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Abstract

The Partitioned LASSO-Patternsearch algorithm is proposed to identify patterns

of multiple dichotomous risk factors for outcomes of interest in genomic studies. A

partitioning scheme is used to identify promising patterns by solving many LASSO-

Patternsearch subproblems in parallel. All variables that survive this stage proceed

to an aggregation stage where the most significant patterns are identified by solving

a reduced LASSO-Patternsearch problem in just these variables. This approach was

applied to genetic data sets with expression levels dichotomized by gene expression bar

code. Most of the genes and second-order interactions thus selected and are known to

be related to the outcomes. Cross-validation shows that the proposed method provides

smaller models with better prediction accuracy, in comparison to several competing

methodologies.

1 Introduction

The LASSO-Patternsearch (LPS) algorithm [19, 12, 23] is an effective approach for identify-

ing multiple dichotomous risk factors for outcomes of interest in demographic and genomic

studies. It uses an `1-regularized logistic regression formulation, targeting the case in which

only a small fraction of the large number of possible candidate patterns are significant. The
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approach can be used to consider simultaneously all possible patterns up to a specified order.

It can identify complicated correlation structures among the predictor variables, on a scale

that can cause serious difficulties for algorithms that target problems of more modest size.

When applied to very large models with higher-order interactions between the predictor

variables, however, LPS quickly runs into computational limitations. For example, a problem

with two thousand predictor variables yields a logistic-regression formulation with about two

million variables if both first- and second-order patterns are included in the model. Problems

of this size are at the limit of LPS capabilities, yet current problems of interest in genetic

epidemiology consider ten thousand markers or more [21]. For these kinds of data sets, a

screening stage can be added before applying LPS [18].

In this article, we propose a Partitioned LASSO-Patternsearch Algorithm (pLPS) scheme

to tackle gigantic data sets in which we wish to consider second- and possibly third-order

interactions among the predictors, in addition to the first-order effects. As in LPS, we as-

sume that all predictor variables are binary (or that they have been dichotomized before the

analysis). The model thus contains a huge number of possible patterns, but the solution

is believed to be sparse, with only a few effects being significant risk factors for the given

outcome. In the first (screening) stage of pLPS, the predictors are divided into partitions

of approximately equal size, and LPS is used to solve smaller subproblems in which just

the predictors and higher-order effects within a single partition, or the interactions between

variables in small groups of partitions, are considered as variables in the optimization model.

These reduced problems can be solved independently, in parallel. By the end of the screen-

ing stage, each predictor and each higher-order effect (up to the specified order) has been

considered in at least one of the subproblems. The second stage of pLPS is an aggregation

process, in which all predictors identified in the first stage are considered, together with all

their interactions up to the specified order. An LPS process is used to identify the final set

of significant predictors and interactions.

Tuning parameters in the first stage of pLPS are chosen by BGACV criterion (see [19]).

In the second stage, two tuning parameters are used, one for main effects and one for in-

teractions. These are chosen by BGACV2, a variation of BGACV to be described below.

We examine the effectiveness of the pLPS strategy on simulated data and on two large-scale

genetic data sets.

The rest of the article is organized as follows. In Section 2 we describe the details
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of the pLPS algorithm. Section 3 presents three simulation examples that demonstrate the

properties of pLPS and contrast its results with those obtained from Logic Regression, SPLR,

and Random Forest. Section 4 applies the method to gene expression data, dichotomized by

the bar code method [24]. Section 5 presents some conclusions.

2 Partitioned LASSO-Patternsearch Algorithm

We now give further details of the pLPS scheme and its implementation. For simplicity, most

of our discussion focuses on the case in which first-order effects and second-order interactions

between all predictors are considered. Extension of the approach to include third-order effects

as well is described briefly at the end of the section.

Considering n subjects with p binary predictor variables, the total number of interactions

up to order q is given by NB =
∑q

ν=0

(
p
ν

)
. For q = 2, we thus have 1 + p(p + 1)/2 patterns.

To apply pLPS, we first divide the p variables into k partitions so that each partition has

g = p/k variables. (For simplicity of description, we assume that p is divisible by k.)

The data set is {y, xj, j = 1, 2, . . . , p}, where y = (y1, y2, . . . , yn) ∈ {0, 1} is the response,

xj = (xj(1), xj(2), . . . , xj(n)) is the jth covariate, and xj(i) ∈ {0, 1} for all j = 1, 2, . . . , p

and i = 1, 2, . . . , n. By relabelling the p predictors as xst, where s = 1, 2, . . . , k denotes the

partition number and t = 1, 2, . . . , g denotes the index within the partition, we relabel the

full data set as {y, xst, s = 1, 2, . . . , k, t = 1, 2, . . . , g}.
In the first stage of pLPS (the “screening stage”), we solve two types of reduced LPS

subproblems. The first type is based on a pair of partitions, denoted by s1 and s2, and defines

the LPS variables in the subproblems to be the first-order effects within each group (for which

there are 2g basis functions {Bt1 = xs1t, t = 1, 2, . . . , g} and {Bt2 = xs2t, t = 1, 2, . . . , g})
and all the second-order interactions between a predictor in group s1 and a predictor in group

s2. There are g2 basis functions for the latter effects, namely, {Bt1t2 = xs1t1 × xs2t2 , t1, t2 =

1, 2, . . . , g}. Hence the total number of patterns in the LPS model for each subproblem is

g2 + 2g + 1, when we include the constant basis function B ≡ 1.

The second type of reduced LPS problem is obtained from the first- and second-order

effects within a single partition. Here, the basis functions for group s are {Bt1t2 = xst1 ×
xst2 , t1, t2 = 1, 2, . . . , g} and {Bt = xst, t = 1, 2, . . . , g}, making a total of 1 + g(g +

1)/2 patterns, when we include the constant basis function. Since each subproblem of the
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second type has about half as many variables as each subproblem of the first type, we

define computational tasks of roughly equivalent complexity by grouping two of the type-

two problems together. Figure 1 is a graphical presentation of the two types of groups

considered in the first stage of pLPS.

We now briefly describe the LPS methodology, which is applied to each of these subprob-

lems. By relabelling, we define the basis functions to be B`(x), ` = 1, 2, . . . , NB. Defining

p(x) := Prob[y = 1|x] and the logit (log odds ratio) f(x) := log[p(x)/(1−p(x))], we estimate

f by minimizing

Iλ(y, f) = L(y, f) + λJ(f), (1)

where L(y, f) is the negative log likelihood divided by n:

L(y, f) =
1

n

n∑
i=1

[−yif(x(i)) + log(1 + ef(x(i)))], (2)

with f being expressed as a linear combination of the basis functions

f(x) = µ +

NB−1∑
`=1

c`B`(x), (3)

and the penalty function being defined by

J(f) =

NB−1∑
`=1

|c`|. (4)

(We assume that the last basis function is the constant function 1, whose coefficient µ does

not appear in J and is therefore not penalized.) The penalty parameter λ in (1) is chosen

by BGACV. We then build a parametric logistic regression model on the remaining basis

functions by minimizing(2) and selecting the best model via backward elimination with the

BGACV criteria. More details are given in [19, Section 3].

If the outcomes can be predicted well using a small number of patterns, the number

of patterns surviving the first stage of pLPS should be small. Suppose there are a total

of p∗ unique predictor variables in all these patterns. The second stage of pLPS — the

“aggregation stage” — is an LPS problem in which just these predictors and all their second-

order effects are the patterns. There will be NB1 = p∗ basis function (denoted by B1`) for

the main effects and NB2 (=
(

p∗

2

)
) basis functions (denoted by B2`) for the second-order
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Figure 1: Diagram of the subproblems in the first stage of pLPS, assuming 5 partitions.

Side length of a square is the partition size, while the horizontal axis contains the labels of

the first effect and the vertical axis the label of the second effect. Squares filled with red

dots are “type-one” subproblems while the triangles filled with green dots are “type-two”

subproblems.
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interactions, plus one constant basis function. In the aggregation stage, we use different

penalty parameters for the first- and second-order patterns, so the objective function is

Iλ1,λ2(y, f) = L(y, f) + λ1J1(f) + λ2J2(f), (5)

where the link function f is

f(x) = µ +

NB1∑
`=1

c1`B1`(x) +

NB2∑
`=1

c2`B2`(x), (6)

and the penalties are

J1(f) =

NB1∑
`=1

|c1`|, J2(f) =

NB2∑
`=1

|c2`|. (7)

The choice of penalty parameters (λ1, λ2) in (5) is critical to the performance of this

formulation. BGACV does not work well in this setting. Often, it tends to select only second-

order patterns, combining main effects with spurious partners. Occasionally, it selects only

main effects, breaking true size-two patterns into separate main effects. The large difference

between the number of basis functions makes the solutions sensitive to the two penalty

parameters. Searching over a grid of values for λ1 and λ2 is expensive and often does not

give satisfactory results. As an alternative approach, we introduce the following penalty

function, known as BGACV2:

BGACV 2(λ1, λ2) = BGACV (λ1, λ2)×
(

1 + 0.5
|nb1 − nb2|
nb1 + nb2

)
, (8)

where nb1 is the number of nonzero coefficients of main effects and nb2 is the number of

nonzero coefficients of size-two patterns. The additional penalty factor forces these two

numbers to be similar, reducing the possibility of the two extreme cases discussed above. If

the true model only contains main effects, the BGACV2 penalty will tend to select fewer

main effects than the BGACV model. However, BGACV is conservative (see discussion

in [19]), while BGACV2 is less so. We expect that BGACV2 will not miss any important

main effects, though it may also produce some spurious second-order effects. These spurious

effects will be further eliminated by the parametric logistic regression step as noted above,

followed by solving (5).

Minor extensions to the pLPS approach are needed when size-three patterns (q = 3) are

introduced. In the screening phase of pLPS, there are four types of subproblems (rather than
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two). These types are distinguished by considering the labels s1, s2, s3 of the three partitions

chosen to define the subproblem (with s1 ≤ s2 ≤ s3). The four types correspond to the cases

s1 < s2 < s3, s1 = s2 < s3, s1 < s2 = s3, and s1 = s2 = s3, respectively. In the aggregation

phase of pLPS, we will still be using two penalty parameters, one for main effects and one

for interactions; size-two and size-three patterns share the same penalty parameter. The

criterion function for choosing the appropriate values for penalty parameters λ1 and λ2 is

BGACV 3(λ1, λ2) = BGACV (λ1, λ2)×
(

1 + 0.5
|nb1 − na|+ |nb2 − na|+ |nb3 − na|

nb1 + nb2 + nb3

)
, (9)

where nb1 is the number of nonzero main effects, nb2 is the number of nonzero size two

patterns, nb3 is the number of nonzero size three patterns and na is the average of the three.

In the remainder of the paper, we use pLPS to denote the q = 2 case and pLPS3 for the

q = 3 case.

The choice of g (the number of variables in each partition) is determined by the computing

power and the available memory. On our super server (an AMD Dual-Core 2.8 GHz machine

with 64 GB memory), we usually set g = 2, 000 for q = 2. This yields subproblems with

NB = 2, 001, 001 basis functions, which can be handled comfortably by the LPS code. On a

more standard computer (Intel(R) Pentium(R) 4 2.80GHz with 2 GB memory), we usually

set g = 200 for q = 2 and g = 35 for q = 3. As we noted earlier, the subproblems in the first

stage of pLPS can be solved independently in parallel, on different computers. The grid-

computing system Condor (http://www.cs.wisc.edu/condor/) provides an ideal platform

for these parallel jobs. In our Condor implementation, we request machines from the pool

with at least 2 GB of memory, and define our group sizes to be g = 200 (for q = 2) and

g = 35 (for q = 3). Generally, for faster execution of pLPS, it is advantageous to set g to the

highest value that can be accommodated by the memory of the computer. The final results

of the computation do not depend strongly on the choice of g.

3 Simulation Studies

In this section we study the empirical performance of pLPS through three simulated exam-

ples. The first example is a relatively small data set with independent predictor variables:

One main effect and two second order interactions are included in the link function. The sec-

ond example is a very large data set with strong correlations among neighboring variables, in
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which two main effects and two second order interactions are assumed to be important. The

third example studies the performance of pLPS3, which includes third-order interactions in

the model. Two main effects, one second order interaction and one third order interaction

are included.

We compare pLPS with three other methods:

• Logic Regression [17], as implemented in the R package LogicReg,

• Stepwise Penalized Logistic Regression (SPLR) [15], as implemented in the R package

stepPlr, and

• Random Forest (RF) [1], as implemented in the R package randomForest.

The number of trees and number of leaves in Logic Regression are selected by five-fold cross

validation. The smoothing parameter in SPLR is also selected by five-fold cross validation,

and the model size selected by BIC.

3.1 Simulation Example 3.1

In our first example (Example 3.1), 400 iid Bernoulli(0.5) random variables were simulated.

The sample size is 700 and the logit function is

f(x) = −2 + 1.5X50 + 1.5X150X250 + 1.5X251X252.

One hundred data sets were generated according to this model and analyzed by the four

methods described above.

Table 1 presents the results of this simulation. Each entry in the table shows the number

of appearances of the pattern and the variables in the 100 simulations. The main number

(outside the parentheses) is the pattern count showing how many times the given pattern is

selected in the model. The numbers inside the parentheses are the variable counts showing

how many times each variable in a given pattern appears in the model, either as a main effect

or in some other interaction. Random Forest does not generate an explicit model, but rather

produces an importance score for all variables. It is not possible to calculate a pattern count,

but we calculate the variable count according to whether the variables in question appeared

among the top 10 variables identified by Random Forest. For pLPS, Logic regression and

SPLR, the last column labelled “noise” counts the total number of appearances in the 100
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Table 1: Simulation Example 3.1 with n = 700 and p = 400, and no correlations. Tabulated

numbers show the number of tests (out of 100) in which the pattern was detected by each

algorithm. The number outside the parentheses is the number of times the given pattern

was selected; the numbers inside the parentheses shows how many times the variables in

the pattern are detected in the model, as a main effect or in some interaction. The final

column shows the total number of times (in 100 tests) that the algorithms selected patterns

(variables for RF) that do not appear in our model.

Methods X50 X150X250 X251X252 noise

pLPS 94 (100) 99 (99,99) 96 (97,97) 153

Logic 100 (100) 70 (88,91) 65 (84,90) 190

RF NA (100) NA (96,97) NA (94,96) (517)

SPLR 100 (100) 97 (100,97) 91 (100,98) 712

trials by terms that are not patterns in the model. In this simulation, any pattern other

than X50, X150X250, or X251X252 is taken to be noise. For random forest, ”noise” counts the

total number of noisy variables selected in the 100 trials. Any variable other than the five

in the logit function is noise.

On this example, pLPS selects all three patterns almost perfectly and generates the least

amount of noise in the form of spuriously selected patterns. Logic Regression does not do

well on the size-two patterns and selects slightly more noise. Random Forest does well in

selecting the important variables but also selects many noisy variables. (If we change the

criterion for declaring that Random Forest has selected a variable to the “top eight” or “top

five,” we reduce the number of noisy variables but also reduce the variable counts.) SPLR

has similar performance to pLPS in selecting the patterns, but selects many more spurious

patterns.

3.2 Simulation Example 3.2

Example 3.2 studies the behavior of pLPS on a large data set (n = 1000, p = 8000) with cor-

relations among the covariates. To generate the binary variables Xi, i = 1, 2, . . . , p, we start

with normal distributions, choosing X∗
i ∼ N(0, 1), i = 1, 2, . . . , p so that corr(X∗

i , X∗
i+1) =
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2/3 and corr(X∗
i , X∗

i+2) = 1/3, i = 1, 2, . . . , p−2. (X∗
i and X∗

j are independent if |i−j| > 2.)

We then set Xi = 1 if X∗
i > 0 and Xi = 0 otherwise, for each i = 1, 2, . . . , p. The logit

function is

f(x) = −4 + 2X500 + 3X5000 + 2X1000X3000 + 3X7000X7002.

The simulation was repeated 50 times (each run is quite time-consuming). We could not run

Logic Regression on this example, as the dimensions exceed the limit of that code.

Table 2 shows the results, in the same format as Table 1. pLPS misses the pattern

X1000X3000 twice but selects the rest perfectly, and generates a smaller number of spurious

noise patterns than the other methods. In Random Forest, we declared a variable to be

selected if it was ranked in the top 12. It misses the pattern X1000X3000 with some frequency.

SPLR selects all four patterns perfectly, but at the cost of a large number of spurious patterns.

SPLR requires the user to set the maximum number of parameters allowed in the model,

and selects the actual number by BIC. We set this maximum to 20, and it was reached on

all 50 runs. (The maximum is still reached on every run when we set this parameter to 50.)

Table 2: Simulation Example 3.2 with n = 1000 and p = 8000, and correlations among

neighboring variables. Tabulated numbers show the number of tests (out of 50) in which

the pattern was detected by each algorithm. The number outside the parentheses is the

number of times the given pattern was selected; the numbers inside the parentheses shows

how many times the variables in the pattern are detected in the model, as a main effect or

in some interaction. The final column shows the total number of times (in 50 tests) that the

algorithms selected patterns (variables for RF) that do not appear in our model.

Methods X500 X5000 X1000X3000 X7000X7002 noise

pLPS 50 (50) 50 (50) 48 (48,50) 50 (50,50) 278

RF NA (50) NA (50) NA (28,37) NA (50,50) (335)

SPLR 50 (50) 50 (50) 50 (50,50) 50 (50,50) 800

3.3 Simulation Example 3.3

Example 3.3 studies the behavior of pLPS3 on a large data set, with sample size n = 1000

and p = 500 variables. The marginal distribution and correlation structure are the same as

10



in Example 3.2. The logit function is

f(x) = −4 + 2X100 + 3X200 + 2X300X400 + 3X150X450X451.

Again this simulation was repeated 50 times. As we can see from Table 3, pLPS3 selects

all patterns quite well with a reasonable number of noisy patterns. Logic Regression selects

fewer noisy patterns but does not do well in identifying the two interaction terms. Random

Forest does well in the size-three pattern but misses the size two pattern quite often. (We

declared the top 12 variables identified by Random Forest to be “selected”). As in the

previous examples, SPLR does well at selecting the important patterns but also selects

many noise patterns.

Table 3: Simulation Example 3.3, with n = 1000 and p = 500, and correlations among

neighboring variables. Tabulated numbers show the number of tests (out of 50) in which

the pattern was detected by each algorithm. The number outside the parentheses is the

number of times the given pattern was selected; the numbers inside the parentheses shows

how many times the variables in the pattern are detected in the model, as a main effect or

in some interaction. The final column shows the total number of times (in 50 tests) that the

algorithms selected patterns (variables for RF) that do not appear in our model.

Methods X100 X200 X300X400 X150X450X451 noise

pLPS3 47 (50) 50 (50) 47 (50,50) 47 (50,49,48) 204

Logic 50 (50) 50 (50) 34 (43,44) 30 (50,44,41) 151

RF NA (50) NA (50) NA (36,40) NA (49,47,49) (279)

SPLR 50 (50) 50 (50) 45 (49,50) 50 (50,50,50) 554

To summarize the results obtained from simulated data: Logic Regression cannot handle

very large data sets and does not reliably identify the interaction terms. Random Forest

does not provide an explicit model of the interactions. It frequently scores well, but can

perform poorly if the signal is not strong enough. SPLR scores well at selecting the right

patterns, but selects too many noise patterns. By contrast, pLPS usually selects the right

patterns without adding too many noise patterns.
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4 The Gene Expression Barcode Data

With current microarray technology we are able to measure thousands of RNA transcripts

at one time. This capability allows for richer characterization of cells and tissues. However,

feature characteristics such as probe sequence can cause the observed intensity to be far

away from the actual expression. Although the “probe effect” is large, it is consistent across

different hybridizations, meaning that the effect is quite similar when comparing the intensi-

ties of different hybridizations for the same gene. Therefore, the majority of microarray data

analysis uses relative expression rather than absolute expression. To overcome this limitation

in measurement, a gene expression bar code (GEBC) [24] was proposed recently. The goal

is to investigate what intensity measurement constitutes “no expression” for a given gene

and microarray platform. GEBC starts by preprocessing all genes using Robust Multi-array

Analysis (RMA) [5]. For each gene, an empirical density smoother is used to estimate the

density function of this gene across tissues, and the smallest mode of the density function

is taken to be the expected intensity of an unexpressed gene. Gene expressions to the left

of this mode are used to estimate the standard deviation of unexpressed genes. If the log

expression estimate of a gene is K standard deviations larger than the unexpressed mean,

then this gene is considered to be expressed. The constant K is chosen to be 6 by cross-

validation. For the purpose of our model, expressed genes are coded as 1 and unexpressed

genes as 0.

GEBC [24] downloaded publicly available raw data from 40 different studies and created

a database of 1094 human samples representing 118 different tissues. Of these samples, 503

are normal, 500 are breast tumors, and 91 are other diseases. A total of 22,215 genes are

available for each sample.

We apply pLPS on this data set, with genes dichotomized by GEBC, as described above.

Many genes have extremely unbalanced expression levels, being expressed (or unexpressed)

in a very small percentage of the tissues. We removed these genes from our analysis, after

which 7,654 genes remained. In our first analysis, we took all normal tissues as “controls”

and all non-breast tumor tissues as “cases.” In the second analysis we analyze the survival

time of breast cancer patients after dichotomization. We define subjects with survival time

less than 5 years as “cases” and those with survival time longer than 10 years as “controls.”
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4.1 Cancer

In this analysis, all normal and non-breast cancer tissues are used. Breast tumors were

excluded because no normal breast tissue was available. The data set contains 503 normal

tissues and 70 cancer tissues, giving a malignancy rate of 12.2%.

The model fitted by pLPS is shown in (10). Five size two interactions are selected.

f = −8.15 + 3.58× CALU × ERBB3 + 1.93× LAMC1× CD24

+3.29× LPCAT1× ACY 1 + 3.75× FXY D3×GNL3

+2.34×NOTCH3× CD24. (10)

Most of these genes are known to be related to one or more types of cancer. For example,

ERBB3 is very important in the development of breast cancer [16] and prostate cancer

[8]. LPCAT1 is shown to be highly overexpressed in colorectal adenocarcinomas, when

compared to normal mucosas [13]. ACY1 is found to be underexpressed in small-cell lung

cancer (SCLC) cell lines and tumors [14]. FXYD3 is overexpressed in pancreatic ductal

adenocarcinoma and influences pancreatic cancer cell growth [6]. Notch3 overexpression is

common in pancreatic cancer [3]. Finally, CD24, one of the most well-known genes in this

model, is related to breast cancer, ovarian cancer, NSCLC, and colorectal cancer [9] [10] [11]

[22].

To compare the performance of pLPS with the alternative methods discussed in Section 3,

the number of predictor genes must be reduced further, because Logic Regression cannot

handle more than 1,000 variables. A screen step [18] was implemented to perform the

reduction. We fitted a simple logistic regression on each gene and selected the most significant

genes based on the p-values from the regression models. This step yields 636 genes.

We ran five-fold cross validation for all methods and summarized the results in Table

4. (Performance measures in this table are the average of the five-fold cross validation.)

We tabulate the number of selected genes (# Gene), the number of non-zero coefficients

(# Para), the highest order of interactions (q) and the summation of these three quantities

(Total). The individual parameters measure the complexity of the model from different

points of view, while the total provides an overall criterion. For prediction accuracy we

present the area under the ROC curve in the column labelled “AUC”. We can observe from

these results that pLPS and pLPS3 select fewer genes; pLPS, pLPS3, and Logic use fewer
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parameters than SPLR; pLPS and pLPS3 do not go to high order interactions because these

are precluded by the model. In the total complexity criterion, there is a tie for first between

pLPS and pLPS3. As for prediction, pLPS is the clear winner in AUC.

Table 4: Cancer data: Summary of results from five-fold cross validation. “Total” sums the

number of selected genes, the number of non-zero coefficients in the model, and the highest

order of interactions. AUC indicates the area under the ROC curve.

Methods # Gene # Para q Total AUC

pLPS 9.2 6.6 2.0 17.8 0.982

pLPS3 8.4 6.4 3.0 17.8 0.945

Logic 14.0 5.2 5.0 24.2 0.956

SPLR 17.2 20.6 5.6 43.4 0.962

4.2 Breast Cancer Survival Time

The survival of breast cancer patients depends on many factors, such as grade, stage and

oestrogen-receptor status. In this section we study the possible genetic effects using the gene

expression barcode data. We denote patients who lived less than 5 years after diagnosis as

“cases” and patients who lived more than 10 years after diagnosis as “controls.” Patients

with a censored death time less than 10 years and patients that died between 5 and 10 years

are excluded. The remaining pool contains 243 patients, among which 80 are cases. The

five-year death rate is 80/243 = 32.9%. As in the previous subsection, we used a screen step

to reduce the size of the model. This step yielded 592 genes.

We applied the same methods with five-fold cross validation on the breast cancer survival

data, summarizing the results in Table 5. Among the five measures presented, pLPS does

the best in terms of the highest order of interactions and AUC measure, winning by a large

margin over the other methods in the latter measure. Logic Regression performs surprisingly

well in model complexity, selecting the smallest number of genes and parameters. However

its prediction, as measured by AUC, has been sacrificed by the use of simple models.

(11) shows one model fitted by pLPS. There are one main effect and four size two inter-

actions.
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Table 5: Breast cancer survival data: Summary of results from five-fold cross validation.

“Total” sums the number of selected genes, the number of non-zero coefficients, and the

highest order of interactions. AUC indicates the area under the ROC curve.

Methods # Gene # Para q Total AUC

pLPS 10.0 6.8 2.0 18.8 0.824

pLPS3 10.2 6.6 3.0 19.8 0.780

Logic 4.4 2.6 3.8 10.8 0.721

SPLR 19.4 20.6 5.0 45.0 0.793

f = 3.21− 1.59× PODXL− 2.00× SY NE2× AKAP11 + 2.05× CD20× CREB1

−1.88× STAT5A×MAPT − 1.89×MAOB × IFFO1. (11)

Among these selected genes, CDC20, CREB1, STAT5A and MAPT are known to be

related to breast cancer. It was noted in [7] that CDC20 is overexpressed in a large subset

of malignancies such as colorectal, breast, lung and bladder cancers. The study [2] reports

that CREB1 is much higher in breast tumor tissues as compared to non-neoplastic mammary

tissues. Active STAT5 has been identified as a tumor marker of favorable prognosis in human

breast cancer, and STAT5 activation is lost during metastatic progression [20]. It has been

pointed out by [4] that MAPT inhibits the function of taxanes and high expression of MAPT

decreased the sensitivity to taxanes.

5 Discussion

We have described a partitioned version of the LASSO-Patternsearch algorithm (named

pLPS) that extends the range of this method to data sets with a higher number of predictors,

and allows parallel execution of much of the computation. We show through simulations that

pLPS is better than competing methods in selecting the correct variables and patterns while

controlling for the amount of noise in the selected model. By testing on two gene expression

data sets, we also show that pLPS gives smaller models with much better prediction accuracy

than competing approaches.
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Unlike LPS, two smoothing parameters with modified tuning criterion are used in pLPS

and pLPS3. We impose a penalty on the difference between the number of main effects and

the number of interactions for pLPS and a penalty on the difference among the numbers

of main effects (size-two interactions in pLPS and size-three interactions in pLPS3). These

penalties eliminate the extreme cases in which only main effects or interactions come up

in the LASSO step. (These extreme cases appear too often with the original, unmodified

criterion.) On the other hand, if an extreme case is the truth the LASSO step will generate

some noisy patterns, but the parametric step tends to eliminate the noise and thus select

the correct model.
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