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Robust Manifold Unfolding with Kernel Regularization
Fan Lu, Yi Lin and Grae WahbaDepartment of StatistisUniversity of Wisonsin, Madison, 53706, USAOtober 12, 2005

AbstratWe desribe a robust method to unfold a low-dimensional manifold embedded in high-dimensional Eulidean spae based on only pairwise distane information (possibly noisy) fromthe sampled data on the manifold. Our method is derived as one speial extension of the reentlydeveloped framework alled Kernel Regularization, whih is originally designed to extrat in-formation in the form of a positive de�nite kernel matrix from possibly rude, noisy, inom-plete, inonsistent dissimilarity information between pairs of objets. The speial formulationis transformed into an optimization problem that an be solved globally and ef�iently usingmodern onvex one programming tehniques. The geometri interpretation of our method willbe disussed.
1 IntrodutionThe dimensionality redution problem appears in many researh �elds, where sientists try to on-dut exploratory analysis or visualization of multivariate data. One speial senario happens often,when the goal is to �nd a meaningful/expeted low-dimensional struture behind high-dimensionalobservations, or more preisely, to reover a low-dimensional parameterization of high-dimensionaldata assuming the data all lie on a low-dimensional manifold. In several reent papers [1, 2, 3, 4, 5℄,a large family of algorithms has been proposed to solve this partiular type of dimensionality redu-tion problem (hereinafter, manifold-unfolding problem), in the spirit of reonstruting the manifoldstruture globally, but respeting only loal information from the observed data. It is also wellknown [5, 6, 7, 8℄ that the solution to the manifold-unfolding problem is losely related to �ndinga symmetri positive de�nite kernel (hereinafter �kernel�). Reall that an N × N kernel obtainedfrom data relating N objets may be used to assign Eulidean oordinates to the N objets in some
p < N Eulidean spae.In a reent work [9℄, a novel framework alled Kernel Regularization is proposed to extratinformation in the form of a kernel matrix from possibly rude, noisy, inomplete, inonsistentdissimilarity or distane-like information between pairs of objets, while ontrolling a ertain om-plexity measure of the kernel. A speial formulation of the framework was applied to on�gure a setof proteins globally in a Eulidean spae based on pairwise dissimilarity information only (see [9℄).The on�guration (in the form of a kernel) obtained an then be used by any lustering or lassi�-ation algorithm for further inferene if visualization is not the only purpose. Kernel regularizationan be used replae of the roles of two traditional tehniques, multidimensional saling (MDS) and
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prinipal omponent analysis (PCA), in a uni�ed fashion using the speial formulation in [9℄. How-ever, the manifold-unfolding problem is different from the problem targeted in [9℄, where globalinformation needs to be preserved.In this paper, we desribe a kernel approah to solve the manifold-unfolding problem usinganother variation/formulation of the kernel regularization framework. We adopt the same essentialidea as in [1, 2, 3, 4, 5℄ whih is, loosely speaking, to respet loal information while �atteningthe global struture. Nevertheless, our method is more �exible than the others in terms of theassumptions on the data. All previous methods assume (at least impliitly) that there is no noiseassoiated with the observed data, while our method allows the existene of noise. One senarioof the noisy-version manifold-unfolding problem is when the observed sattered data points anfall off the `true' underlying manifold. More preisely, one an assume the diret distane betweenobserved data points and the target manifold follows a ompatly supported distribution with zeromean and relatively small variane ompared to the global spread of the original manifold . Anotherpossible soure of noise is measurement error for either point oordinates or pairwise distanes. Arelated issue here is that to the extent that the desired solution to the manifold-unfolding problemis translation and rotation invariant, a reasonable method should depend only on pairwise distaneinformation. The proedures in algorithms proposed in [2, 3, 4℄ use more than pairwise distanes (atleast, proedure-wise), while implementation of our method, like the algorithms in [1, 5℄, needs onlypairwise distanes. It is also worth mentioning that, when the distane/dissimilarity information isatually noisy, it might also be non-Eulidean (e.g., the triangle inequality an be violated). Then,in that ase, the algorithm in [5℄ will try to solve an infeasible optimization problem. Nonetheless,our method an naturally handle this noisy situation. Moreover, our algorithm is insensitive to thenon-onvex ase investigated in [4℄, whih auses the algorithms proposed in [1, 2℄ to fail. So ourmethod is robust for the manifold-unfolding problem in the sense that it an handle both noisy andnon-onvex data.This paper is organized as follows. In Setion 2, we review the Kernel Regularization frame-work before proposing a new formulation of it in order to solve the (noisy) manifold-unfoldingproblem. We also disuss the geometri interpretation of different formulations. In Setion 3, weshow some simulation results from implementing our method. Finally, we onlude in Setion 4with a summary and disussion of future work.
2 Regularized Kernel Embedding2.1 Framework of Kernel RegularizationIn the same spirit of all regularization methods, the Kernel Regularization method is designed toestimate a target, in our ase, a kernel, from observed information, while ontrolling a ertain om-plexity measure of the resulting estimate to prevent over�tting. The most general framework an beexpressed as the following optimization problem:

min
K∈Sn

L(data, K) + λJ(K), (1)where SN is the onvex one of all real nonnegative de�nite matries of dimensionN and L is somereasonable loss funtion on K. J is a kernel penalty (regularizing) funtional, and λ is a tuning
3



parameter balaning �t to the data and the penalty on K. The hoie of L obviously depends onthe funtional/distributional relationship (given or from model assumptions) between the observeddata and target kernel, whih is usually straightforward after the underlying problem is lear. On theother hand, a reasonable J an only be found after one understands/de�nes the omplexity of theestimated kernel properly for a partiular problem. Moreover, omputational onveniene should beonsidered when hoosing L and J . In most ases, we want use L and J whih makes the resultingoptimization problem onvex.The Kernel Regularization framework proposed in [9℄ is motivated by the need to extrat usefulinformation from various kinds of dissimilarity information. Given a set of N objets, suppose wehave obtained a measure of dissimilarity, dij , for ertain objet pairs (i, j). So the dissimilaritymeasure beomes the proxy to onstrut the loss funtion for the target kernel. Also, trae is hosento be the kernel regularizing funtion J in order to promote dimension redution in this ase. Onespeial formulation of Kernel Regularization framework in this senario is the following:
min

K∈SN

∑

(i,j)∈Ω

wij |dij − Bij · K| + λ trae(K), (2)
where Ω is the set of pairs for whih we utilize dissimilarity information and the wijs are weightsthat may, if desired, be assoiated with partiular (i, j) pairs. The natural indued dissimilarity,whih is a real squared distane admitting of an inner produt, is d̂ij = K(i, i) + K(j, j) −
2K(i, j) = Bij ·K, where K(i, j) is the (i, j) entry of K and Bij is a symmetri matrix of dimen-sion N with all elements 0 exept Bij(i, i) = Bij(j, j) = 1, Bij(i, j) = Bij(j, i) = −1. The inner(dot) produt of two matries of the same dimensions is de�ned as: A ·B =

∑

i,j A(i, j) ·B(i, j) ≡trae(ATB).There are essentially no restritions on the set of pairs other than requiring that the graph of theobjets with pairs onneted by edges be onneted. A pair may have repeated observations, whihjust yield an additional term in (1) for eah separate observation. If the pair set indues a onnetedgraph, then the minimizer of (1) will have no loal minima.2.2 Deriving the Regularized Kernel Embedding FormulationDenote the observed squared distane between xi and xj by dij . Let (i, j) ∈ Ω if xj is one of the
k-nearest neighbors of xi, aording to this observed squared distane.We formulate the problem as �nding a new positioning of the N points inRp so that(i) the repositioning respets loal distane;(ii) the repositioned points lie in a subspae ofRp with as low a dimension as possible.Denote the points after repositioning as yi, i = 1, ..., N . That is, the positioning moves theoriginal point xi to yi, i = 1, ..., N . These N points are still in Rp, but we hope they lie in alow dimensional subspae in Rp. Denote the distane between yi and yj in Rp by rij . Notie thatthe positioning that satis�es these two onditions is not unique. In fat, for any positioning thatsatis�es (i) and (ii), rotating the oordinate system or shifting the points by a ommon vetor resultsin a different positioning that also satis�es (i) and (ii). To take are of the shifting problem, werequire that the repositioned points are entered at 0p, the origin of the oordinate system. That is,
ȳ ≡ 1

n

∑N
i=1 yi = 0p. As will be seen later, we shall take are of the rotation problem by formulating4



the problem in terms of the reproduing kernel matrix generated by the repositioned points, insteadof the repositioned points themselves. The reproduing kernel matrix K is the N by N matrix withthe element K(i, j) = (yi, yj), where (·, ·) is the Eulidean inner produt inRp. Notie this matrixis invariant under rotation of the points yi.Condition (i) requires that
r2
ij ≈ dij , ∀(i, j) ∈ Ω. (3)Now notie that among all possible positioning that satis�es ondition (i), the positioning thatmeets ondition (ii) is one in whih the distane between pairs of the repositioned points in Rpare maximized. This is most easily seen in the broken stik example oming up later, but it is alsoeasy to see in general. Therefore we try to maximize ∑N

i=1

∑N
j=1 r2

ij subjet to (3). To balanethe �delity to loal distanes and the maximization of distane between all pairs, we use a penaltyapproah and try to minimize:
∑

(i,j)∈Ω

(dij − r2
ij)

2 − λ
N

∑

i=1

N
∑

j=1

r2
ij , (4)

where λ > 0 is a tuning parameter. Alternatively, we an try to minimize
∑

(i,j)∈Ω

|dij − r2
ij | − λ

N
∑

i=1

N
∑

j=1

r2
ij , (5)

Adopting the matrix inner produt de�nition de�ned in Setion (2.1)
N

∑

i=1

N
∑

j=1

r2
ij =

N
∑

i=1

N
∑

j=1

K(i, i) + K(j, j) − 2K(i, j)

= 2NI · K − 2
n

∑

i=1

n
∑

j=1

K(i, j)

= 2NI · K − 2E · K = 2(NI − E) · K,where I is theN -dimensional identity matrix andE is the N byN matrix with all elements being 1.Plugging r2
ij = K(i, i) + K(j, j) − 2K(i, j) into (4) or (5), the problem beomes: �nd K positivesemide�nite to minimize

∑

(i,j)∈Ω

(dij − K(i, i) − K(j, j) + 2K(i, j))2 − 2λ(NI − E) · K, (6)
or

∑

(i,j)∈Ω

|dij − K(i, i) − K(j, j) + 2K(i, j)| − 2λ(NI − E) · K. (7)
We an also add weights wij into the �rst summation. There is an additional onstraint neededto guarantee that the points are entered at 0p. It is easy to show that if K is positive semide�nite,then ȳ = 0p is equivalent to Ke = 0p, where e is the p by one vetor whose elements are all ones,and this onstraint an be added to the above optimization problems. This onstrained minimizationproblem an be reast as a onvex one programming problem and there are ef�ient algorithms5



developed in the onvex optimization ommunity for solving this type of problems. Notie thatunder the Ke = 0p onstraint the objetive funtion an be further simpli�ed a little sine if K ispositive semide�nite, then Ke = 0p is equivalent to E ·K = 0. One the matrix K is obtained, thedimension of the subspae of the repositioned points is p = rank(K). Alternatively, the onstraint
Ke = 0p may be omitted and K entered later. This will be disussed further below. We an usethe spetral deomposition, i.e., K = Γ′DΓ where Γ is p by N onsisting of p rows of eigenvetorsof K, and D is the p by p diagonal matrix of non-zero eigenvalues {λν}, to get the prinipaloordinates Y = D1/2Γ with olumns of Y to be yi's.One thing that we need to be areful about is that the neighbor set Ω should not be too small.Otherwise the objetive funtion may diverge to −∞. The neessary and suf�ient ondition toavoid this situation is that the edges in Ω onstrut a onneted graph for all data points.Now, it is easy to see that (7) differs from the formulation (2) only in the hoie of kernelregularization funtion J(K). In (7), J(K) = trace(K) = I · K, while in (2) J(K) = −2(NI −
E) · K. It is worth pointing out that they are both linear thus onvex in K.2.3 General Convex Cone ProblemProblems (6) and (7) an all be solved globally (sine they are onvex in K) and ef�iently usingmodern onvex one programming tehniques. We desribe here the general onvex one program-ming problem. This problem, whih is entral to modern optimization researh, involves someunknowns that are vetors in Eulidean spae and others that are symmetri matries. These un-knowns are required to satisfy ertain equality onstraints and are also required to belong to onesof a ertain type. The ones have the ommon feature that they all admit a self-onordant barrierfuntion, whih allows them to be solved by interior-point methods that are ef�ient in both theoryand pratie [10℄.To desribe the one programming problem, we de�ne some notation. Let Rp be Eulidean
p-spae, and let Pp be the nonnegative orthant in Rp, that is, the set of vetors in Rp whose om-ponents are all nonnegative. We let Qq be the seond-order one of dimension q, whih is the set ofvetors x =

(

x(1), . . . , x(q)
)

∈ Rq that satisfy the ondition x(1) ≥ [
∑q

i=2 x(i)2]1/2. We de�ne
Ss to be the one of symmetri positive semide�nite s× s matries of real numbers. Inner produtsbetween two vetors are de�ned in the usual way and we use the dot notation for onsisteny withthe matrix inner produt notation.The general onvex one problem is then:

min
Xj ,xi,z

ns
∑

j=1

Cj · Xj +

nq
∑

i=1

ci · xi + g · z (8)
s.t. ns

∑

j=1

Arj · Xj +

nq
∑

i=1

ari · xi + gr · z = br, ∀r

Xj ∈ Ssj
∀j ; xi ∈ Qqi

∀i; z ∈ Pp.Here, Cj , Arj are real symmetri matries (not neessarily positive semide�nite) of dimension sj ,
ci, ari ∈ Rqi , g, gr ∈ Rp, br ∈ R1.The solution of a general onvex one problem an be obtained numerially using publilyavailable software suh as SDPT3 [11℄ and DSDP5 [12℄.6



2.4 Regularized Kernel Embedding Formulation for l1 LossTo onvert the problem of equation (7) into a onvex one programming problem, without loss ofgenerality, we letΩ ontainm distint (i, j) pairs, whih we index with r = 1, 2, . . . , m. LetN×Nmatries I and E be de�ned as before. De�ne em,r to be vetor of length 2m onsisting of all zerosexept for the rth element being 1 and (m + r)th element being −1. If we denote the rth elementof Ω as (

i(r), j(r)
), and with some abuse of the notation let i = i(r), j = j(r) and w ∈ P2m with

w(r) = w(r + m) = wi(r),j(r), r = 1, . . . , m, we an formulate the problem of equation (2) asfollows:
minK�0,u≥0 w · u − 2λ(NI − E) · K (9)s.t.dij − Bij · K + em,r · u = 0, ∀r,

K ∈ SN , u ∈ P2m.The solution to (9) might not be entered. To obtain sensible prinipal oordinates of the or-responding on�guration using the spetral deomposition, we an enter the solution kernel fol-lowing a simple proedure. De�ne a to be the olumn with ith entry the average of the ith olumnof K, c to be the salar as the mean of all elements in K and e to be vetor of suitable dimensiononsisting of all 1's. A kernel K an be entered simply by: Kcentered = K −aeT − eaT + cE. Analternative way to handle this entering step, as disussed before, is to diretly impose the enteringondition E · K = 0, whih is atually a linear onstraint and an be diretly inorporated into theonvex one formulation (9). Then, we an also simplify the kernel regularization funtion from
−2(NI − E) · K to a redued form −2(NI) · K. However in our experiment with the exampleshere, the optimization problem without the E · K = 0 onstraint onverges faster.The Regularized Kernel Embedding formulation with square loss an also be easily obtainedafter simple modi�ation of the square formulation in the appendix of [9℄.2.5 `Newbie' FormulationA very useful `newbie' algorithm was developed in [9℄ to �nd the oordinates for new data points(newbies) within the previously onstruted on�guration. The orresponding newbie problem isessentially the minimization of the sum of losses involving the newbie only. We adopt the sameidea here for the manifold-unfolding problem exept we restrit the summation even further to areasonable neighborhood of the newbie. The neighborhood onstrution problem will be disussedin general in the following setion. However the algorithm remains the same.2.6 Choosing NeighborsChoosing neighbors for eah sampled data point is a very important/triky step for almost all meth-ods inluding ours that are in the spirit of `thinking globally while �tting loally'. However, it isnot disussed in detail in previous papers. A simple way, whih is adopted by most algorithms, isto hoose k nearest neighbors for all data points. Then the neighbor-hoosing problem degeneratesinto a neighborhood-size-hoosing problem. In exploratory studies, where the truth is not known,the only thing one an do might be to start from a `suitable' neighborhood size based some priorknowledge or intuition, and then vary the size to see how the results hange. As we disussed previ-ously, the neighborhood size has to be big enough so that the neighbor edges and all points onsist
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of a onneted graph. On the other hand, if the neighborhood size is too big, we are respetingmore than just the loal struture, and also, the omputation ost usually goes up quikly. A goodhoie of k and the sensitivity of the results to k depend on the density and distribution of the sam-pled points on the manifold. In previous papers, with dense enough samples for the examples, theauthors simply hoose moderate neighborhood sizes. In this paper, we also adopt this approah inthe simulated examples.Nonetheless, in some ases, �xing a neighborhood-size might not be a good approah to setupa onneted graph espeially when the sampling is very uneven aross the underlying manifold orthe manifold has very different urvature from plae to plae. For the formulation proposed in thiswork, we have another, possibly more stable way to takle this issue. We an impose a ompatlysupported kernel around eah data point to generate weights for all other points. Only those pointswho get non-zero weights beome andidates to be neighbors for a partiular data point, and theirweights will be used to multiply the orresponding loss terms in (6) and (7). A threshold numberan also to set so that every point only keeps no more than that number of losest neighbors from allandidates. A suitable bandwidth of the kernel an be seleted based on the average losest-neighbordistane. The intuition of this approah is to give higher on�dene to the distanes between loserneighbors.2.7 Parameter λThe tuning parameter λ ontrols a balane between the twin goals we want to ahieve � as λ in-reases, the average squared distane between points far apart is allowed to inrease, thus enhan-ing ��attening�, while as λ dereases, the solution is driven towards more losely respeting theobserved loal struture.For an exploratory study, where the truth is not known, a sequene of λs within an appropriaterange (usually in log sale) will give different results. Then prior knowledge may help to hoose agood λ. For example, if it is known that there is not muh noise within the data and a low dimen-sional embedding is preferred, one an gradually inrease λ to get rid of insigni�ant dimensionsuntil the sum of the losses exeed some limit.However, if this manifold-learning task is just a part of bigger problem, e.g., lustering or las-si�ation, where we know the truth for training data, it will be natural to tune λ simultaneously withother possible tuning parameters, using standard tuning tehniques like ross validation.
3 Unfolding Simulated Examples3.1 Prorustes MeasuresFor the simulated data, the truth is known. A reasonable measure of the distane/similarity betweentwo kernel matries is needed to haraterize the goodness of �t for different estimates. In somerelated literature, it is alled Prorustes measure.A suitable measure proposed in [13℄ is based on the the positional differenes after mathingtwo gram matrix under translation, rotation and re�etion. Suppose A and B are two entered grammatries, then the measure is alulated as follows:

G(A, B) = trace(A) + trace(B) − 2trace(A1/2BA1/2)1/2. (10)
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The normalized version of this measure is simply:
γp(A, B) = G(A, B)/(trace(A)trace(B))1/2. (11)Alternatively, if we are only about the pairwise distane information, we an introdue anothermeasure (as de�ned in [9℄):

γd(A, B) =
∑

i<j

|d̂ijA − d̂ijB|/
∑

i<j

1

2
(d̂ijA + d̂ijB), (12)

where d̂ijA and d̂ijB are pairwise distane between objet i and j, indued by A and B respetively.3.2 Unfolding the Swiss Roll with a Window Punhed OutThe �rst simulated example is a Swiss roll manifold with a retangular window punhed out loseto the enter. This example was used in Donoho and Grimes (2003) to show how a non-onvexfeature (the punhed-out window) an ause some previous methods like ISOMAP [1℄ and LLE [2℄to fail.The following results are obtained on a random sample of 770 points, eah point with 6 neigh-bors. There is no noise in this example. Figure 1 gives the satter plot of original data points sampledon the manifold (exept within the punhed-out window). Figure 2 is the true parameterization, andits �rolled-up� version gives Figure 1. Figure 3 is the solution to our formulation with (9), with thetuning parameter λ = 7e − 7. In Figure 4, the eigensequene of the orresponding solution kernelis plotted in desending order on a log sale. We an learly see the fat that the �rst two eigen-values stand out signi�antly in magnitude ompared with the rest of the eigenvalues, indiating a2D embedding. (The last eigenvalue in Figure 4 is the omputer version of the zero eigenvalue thatgoes with the onstant funtion.) The prinipal oordinates in Figure 3 are onstruted using thesetwo signi�ant eigenvalues and orresponding eigenvetors.3.3 Unfolding the Noisy Wisonsin RollThis example is speially designed to show the robustness of our method, espeially ompared withthe method proposed reently in [5℄, whih has a basi idea very similar to ours. We onsidertwo types of noise, whih are imposed on the pairwise distanes between neighbors after the allneighbors are seleted. In this example, the data points are sampled on a `Wisonsin roll', whih isa Swiss roll exept there is a window in the shape of letter `W' punhed out (thus no points an besampled with in it) whih an be seen learly if the roll is �atten out.To impose the �rst type of noise, twenty perent of the seleted pairwise distanes are multipliedby a uniform random number over the interval from 0.85 to 1.15. The seond type of noise isintrodued to all hosen dijs (between hosen neighbors) by binning them into 15 equal sized binsover the interval from the minimum to the maximum among these dijs. The value of eah dij isthen replaed by the enter of the bin that it belongs to. It is an analog of the senario where onlyranks are provided as the distane/dissimilarity measure.A random sample of 861 points was used for this example with the neighborhood size set to be
k = 6. In both noisy situations, our method suessfully (with λ in a proper range) onverges to aglobal optimum with only two signi�ant dimensions. See eigensequene plots Figure 7 and Figure
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Figure 1: Swiss Roll: Satter plot of original data points.
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Figure 2: Swiss Roll: True parameterization. Rolled up version gives Figure 1.
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Figure 3: Swiss Roll Unrolled: Regularized Kernel Embedding using (9), λ = 7e − 7, �rst twoprinipal oordinates.

0 100 200 300 400 500 600 700 800
−20

−15

−10

−5

0

5

10

15

lo
g(

λ ν)

ν

Figure 4: Swiss Roll: Eigensequene of the solution kernel, λ = 7e − 7. Note log sale.
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9. The Prorustes measure shows our solution is very lose to the truth (See Table 1), although thereovered embeddings shown in Figure 6 and Figure 8 are distorted a little bit from the truth (seeFigure 5) due to the imposed noise.Table 1: Prorustes Measure between Result and Truth1st type of noise ase 2st type of noise ase
γp 0.0055 0.0030
γd 0.0154 0.0112
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Figure 5: Wisonsin Roll: True parameterization. Observations ome from rolled up version afteradding noise.On the ontrary, the algorithm in [5℄ fails to onverge beause it tries to solve an infeasibleprimal problem for whih the dual is unbounded. For the solvers we used, DSDP5 reported � DSDP:Dual Unbounded, Primal Infeasible� and SDPT3 reported �Stop: primal problem is suspeted ofbeing infeasible�. These results are expeted, beause when a ertain level of noise is diretlyimposed on the distane information, it is very likely that no Eulidean metri an �t the noisydistane data (for instane if the triangle inequality is violated somewhere). Then problem set-up in[5℄ is infeasible in the sense that no solution an satisfy all the onstraints simultaneously.3.4 Unfolding a Broken StikIn this setion we desribe a toy example for the purpose of highlighting the differene between ourmethod and the method proposed in [5℄. The primary differene between the two methods is that
12
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Figure 6: Wisonsin Roll with �rst type of noise, unrolled. Regularized Kernel Embedding using(9), λ = 0.002, �rst two prinipal oordinates.
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Figure 7: Wisonsin Roll: Eigensequene of the solution kernel, �rst type of noise, λ = 0.002.
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Figure 8: Wisonsin Roll with seond type of noise, unrolled. Regularized Kernel Embedding using(9), λ = 0.0025, �rst two prinipal oordinates.
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Figure 9: Wisonsin Roll: Eigensequene of the solution kernel, seond type of noise, λ = 0.0025.
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for the method in [5℄ loal distanes are enfored rigidly while here we relax that requirement. Wewant to show that this relaxation an be very important for manifold-unfolding problems even in theases without noise.The data points are randomly sampled on two branhes of a `broken stik' (see Figure 10). Onebranh is from the origin to the point (1, 1) and the other is from (1, 1) to (2, 0). We fore thesample to inlude the point (1, 1).The manifold unfolding goal here is to �atten out the stik. If any of the pairs for whih distaneis seleted to �t, has one member from the left branh and the other member from the right branh(for example, see the blak line in Figure 10), then the method in [5℄ will not be able to �atten thestik. For our method, a small λ will not �atten the stik either, but a suf�iently large λ will. Theresult from employing the method in [5℄ with k = 5 is almost visually indistinguishable from theplot in Fig 10. With k = 5 and λ too small (λ = 1e − 5) , our method also fails to �atten thestik but reovers the original broken stik. Two outstanding eigenvalues are obtained as an beseen in the upper left orner of Figure 11. However, with λ suf�iently large (λ = 0.3) we seeonly one outstanding eigenvalue, and so we obtain the one dimensional �attened stik on the lowerright orner of Figure 11. As expeted, within our regularized kernel embedding framework, thesmoothness/dimensionality is ontrolled by the smoothing/tuning parameter λ.
4 Disussion and Future WorkIn this paper, we developed a robust manifold learning method as a variation of the RKE frameworkproposed in [9℄. It is worth mentioning that, if we hoose to impose the entering onstraintE ·K =
0 (although we an do without this) in problems (6) and (7), the kernel regularization funtionfor manifold unfolding beomes J(K) = −2(NI − E) · K = −2NI · K = −2N trae(K).Interestingly, in [9℄, the kernel regularization funtion we use to promote dimension redution istrae instead of the negative trae (with a onstant multiplier) here. So, different signs in front oftrae atually both promote dimension redution but in different senarios.More interesting problems ome up when there are multiple soure of information that arebelieved to share the same underlying low-dimensional struture. Our method an be naturallyextended to that ase. Also, it is often unrealisti to assume the given distane information isatually Eulidean. Then, a non-metri variation of our method, i.e., only rank information amongall distanes will be used, an be very useful. Last but not the least, we will explore the weightingsheme as we disussed in setion (2.6) to selet neighbors in order to ahieve higher stability androbustness.
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Figure 11: Broken Stik: Effet of λ on the Regularized Kernel Embedding using (9). Small λ doesnot �atten the stik, but a larger λ does.
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17


