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A Nonparametric Method for Estimation
of Arterial Wall Shear Stress

John D. Carew, Reema K. Dalal, Grace Wahba, Sean B. Fain

INTRODUCTION

Arterial wall shear stress (WSS) is proportional to the derivative of blood velocity evaluated at the
arterial wall. One method for noninvasively estimating WSS is through post-processing of phase
contrast magnetic resonance images (PC-MRI). PC-MRI is capable of measuring blood velocity
along the direction of arterial blood flow [1]. Parametric methods for estimating WSS from PC-
MRI depend on assumptions such as approximately circular vessel symmetry or laminar flow [2].
This abstract proposes a nonparametric method for estimating WSS from PC-MR images for more
general application of WSS estimation to more complex vessel geometries and flow regimes.

MATERIALS AND METHODS

Method: The WSS estimation method consists of: (1) determination of the vessel wall position,
(2) fitting of a nonparametric function to the blood velocity measurements within the vessel, (3)
approximation of the derivative of the blood velocity function at the boundary. Specifically, in step
1, the vessel interior wall pixels are automatically extracted from a magnitude image with an edge
detection algorithm [3]. A closed, periodic smoothing spline curve is then fit to the boundary pixels
to estimate the vessel wall at sub-pixel resolution and to compute the normal directions. Pixels
from the PC-MR image that are within the boundary are segmented for fitting. In step 2, interior
points are denoted as(xi, yi, zi) for i = 1, . . . , n, wherexi andyi indicate pixel location andzi

indicates the corresponding velocity. Blood velocity is modeled aszi = f(xi, yi) + εi , where
εi ∼iid N (0, σ2), where we assume only thatf is a smooth function. An estimator forf is found
in a reproducing kernel Hilbert space denotedHR with reproducing kernelR such that

f̂(x, y) := arg min
f∈HR

(
n∑

i=1

(zi − f(xi, yi))2 + λ||f ||2HR

)
The unique solution follows from a more general result in [4] and involves a linear combination of
the reproducing kernel evaluated at a pointt := (x, y) and the data, namely

f̂(t) =
n∑

i=1

ciR(t, ti),

where

c := (Σ + λI)−1(z1, . . . , zn)′,
Σ := [R((xi, yi), (xj , yj))]ij , i, j = 1, . . . , n.

The functionR(·, ·) provides a model for spatial covariance and matrixΣ can be regarded as a
spatial covariance matrix. In fact,R, which is a symmetric positive definite function, defines a
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uniqueHR. Here,R is selected from the Matern family of radial basis functions [5]. Letτ :=
||(xi, yi)−(xj , yj)|| be the Euclidean distance between two points. ThenRν(τ) := exp(−τ)πν(τ),
ν = 0, 1, 2, . . . is the Matern reproducing kernel for orderν, whereπν is a polynomial of a particular
form [5]. The regularization parameterπ and orderν can be objectively determined with generalized
cross-validation [6]. In step 3, the estimated velocity function is used to evaluate the derivative at the
boundary along the normal directions, which yields the wall shear rate (WSR). WSS is the product
of the blood viscosity and WSR.

Experiment: A glass tube phanton was constructed with an indentation to provide a nonconvex
cross-section. The phantom experiment was performed on 1.5 T Signa LX (GE Medical systems,
Milwaukee, WI) scanner using a 2D phase contrast (PC) sequence. The glass tube was connected to
a Cole-Parmer pump placed outside the scanner. The flow rate was set to6.25 ml/s. The parameters
used for the scan were FOV:80 mm x 80 mm, matrix size:512 × 512, NEX: 10, TR: 29 ms, Flip
angle:15 degrees, and slice thickness: 0.7mm.

RESULTS

The proposed method was successfully applied to the phantom data even in the concave region of
the phantom where parametric methods that depend on convexity or symmetry assumptions would
typically fail. The boundary pixels determined by the Canny method are marked on the magnitude
image in Figure 1. The estimated velocity function along with contours is in Figure 2. A regular-
ization parameter ofλ = 1250 and Matern orderν = 4 were used to estimate the velocity function.
Notice that the contours are more closely spaced near the indentation than in other regions of the
tube. This indicates a greater rate of velocity change and, hence, greater wall shear stress. The
estimated derivatives are plotted versus angle in Figure 3. The angle is with respect to the center of
the tube and increases counter clock-wise. There is a systematic trend in the estimates that reflects
the shape of the tube. Note the large WSS between angles4 and5 radians. This is the region of the
tube where the indentation is greatest.
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Figure 1: The magnitude image shows the cross-sectional shape of the glass tube. Boundary pixels
that were automatically identified by the Canny method are indicated in red. These pixels intersect
the glass tube’s interior wall.
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Figure 2: The image shows a nonparametric fit of the cross-sectional fluid velocity in the direction
perpendicular to the plane of the paper. A Matern orderν = 4 and a smoothing parameterλ = 1250
were used in this estimate of the velocity function. Relatively closely-spaced contour lines near the
tube indentation indicate a relatively high wall shear stress near the indentation.
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Figure 3: A plot of the estimated wall shear rate versus angle shows systematic variation. In regions
of the tube near the indentation (roughly,4 to 5 radians), the wall shear rate is greatest.
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DISCUSSION

The main result of this abstract is to describe a nonparametric method and establish its feasibility
for estimating WSS in blood vessels. Nonparametric function estimation inHR does not require
restrictive assumptions about the form of the blood velocity profile or symmetry of the vessel. In
the phantom data, this method produced a good fit and sensible estimates of WSR along the entire
vessel wall. While the Canny method was able to automatically identify boundary pixels from the
phantom data, determining vessel boundaries in vivo might be more difficult. Others have shown
the advantages of double inversion black blood MRI for identifying vessel boundaries [7]. One
limitation of this study is the lack of a gold standard to confirm the WSR estimates. Measuring
WSR with additional methods would provide confirmational evidence. While not considered in this
abstract, the bootstrap is a procedure that can be used to estimate confidence intervals or standard
errors for the WSS estimates. This method can also be extended to fit 3D images or a series of
contiguous 2D images acquired along the flow direction. Additional phantom studies and in vivo
studies are necessary to provide better understand the strengths and limitations of this nonparametric
method and how they compare to other methods. The preliminary results from this study suggest
the promise of the nonparametric method as a potential diagnostic tool.
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Recovering the Boundary of an
Object in an Image

John D. Carew, Grace Wahba, Reema K. Dalal, Sean B. Fain

INTRODUCTION

A common problem in imaging is to recover the cross-sectional boundary of an anatomical structure
or object in an image. Identifying the pixels that intersect the boundary may not be sufficient for
some applications, particularly when sub-pixel resolution is necessary. Fitting a functionally defined
closed, parametric curve to boundary pixels would provide arbitrary resolution and allow calculation
of boundary tangents and normals. In particular, to erode or shrink an object boundary, points
need to be translated along the normal direction. One specific application where these methods are
necessary is arterial wall shear stress estimation. The purpose of this abstract is to propose and
illustrate a method to recover the boundary of an object from a set of boundary pixels.

MATERIALS AND METHODS

A parametric planar curveC := (x(t), y(t)) for t ∈ [a, b] maps the interval[a, b] into the plane.
Assume that the component functionsx(t) andy(t) have continuous derivatives. The parameter
t gives an ordering to points on the curve. A closed curve is periodic with periodω if points t
and t + rω map to the same points onC for all integersr. Fitting a closed, parametric curve
to image data involves fitting the component functionsx(t) andy(t) from a setP of pixels with
coordinates(xi, yi) for i = 1, . . . , n. The method consists of: (1) identifying the boundary pixels,
(2) parameterizing the pixels, and (3) fitting a smoothing spline to each of the coordinates. In the
first step, boundary pixels can be identified by any method that is most appropriate for the given
image. Here, the Canny method [1] for automatic edge detection was used. For step 2, it is assumed
that the true object boundary encloses a topologically star-shaped set. Then, the mean ofP lies
inside of the boundary. The setP is then shifted so that it has mean zero. The points are then
converted to polar coordinates and sorted by increasing angle. This defines an ordering of the pixels
along the curve. Then, to assign ati to each(xi, yi), ti is selected such thatti+1− ti is proportional
to the distance between(xi, yi) and(xi+1, yi+1). In step 3, a periodic cubic smoothing spline [2] is
independently fit to(ti, xi) and(ti, yi) pairs, respectively. As an illustration, this method is applied
to a phantom magnitude image acquired from a phase contrast MRI pulse sequence on a standard
1.5T clinical scanner. The fitted spline curve is used to compute the boundary normal lines and
subsequently translate boundary points inward to yield an eroded boundary.

RESULTS

The boundary detection method was able to successfully fit a curve to the boundary points. The
phantom image is in Figure 4. Canny edge detection worked well for this image. Plots of the
parameterized boundary pixel coordinates versus parameter are given in Figure 5 and Figure 6,
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Figure 4: This is a magnitude image of a cross-section of a glass tube acquired from a phase con-
trast MRI pulse sequence. Boundary pixels are identified from this image with an edge detection
algorithm.

respectively. Note that these plots appear similar to sine and cosine, which indicates the approx-
imate circularity of the boundary. In Figure 7, a plot of the smoothing spline curve is given with
the boundary pixel coordinates. The interior points are an erosion of the boundary in the normal
direction. The eroded points preserve the boundary shape.
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Figure 5: The rawxi coordinates of the boundary pixels are plotted against their parameterti. The
parameter defines an order to the boundary pixels.
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Figure 6: The rawyi coordinates of the boundary pixels are plotted against their parameterti.
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Figure 7: The red curve is a smoothing spline fit to the boundary pixel locations. The interior points
are an erosion of the fitted boundary points. Notice that the spline curve recovers the boundary and
that the boundary erosion preserves shape.
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DISCUSSION

This abstract describes a method for estimating a closed parametric curve from a set of boundary
points. The smoothing spline curve gives a functionally defined boundary that provides arbitrary
resolution. The smoothing yields a curve that does not interpolate the pixel coordinates. Instead it
follows the natural contours of the object boundary, which results in a more realistic representation
of the actual boundary. One limitation of this method is the need to define an ordering of the pixels
along the boundary for the purposes of parameterization. For objects that are not star-shaped, it will
not be possible to convert to polar coordinates and order by angle. However, it is suspected that the
smoothing spline will still work provided that the boundary points can be parameterized by other
means. Applications of this method to more complicated images will provide additional insights on
its strengths and limitations.
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