θi ≥ 0. A leaving out one estimate of the misclassification rate is given
by V0(λ) = 1

n

∑n

i=1[−yif
[−i]
λi ]∗. NowV0(λ) = 1

n

∑n

i=1[−yifλi]∗ +D(λ) where
here

D(λ) =
1

n

n
∑

i=1

{[−yif
[−i]
λi ]∗ − [−yifλi]∗}. (1.23)

Now, theith term inD(λ) = 0 unlessyif
[−i]
λi andyifλi have different signs. For

θi > 0 this can only happen ifyifλi ∈ (0, θi]. Assuming the approximation

yifλi ≈ yif
[−i]
λi +

αi

2nλ
Kii (1.24)

tells us that1
n

∑

yifλi≤1 I[
αi
2nλ

Kii]
(yifλi), can be taken as an approximation to

D(λ) of (1.23), resulting in (1.22). This provides an alternate derivation as well
as an alternative interpretation of XA withρ = 1, K replaced byKii.
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1.7 The Nonstandard SVM and the Nonstandard GACV

We now review the nonstandard case, from [21]. Letπs
A andπs

B be the relative fre-
quencies of theA andB classes in the training (sample) set. Recall thatπA andπB

are the relative frequencies of the two classes in the targetpopulation,CA andCB

are the costs of falsely calling aB anA and falsely calling anA aB respectively,
andhA(x) andhB(x) are the the densities ofx in theA andB classes, and that the
probability that a subject from the target population with attributex belongs to the
A class isp(x) = πAhA(x)

πAhA(x)+πBhB(x) . However, the probability that a subject with
attributex chosen from a population with the same distribution as the training set,
belongs to theA class, isps(x) =

πs
A

hA(x)
πs
A

hA(x)+πs
B

hB(x) . Letting φ(x) be the deci-

sion rule coded as a map fromx ∈ X to {−1, 1}, where1 ≡ A and−1 ≡ B, the
expected cost, usingφ(x) is Extrue

{CBp(x)[−φ(x)]∗ + CA(1 − p(x))[φ(x)]∗},
where the expectation is taken over the distribution ofx in the target population.
The Bayes rule, which minimizes the expected cost is (from (1.1)) φ(x) = +1 if

p(x)
1−p(x) > CA

CB
and−1 otherwise. Since we don’t observe a sample from the true

distribution but only from the sampling distribution, we need to express the Bayes
rule in terms of the sampling distributionps. It is shown in [21] that the Bayes
rule can be written in terms ofps asφ(x) = +1 if ps(x)

1−ps(x) > CA

CB

πs
A

πs
B

πB

πA
and

−1 otherwise. LetL(−1) = CAπB/πs
B andL(1) = CBπA/πs

A. Then the Bayes

rule can be expressed asφ(x) = sign
[

ps(x) − L(−1)
L(−1)+L(1)

]

. [21] proposed the

nonstandard SVM to handle this nonstandard case as:

min
1

n

n
∑

i=1

L(yi)[(1 − yif(xi))+] + λ‖h‖2
HK

(1.25)

over all the functions of the formf(x) = b + h(x), with h ∈ HK . This definition
is justified there by showing that, if the RKHS is rich enough and λ is chosen

suitably, the minimizer of (1.25) tends to sign
[

ps(x) − L(−1)
L(−1)+L(1)

]

. In [7] and

references cited there, the authors considered the nonstandard case and proposed
a heuristic solution, which is different than the one discussed here.

The minimizer of (1.25) has same form as in (1.5). [20] show that the dual
problem becomes minimize12α′

(

1
2nλ

DyKDy

)

α − e′α subject to0 ≤ αi ≤
L(yi), i = 1, 2, ..., n, and y′α = 0, andc = 1

2nλ
Dyα. The GACV for non-

standard problems was proposed there, in an argument generalizing the standard
case, as:

GACV (λ) =
1

n





n
∑

i=1

L(yi)ξi + 2
∑

yifλi<−1

L(yi)
αi

2nλ
Kii +

∑

yifλi∈[−1,1]

L(yi)
αi

2nλ
Kii



 .

(1.26)
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It was shown to be a proxy for the nonstandard GCKL given by thenonstandard
version of GCKL of (1.10), which can be written as:

GCKL(λ) =
1

n

n
∑

i=1

{L(1)ps(xi)(1 − fλi)+ + L(−1)(1 − ps(xi))(1 + fλi)+}.

(1.27)

(Compare (1.11).) We now propose a generalization, BRXA, ofthe XA as a com-
putable proxy for the Bayes risk in the nonstandard case. Putting together the
arguments which resulted in the the GACV of (1.19), the XA in the form that it
appears in (1.22) and the nonstandard GACV of (1.26), we obtain the BRXA:

BRXA(λ) =
1

n

n
∑

i=1



L(yi)[−yifλi]∗ +
∑

yifλi≤1

L(yi)I[
αi
2nλ

Kii]
(yifλi)



 .

(1.28)

The BRXA is a proxy for BRMISCLASS, given by

BRMISCLASS(λ) =
1

n

n
∑

i=1

{L(1)ps(xi)[−fλi]∗ + L(−1)(1 − ps(xi))[fλi]∗}.

(1.29)
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Figure 1.4. Observations, and true, GACV, XA and MISCLASS Decision Curves for the
Standard Case (Left) and true, GACV, BRXA and BRMISCLASS Decision Curves for the
Nonstandard Case (Right).
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1.8 Simulation Results and Conclusions

The two panels of Figure 1.4 show the same simulated trainingset. The sam-
ple proportions of theA (+) andB (o) classes are .4 and .6 respectively. The
conditional distribution ofx given that the sample is from theA class is bivari-
ate Normal with mean (0,0) and covariance matrix diag (1,1).The distribution
for x from theB class is bivariate Normal with mean (2,2) and covariance diag
(2,1). The left panel in Figure 1.4 is for the standard case, assuming that mis-
classification costs are the same for both kinds of misclassification, and the target
population has the same proportions of theA andB as the sample. For the right
panel, we assume that the costs of the two types of errors are different, and that
the target population has different relative frequencies than the training set. We
tookCA = 1 CB = 2, πA = 0.1, πB = 0.9. As before,πs

A = 0.4, andπs
B = 0.6,

yielding L(−1) = CAπB/πs
B = 1.5, andL(1) = CBπA/πs

A = 0.5. Since the
distributions generating the data and the distributions ofthe target populations are
known and involve Gaussians, the theoretical best decisionrules (for an infinite
future population) are known, and are given by the curves marked ‘true’ in both
panels.

The Gaussian kernelK(x, x′) = exp{−‖x − x′‖2/2σ2} was used, where
x = (x1, x2), andσ is to be tuned along withλ. The curves selected by the
GACV of (1.19) and the XA of (1.22) in the standard case are shown in the left
panel, along with MISCLASS of (1.20), which is only known in asimulation ex-
periment. The right panel gives the curves chosen by the nonstandard GACV of
(1.26), the BRXA of (1.28) and the BRMISCLASS of (1.29). The optimal (λ, σ)
pair in each case for the tuned curves was chosen by a global search. It can be
seen from both panels in Figure 1.4 that the MISCLASS curve, which is based on
the (finite) observed sample is quite close to the theoretical true curve (based on
an infinite future population), we make this observation because it will be easier
to compare the GACV and the XA against MISCLASS than against the true, sim-
ilarly for the BRMISCLASS curve. In both panels it can be seenthat the decision
curves determined by the GACV and the XA(BRXA) are very close.

We have computed the inefficiency of these estimates with respect to MIS-
CLASS(BRMISCLASS), by inefficiency is meant the ratio of MISCLASS(BRMISCLASS)
at the estimated(λ, σ) pair to its minimum value, a value of1 means that the
estimated pair is as accurate as possible, with respect to the (uncomputable) min-
imizer of MISCLASS(BRMISCLASS). The results for the standard case were:
GACV : 1.0064, XA : 1.0062 − 1.0094 (due to multiple neighboring minima
in the grid search, the 1.0062 case is in Figure 1.4); and for the nonstandard case:
GACV : 1.151, BRXA : 1.166.

Figure 1.5 gives contour plots for GCKL, GACV, BRMISCLASS and BRXA
as a function ofλ andσ in the nonstandard case. It can be seen that the GACV
and BRXA curves have nearly the same minima. The GCKL and BRMISCLASS
curves both have long, shallow, tilted cigar-shaped minima, and the GACV and
BRXA minima are near the lower right end. For the standard case (not shown)
the minima are somewhat more pronounced and the GACV and XA minima are
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closer to the MISCLASS minimum, and this is reflected in inefficiencies nearer
to 1. (BR)MISCLASS curves in other simulation studies we have done show this
same behavior. We have observed (as did Joachims) that the value of XA in the
standard case is a good estimate of the value of MISCLASS at its minimizer, only
slightly pessimistic. The GACV at its minimizer is an estimate of twice the mis-
classification rate. The value of one half the GACV is somewhat more pessimistic.
We note that once one obtains the solution to the problem the computation of both
GACV and (BR)XA are equally trivial.

log10GCKL log10GACV

−0.75

−0.7 

−0.65

−0.6 

−0.55

−0.5 

−0.45

−0.4 

−20 −15 −10 −5
−4

−3

−2

−1

0

1

2

3

4

5

6

log2(lambda)

lo
g2

(s
ig

m
a)

log10BRMISCLASS

−0.6

−0.4

−0.2

0   

0.2 

0.4 

0.6 

0.8 

1   

−20 −15 −10 −5
−4

−3

−2

−1

0

1

2

3

4

5

6

log2(lambda)

lo
g2

(s
ig

m
a)

log10BRXA

−1.2

−1.1

−1  

−20 −15 −10 −5
−4

−3

−2

−1

0

1

2

3

4

5

6

log2(lambda)

lo
g2

(s
ig

m
a)

−1  

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−20 −15 −10 −5
−4

−3

−2

−1

0

1

2

3

4

5

6

log2(lambda)

lo
g2

(s
ig

m
a)

Figure 1.5. GCKL, GACV, BRMISCLASS, BRXA as functions ofλ and σ2, for the
nonstandard example. Note different logarithmic scales inλ andσ.

The GACV in (quadratically) penalized likelihood cases generally scatters
about the minimizer of its target (analogous to GCKL)(see [30]) but here, both
the GACV and the BRXA (along with the standard case) appear tobe biased to-
wards largerλ. The (BR)MISCLASS surfaces are so flat inλ in our examples this
does not seem to be a serious problem (less so in the standard case).

Recently we have obtained a generalization of the SVM to thek category
case, which solves a single optimization problem to obtain avector fλ(x) =
(f1λ(x), . . . , fkλ(x)) where the category classifier is the component off that is
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largest, see [14]. Usual muticategory classification schemes do one-vs-many or
(

k
2

)

pairwise comparisons, and the multicategory SVM has advantages in certain
examples. The GACV has been been extended to the nonstandardmulticategory
SVM case and it appears that the BRXA can also be extended. Penalized like-
lihood estimates which estimate a vector of logits simultaneously could also be
used for classification, [16], but again, if classification is the only consideration,
one can argue that an appropriate multicategory SVM is preferable.

Recently [6] compared the GACV, the XA, five-fold cross validation and sev-
eral other methods for tuning, using the standard two-category SVM on four data
sets with large validation sets available. It appears from the information given that
the authors may not have always found the minimizing(λ, σ) pair. However, we
note the authors’ conclusions here. With regard to the comparison between the
GACV and the XA, essentially similar conclusions were obtained as those here,
namely that they behaved similarly, one slightly better on some examples the other
slightly better on the other examples. However five-fold cross validation appeared
to have a better accuracy record on three of the examples, andwas tied with the
GACV on the fourth. Several other methods were studied, noneof which appeared
to be related to any leaving out one argument, and those did not perform well. The
five-fold cross validation will cost more in computer time, but with todays com-
puting speeds, that is not a real consideration. In some of our own experiments
we have found that the ten-fold cross validation beats or is tied with the GACV.
It is of some theoretical interest to understand what appears to be a systematic
overestimation ofλ when using the Gaussian kernel and tuningσ2 along withλ,
by methods which are based on the leaving-out-one argumentsaround (1.24), es-
pecially since corresponding tuning parameter estimates in penalized likelihood
estimation generally appear to be unbiased in numerical examples.

.
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