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1. Introduction

A theory of spline functions on the sphere is rapidly being developed,

see WAHBA (198la), FREEDEN (198la,b), SHURE, PARKER AND BACKUS (1981).

Dr. FREEDEN will be reporting on sane of his results elsewhere in this

volume_ Much of the rich theory surrounding univariate splines and

thin plate splines clearly is extendable to the theory of splines on the

sphere, via the use of reproducing kernels, n-widths, etc. In particular

convergence rates for smoothing splines on the sphere can be obtained

from the known rate of decay of the eigenvalues of the relevant reproducing

kernels, see e.g. MICCHELLIand WAHBA (1981), WAHBA (1977), UTRERAS (1981).

In this paper we propose a notion of vector splines on the sphere. It

is clear that interesting approximation theoretical properties of these

splines can be obtained. However, in this paper our focus will be on the

solution of certain practical problems which must be solved so that these

splines may be useful,ly applied to the analysis of meteorological data

from the upper air radiosonde network.

For the purpose of numerical weather prediction the global radiosonde

(weather balloon) network takes measurements every 12 hours of the

horizontal wind velocity vectors and other variables, at 9 standardized

vertical levels. Fran this data it is desired to estimate the horizontal

wind field and its vorticity and divergence (and other variables) at

a regular grid of points, for each level. These estimates on a grid are

then merged with estimates of the same v'ariables on the same grid, which

have been obtained from a forecast, to provide an estimate of the present

state of the atmosphere. This state estimate is then used as the initial

conditions to a numerical integration scheme which integrates a set of

differential equations describing the dynamics of the atmosphere, to

provide a new forecast. Numerical weather forecasts can be quite sensitive

to. errors in the vorticity and divergence in the initial wind fields.

Unfortunately, horizontal wind vectors at, for example the 500 millibar

height, of the order of a few tens of meters per second, are measured

with an error standard deviation in each component of the order of

2-4 meters per second. Thus, it is not a trivial matter to obtain accurate

information concerning the vorticity and divergence from this data, even

in areas such as the continental U.S. where the radiosonde network is
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relatively dense. We believe that the appropriate derivatives of the vector

smoothing splines we propose have the potential for doing this relatively

well.

Speaking intuitively, the vector smoothing splines we propose will

behave like low pass filters. In the splines we propose there will be

two regularization or smoothing parameters to be chosen and two (sets of)

'shape' parameters. The first smoothing parameter to be chosen, may

be thought of as governing the overall half power point of the low

pass filter. The second parameter governs the relative distribution of

power between vorticity and divergence in the estimate. The choice of

the two sets of shape parameters correspond to the choice of Hilbert

space norms, but in an important practical sense they govern the rates

of decay of the energy spectrum of the solution, one nshape" for vorticity,

and one "shape' for divergence. It is well known from the theory and

practice of ill posed problems that the appropriate choice of certain of

these parameters can affect the practical usefulness of the result.

In this paper we propose the use of generalized cross-validation (GCV)

for choosing the two smoothing parameters. GCV can also be used to

choose a small number of "shape" parameters (see CRAVEN and WAHBA (1979),

WAHBA and WENDELBERGER (1980)). However, in this paper we show how

historical meteorological data can be used to choose the "shape'

parameters, or Hilbert space norm. We discuss scme numerical methods,

and we describe the results of scme numerical experiments on synthetic

data which mimics actual 500 millibar horizontal wind fields over the U.S.

In our experiments we have observed that the accuracy in estimating both

vorticity and divergence can be quite sensitive to the relative distribution

of power allocated between then, (choice of second smoothing parameter) but

that GCV can be quite effective in estimating the correct relative power

distribution.

For the meteorological experts in the audience we remark that

estimating the present state of the atmosphere from current data is not

exactly the same problem as estimating the state of the atmosphere from a

ccmbination of present data and a forecast of the present. This is so

because a data only estimate needs to take account of properties of the

atmosphere and measurement system while a data plus forecast estimate needs

to take into account the relative error of the data and the forecast. In
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this paper we are studying the data only problem. However, we believe that

this class of techniques can be extended to the data plus forecast problem

and hope to do that in a subsequent paper.

In Section 2 we define the vector smoothing splines. In Section 3

we discuss the choice of Hilbert space norms. In Section 4 we describe

numerical methods and the cross validation estimate of the smoothing

parameter and in Section 5 we describe a Monte Carlo test of the method.

2. Helmholz Theorem and The Definition of Vector Smoothing Splines

We let P be a point on the sphere S, P = (A,@), where A = longitude

(0<%2~r) and $ = latitude (-~~@~).- - V = (U,V) is a (sufficiently regular)

horizontal vector field on the sphere, where U(P) is the eastward component

and V(P) is the northward component at P.

The vorticity T and the divergence D of 1 are given by

D = -&F g * $j$Vcos+)l,

where a is the radius of the sphere. Then there exists (by Helmoltz

Theorem) two functions Y(P) and Q(P), PES, called the stream function and

the velocity potential respectively, with the following properties:

(2.3a)

c = AY (2.3b)

D = A@

where A is the (horizontal) Laplacian on the sphere

Y and 0 are uniquely determined up to a constant (which we will take to be
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determined by jY(P)dP = /Q(P)dP = 0. We are interested in defining Hilbert
s s

spaces of vector fields whose divergence and vorticity exists pointwise. We

will do this as follows. Let f(P) be a square integrable

sphere which integrates to 0. Then f has an expansion in

spherical harmonics Yks

where

EILscosslPl(sin$)

Y$,@) =

O-G CL- -

function on the

the normalized

s=o

and the Fourier Bessel coefficients fus are given by

ffs = jf(P)Yks(P)dP

with

/f'(P)dP = 1 f$
g,s

Now Yls are the eigenfunctions of the Laplacian

AYES = -L(k+l)Y; .

Thus

Af = - ~~&+l)fEsYEs.
t,s

L e t  iLs, ,i = 1,2,..., s = -k,... ,!L be a set of nonnegative numbers with

XL = max k
!LS

and
s=-2,...k
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(2.5)

Using the addition fotmula for spherical harmonics

Y,$'b'$Q) = $$ F'kA+',Q))Y
s=-p.

where y is the angle between P and Q, the Cauchy-Schwartz inequality and

the fact that PK(l) = 1 gives

Thus {lLs)satisfying (2.5) and 1 fIS2
- <y imply that Af(P) is well defined

k,S %s
and finite for all P,

Let I+ be the collection of all pairs (Y,@) on the sphere which integrate

to zero, are square integrab7e and

where {~+~(l)} and {),ks(2)I are sequences satisfying

1 Ez(k+l)z(2ktl)max~~s(i)<~, i = 1,2.
L=l S

H is clearly a Hilbert space with square norm
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for any fixed 6 > 0 and both members of each pair possess Laplacians every-

where. It is easy to show that if xks = [k(Etl)]-m, then

J(f) = /(Am"f)'dP m even

(A(m-l)/2f)2 (2.6)

= J{ ' t (A(m-')'2f)2}dP
4

m odd.
sin24

If & = [g(!&tl)]-m, then m > 3 guarantees the pointwise existence of the

Laplacian.

The observations are assumed to be of the form

“i = “(‘i) ’ Ey, Vi = V(Pi) t cy, i = 1,2,...,n (2.7)

where (U(Pi),V(Pi)) is the true (wind) vector at Pi and cl! cv are1’ i
measurement errors. We propose estimating the stream function and velocity

potential (Y,@) associated with U and V by finding (Y,@)EI~ to minimize

+ A[J,(‘Y) + ;J2(d1

Note that in the residual sum of squares above, "(Pi) and V(Pi) are

expressed in terms of Y and @ via (2.3a). A unique minimizer (Y1 6,Q1 8)

exists for each 1 > 0, 6 > 0 and the resulting wind field (U1 &,;A 6)'

constructed from (Yi 6,@A 6 ) may be termed a vector spline fi;ld. 'Its

vorticity and divergkce iill be given by Q t = AY1,6, D1,?i = AY1,&.

(Obviously, interpolating splines can be defined as minimizers of

Jl(Y) t iJ2(Y) subject to the interpolating conditions, we will not discuss

these further.) Using WAHBA (198la) or FREEDEN (198la) it is straightforward
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to write an explicit (infinite series) expression for (Lli &,V1 6).
3 ,

3. On the Choice of J(l) and J(*)

Let Ais = lj~o~j[(-~)(~+1)ljl-2 and suppose that AIs > 0 for

R = 1,2,..., s = -k,...,L. It is not hard to see that

(3.1)

so that the choice of the ALs can then be reduced to the choice of m and

the {ojj. (If Axs = 0 for one or more S, the minimization problem can

be handled by the methods described in KIMELDORF and WAHBA (1971), see

also FREEDEN (198la). In principle m and possibly cxm_, (with om=l)

can be chosen by cross validation (see WAHBA and WENDELBERGER (1980))? but

it is undesireable to attempt to choose too many of these parameters from

the data, see WAHBA (198lc).

In this section we will use the duality theorem which relates

smoothing by splines to Bayesian estimation/Weiner filtering on stochastic

processes to suggest how the J's may be chosen based on historical

meteorological data.

To give the duality theorem we need same background, which we will give

in a univariate context.

Let X(P), PES be a (univariate) zero mean Gaussian stochastic process

on the sphere with covariance R(P,Q) defined by

where E is mathematical expectation. Following PARZEN (1961), CRAMER and

LEADBETTER (1967) we can define the Hilbert space x spanned by X(P), PcS,

as all finite linear combinations of random variables (r.v.'s) of the form

'k
(3.2)

and their quadratic mean (q-m.) limits. (A sequence Zl,Z2,..., of r.v.'s

has a q-m. limit if lim E(Zk-Zm)' = 0). The inner product in X is
k,rn=
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<X(P) ,X(Q)> = EX(I')X(Q) = RtP,Ql, and is extended by linearity to all r.v.'s

'k
of the form Zk = ji,<kjX(Pkj) and their q.m. limits. For example, letting

L be a linear functional, the r.v. LX = &X(PO) will be in X if the sequence

of r.v.'s

has a q-m_ limit, as hk+O, where op$ol = PO. Then, it is not hard to

show that the sequence {Zk] will have a q.m. limit Z = &-X(Po) if and only if

(3.4)

is well defined and finite. Then the quantity in (3.4) is equal to

E~$JX(F'~))~, and furthermore

More generally, let HR be the reproducing kernel Hilbert space with

reproducing kernel R. Then each random variable of the form 1 = LX can

identified with the bounded linear functional L on H
R'

and vice versa.

argument is as follows. If Z = LX is a r-v. in X it can be shown that

EZX(QI = Lfpl R(P,Q) = n(Q), say, where L(p) means the linear functional

applied to R considered as a function of P. However, by the properties

of reproducing kernels, it can be shown that n(-) is the representer of

in R, that is Lf = <n,f>R, where c-,->~ is the inner product in HR. We

are now ready to state the

Duality Theorem (KIMELDORF and WAHBA (1970)).

Let X(P), PcS be a zero mean Gaussian stochastic process with

covariance bR(P,Q), and let HR be the reproducing kernel Hilbert space

with reproducing kernel KR. Let

be

The

Yi = LiX + Ed, i = 1,2,...,n,
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where LiX, i = l,Z,...,n are n r.v.'s in x, and the c,,...,cn are

independent, 0 mean Gaussian r.v.‘s, independent of X(P), PcS, with common

variance 02. Then the conditional expectation of X(Q), given

Yi = yi, i = l,Z,...,n,

EIX(Q)\Yi = yi, i = 1,2,...,n} (3.5)

is given by fA(Q), where fl(-) is the solution to the minimization problem:

Find f&R to minimize

and I = u'/nb.

Proof: See KIMELDORF and WAHBA (1970,1971), WAHBA (1978). However, the

proof proceeds by direct calculation of fA(Q) and by using the facts that

E(LiX)X(Q) = r+(Q), where <ni,f>R = Lif.

Now let f be sane atmospheric variable of interest. We will proceed

as though the different realizations of f were sample functions from a

zero mean Gaussian stochastic process with covariance R(p,.). If repeated

(independent!) observations on f were available, then various properties

of R could be estimated from this data. We will discuss both "frequency

domain" and "space domain" methods for doing this. Using the properties

of reproducing kernel spaces (see, e.g. NASHED and WAHBA (1974)) it is

f2
not hard to show that if J(f) = 1 F is the norm on a reproducing kernel

k,S ks

space ff, then the reproducing kernel R for ff is given by

To simplify the discussion, in this paper we are considering only R's

whose eigenfunctions are the spherical harmonics. (Other eigenfunctions,

i.e. those associated with Laplace'stidal equations, may well be reasonable

in certain meteorological applications, see WAHBA (198lb)).
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If a stochastic process X(P), PES, has covariance

then X may be modelled as a random linear combination of the spherical

harmonics (.Karhumen-Loeve expansion)

X(P) = Ix Y s(P)
!z.s Jls 1

where the Xgs are random variables with

EXksXi,s, = &, ts = L's', = 0, !GG + k's'.

(To see this, compute EX(P)X(Q) from (3.7) to obtain (3.6).) We have

and

Qs = EX1; = E(/X(P)Yts(P)dP)'.

If K independent observations, fl,...,fK of a meteorological

interest are available, this suggests choosing {ss] based on

where the sample Fourier-Bessel coefficients f,& k = 1,2,..

by

5: = Jfk(P)Ygs(P)dP.

(3.7)

variable of

estimates

.,K are given

Figure 1 gives a plot of February 1974 nvnthly

averages of sane atmospheric mean square sample Fourier Bessel Coefficients

collected by STANFORD (1979) from Channels 2 and 4 of the Radiometer

on NIt(BlJS-5. The radiation received by Channels 2 and 4 respectively can be

used (crudely) to infer the temperature T(P), PcS in the upper and lower

stratosphere, respectively below the satellite. By piecing together data
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Figure 1: Temperature
Spectral Power (L).
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for the (Ai) of fig. 2.

Figure 2: Idealized AL.
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Figure 4: Sample Correlation Function.
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from several orbits, (approximations to) T&E = /Tk(P)Ygs(P)dP can be

obtained. STANFORD has computed monthly mean square values ygi ,

What has actually been plotted in Figure 1 is the "TEMP SPECTRAL POWER"

defined as

TEMP SPECTRAL POWER (L) = $,yL+; j .
3

The energy spectrum in Temperature fields is related to the energy spectrum

of other meteorological variables, i.e. wind and g,eopotential. We are not

concerned here with the exact details of these pictures but rather that

sequences {AL,] can be fitted to this kind of data to provide meteorologically

reasonable Hilbert Space norms. See KASSAHARA (1976) for some plots of

sample Fourier-Bessel coefficients with respect to the eigenfunctions of

Laplace's Tidal equations for wind and geopotential. Figure 2 gives a

plot of an idealized sequence $,s = AL, !J, = 1,2,..., where A1 was obtained

by fitting (by an ad hoc procedure), a function of the form

Qi = 1 f o.[-~(~+l)l[-2
j=O J

to scme of the data behind Figure 1. If ils does not depend on s,

1 =A&,S!S
then the covariance

reduces by the addition formula for spherical harmonics,'to

R(P,Q) = & y (2L+l)hg P&COV(P,Q));
!J.=l

where y(P,Q) is the angle between P and Q. Figure 3 gives the function

p(y) defined by
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which is associated

for p(y) for f(P) =

JULIAN and THIEBMX

with the ,{A11 of Figure 2. Figure 4 gives an estimate

the 500 millibar (geopotential) height obtained by

1975) fron sample covariances frcm data from a network

weather stations for the winters of 1966 and 1967. In

sotropic covariance function was assumed. The

Figures 1 and 4 here is to convince the reader that

or collectable meteorological data may be used to

of 51 North American

estimating p(y), an

purpose of providing

historical collected

i

choose the nonn on H, althcugh the particular data sets exhibited here

may or may not be the most appropriate. In the numerical experiments

to be described we have taken the {Aks(l)}and {lls(2)} both as in Figure 2.

4. Numerical Methods. The Generalized Cross-Validation Estimates of

1 and 6.

Given 1,6, ULs(l), 11s(2)l and the data {(Ui,Vi)l, an approximate

minimizer (Y,@) of (2.8) can be obtained in the form

(4.1)

(4.2)

where N is sufficiently large. For other numerical approaches to the

minimization of (2.8) see WAHBA (1980,1981a), WENDELBERGER (1982). Let

N = y i 1 = N'-1 and renumber the indices (k,s), s = -.t,...,l,
E=l s=-t

% = l,... ,N, as 1,2,... ,N. Let X$ be the nxi matrix with (i,ls)th entry

and XA be the nxN matrix with (i,ls)th entry

1 1- - AY s(Pi)
a cosai ai I

and let X be the 2nx2N matrix
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(4.3)

N .

Let DA be the ZNxZN matrix

CD1 Ol‘~5 = 0
(4.4)

6D2

where Di is the NxN diagonal matrix with .Es,JSth entry Ais( i = 1,2.

Letting z = (Ul,...,lJn,Vl,...,Vn), Y = (o,,...,$,Bl,...,G~), it is seen

by substituting (4.1) into (2.8) that we have to find y which minimizes

The minimizer is

y = (X'X+nxD;')-'X'z. (4.5)

By the use of (2.3a) and (4.3), it follows that the estimated wind field

(D x 6,Vh &) at the data points satisfies, 3

(4.5)

where A(l) is the 2nx2n "influence" matrix

A(A) = X(X'X+niD-')-'Xl
6

The generalized cross validation (GCV) estimate of (?,,6) is the minimizer

of the cross validation function V(A,&) defined by

(4.7)
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This method for estimating smoothing parameters in regularization problems

was proposed in CRAVEN and WAHBA (1979), GOLUB, HEATH and WAHBA (1979)

and WAHBA (1977b) and its numerical and theoretical properties have been

studied in various places, see for example IJTRERAS (1981). We only note here

the useful property of the GCV estimate of A and 6. Let the predictive

mean square error R(h,6), when J, and 6

R(X,&) = 1n i~l(u~,~(pj)-u(pi

+ 1 i~l(v~,~(pi)-v(pi

are used be defined by

II*, (4.8)

where U(Pi), V(Pi) is the true (but unknown) wind vector, and suppose the

measurement errors c. U V
1 and ~~ are independent identically distributed

zero mean normally distributed random variables. Then under rather
,.A

general conditions, for large n the minimizer (1,6) of V(A,&) provides

a good estimate of the minimizer of R(1,6). V is not guaranteed to

have a unique, or even a finite minimizer. Practical difficulties in

minimizing V though possible appear to be moderately rare when the

assumptions are reasonably well satisfied. Various diagnostic tools are

available in troublesome cases and will be discussed elsewhere.

The numerical experiment reported in Section 4 was performed on the

Amdahl at Goddard Space Flight Center, with 2n = 228, N = 15, ZN = 448.

We outline the calculations used. Let W6.= XD 112 , and let the singular

value deccmposition (SVD) of W6 be

W6 = UDwV'

where UU' = U'U = 12nx2n = V'V and Dw is a diagonal matrix with entries

bl,...,b2n. U,{bil and V' are computed using LINPACK. Letting

wl

w= :/-I = U’z,

\
'Zn

then



Vector Splines on the Sphere

.

bl
b,'+nl_

0

'2n
0 *-

b2,?,+nA

\

W,

423

(4.10)

(4.11)

For fixed 6,1(6), the minimizer of (4.10), is easily found by a globalh
search .in increments of logA. Then V(A(&),&) was plotted for 8 values of

6 chosen in powers of 1/6, and the minimum was readily evident. No doubt

more efficient and autanatic search procedures can be found.

For large n, N, and W6

can be expensive, or it can fail

shortcut methods which alleviate

have been developed. (BATES and

poorly conditioned, computing the SVD

to converge in a reasonab le time. Some

thi,s problem somewhat and use less storage

WAHBA, (1982) in preparat ion.)

5. A realistic Monte Carlo test of the method

A number of techniques for estimating divergence of the upper

atmosphere frcm radiosonde data have been proposed in the atmospheric

sciences literature. For example, see SCHMIDT and JOHNSON (1972). In an

attempt to determine how well the proposed method might work in practice

a Monte Carlo experiment simulating realistic measured wind data from

"model" stream functions and velocity potentials has been coded, and

various experiments run. We describe one such experiment.

We obtained a model streamfunction and velocity potential of the form

N R

(5.1)
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by choosing aLs and bLs as normally distributed pseudo-random numbers with

mean 0 and variances lLs(l) = AXs(2) = ?,gs given in Figure 2. Cl and C2

were scale factors chosen so that the simulated T ='A'? and 0 = A@ had

magnitudes typical of real atmospheres.

(/czdP)1'2 = 6 x 10-5/sec., (/D2dP)1'2 = 1 x 10m5/sec. Model wind vectors

(U(Pi),V(Pi)) were ccmputed from the model ('I',@) of (5.1) for {Pi}

corresponding to n = 114 North herican radiosonde stations. The data

2 = (u
1
,...,lJn, V,,...,Vn), where Ui = U(Pi) + ciu, v. = V(Pi) + ciV,

u' vwere constructed by adding the measurement errors E. , ~~
1

as normally

distributed pseudo randcnn numbers with mean 0 and standard deviation

o = 2.5 meters/set., a realistic value for the measurement error

standard deviation. Since the ability to,estimate divergence will

depend on the signal to noise ratio, it is necessary that the values

of 'signalM and "noise" be chosen realistically. The results reported

here can be expected to be rosier than that obtainable in practice,

however, primarily to the extent that wave numbers !L > N occur in practice

but are not simulated here, and (secondarily) because in practice J (1) and
Jt2) cannot be so precisely matched to the "truth" as they are in this

experiment.

Figure 5 shows the simulated wind vectors. Figure 6 shows the

estimate of the true wind field, plotted on a 5' x 5" grid in latitude

and longitude. Figures 7 and 8 show the model and estimated vorticity

and divergence, respectively. Figure 9 shows V(i(6),6) and R(i(6),6),

(of 4.8) plotted as a function of 6. In Figures 6 - 8 6 = 1/36 was used.
h

It can be seen that the minimizer of V(l(&),&) was a good estimate of

the minimizer of R(i(6),6). Figure 10 gives MSE(<,._ ) and MSE(D_ )

and their sum, where i(A),& A(6) >&

The {pk] constitute a regular grid inside the U.S. It can be seen from

Figure 10 that if t is taken as too small (i.e. divergence is suppressed),

then the mean square error in the estimated vorticity becomes large,
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/
, I

I I
I

I I



426 Vector Splines on the Sphere



Vector Splines on the Sphere 427

An estimate $ for the variance of the measurement error is available as

since the numerator is the residual sum of squares and the denominator?.
is the equivalent degrees of freedm for error. In this example o was

2.58m/sec., very close to the "true" value of 2.5 meters/set. In those

occasional sticky cases encountered in practice where V(A,6) has multiple

minima, if the order of magnitude of u is known apriori, the examination
6

of u can usually be used to resolve ambiguity. See WAHBA (198ld),

WENDELBERGER (1982). Bayesian confidence intervals are also available

for these estimates, see Wahba (198ld).

We have concluded that this approach has much promise for applications.
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Errata to "Vector splines on the sphere,
vorticity and divergence fran discrete,

with application to the estimation of
noisy data" by Grace Wahba, University

of Wisconsin-Madison, Statistics Department, Technical Report No. 674.

p. 1. Line 19 - replace "9" by "10"

p. 6. 4th line from bottom should be "DA 6 = AIP~ &", ,

p. 6. Next to last line from bottom should begin "Jl($) + lJ2(@)'#

p. 8. Next to last line, should be "with reproducing kernel R and norm lj-1 jR. Let"
f 2

p. 9. 7th line from bottom, should read "not hard to show that if J(f) l 1 $-

is the squared norm on a reproducing kernel"
%,S ES

2
p.12. Line 16 should be "Ags = 1 1 oj[-g(%+l)]ji-211

j=O

p.13. Line 19 should be "6 = F f 1 = i(N+2)"
E=l .s=-.P,

p.14. Line 8 should begin "by substituting (4.1) and (4.2) into (2.8)"

p.15. Line 19 should be "2i = 510".

p.15. Line 29 should be "W6 = XO& 1/2,,

p.16. Equation (4,lIl) should fie

p.18. Figures 7 and 8 should contain the legend

*ode1

----Estimated

p.20. line 2 should be g'(i,i) = "(1-A("'))z"2
Tr(I-A(i,i))


