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SUMMARY

We consider the model Y(¢;) =g(t;))+€, i=1,2,...,n, where g(¢), t€[0,1] is a
smooth function and the {ei} are independent N(0, ¢%) errors with 6> unknown. The
cross-validated smoothing spline can be used to estimate g non-parametrically from
observations on Y(¢;), i=1,2,...,n, and the purpose of this paper is to study con-
fidence intervals for this estimate. Properties of smoothing splines as Bayes estimates
are used to derive confidence intervals based on the posterior covariance function of
the estimate. A small Monte Carlo study with the cubic smoothing spline is carried out
to suggest by example to what extent the resulting 95 per cent confidence intervals
can be expected to cover about 95 per cent of the true (but in practice unknown)
values of g(¢;),i=1,2,...,n. The method was also applied to one example of a two-
dimensional thin plate smoothing spline. An asymptotic theoretical argument is pres-
ented to explain why the method can be expected to work on fixed smooth functions
(like those tried), which are ‘“‘smoother” than the sample functions from the prior
distributions on which the confidence interval theory is based.
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1. INTRODUCTION
Consider the model

Y(t[)Zg(ti)+e,-. i=1,2,...,n, [[E[O,l], (11)
where €= (ey, . .., €,) ~ N0, 6*I,x,), 0> is unknown and g(*) is a fixed but unknown function
with m — 1 continuous derivatives and [§(g(")(¢))>dt <oo. The smoothing splinc cstimate of g
given Y(¢;)=y;, i=1,2,.. ., n,which we will call g, », is the minimizer of

1

ntY (gt =i +KS (g(m)(1))*dt
i=1 0

and is a polynomial splinc of degree 2m — 1. The parameter A controls the tradcoff between the
infidelity n™" Z (g,,a(£;) —¥;)* (summing over i=1,.. . n) and the roughness f},(gf,i";?(t))zdt of
the solution. For m =2, g, %, where X is the gencralized cross-validation estimate of A, is an
apparcntly popular non-parametric cstimate of g. (Code appears in IMSL, 1980.) A cstimates A*,
which is the minimizer of the expected predictive mean square error ER(X), where
RN\ =n""% |g(1;)~gn a(t;)]>. \* depends on g, n and o® (sce Craven and Wahba, 1979; Utreras,
1979a).

The smoothing spline g, » is also a Bayes cstimate of g if g is assumed to be a sample function
from a certain zcro mean Gaussian prior. This property of smoothing spline cstimates was dis-
cussed in some detail in Wahba (1978) as well as in Kimeldorf and Wahba (1970, 1971). However,
it is known (and will be illustrated in Scction 2) that, if g is a sample function from the relevant
prior, then £ [§(g("™)(1))*dt = oo.

In this paper, which is a sequel to Wahba (1978), we first use the propertics of g, a as a Bayes
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estimate to derive confidence intervals, based on the posterior variances of the g, a(¢;). This
derivation appears in Section 2. Similar results in somewhat different forms have previously been
obtained by Gamber (1979a), Lucas (1978) and Wecker and Ansley (1980).

The interesting question concerning these confidence intervals is: Suppose nof that g is a sample
function from the relevant prior, but that g is some fixed function with m —1 continuous
derivatives and [}(g(")(¢))*dt <eo. Suppose further that X is taken as A, the generalized cross-
validation (GCV) estimate of . Then, is there any reason to believe that the resulting 95 per cent
“confidence intervals” will cover the true g(¢;) about 95 per cent of the time?

The remainder of this paper is devoted to presenting evidence that, for large n, the answer to
this question is a qualified yes. The evidence we present is of two forms. First, in Section 3 we
present a summary of the results of a modest Monte Carlo study with m = 2, with three different
smooth g, three values of n (32, 64 and 128), five values of o, and equally spaced data points.

The analytical evidence we present here goes as follows. Let s;(A) be the posterior variance
of g, A(#;) derived using the prior distribution in Section 2. We present an argument that, if g is
any function with m —1 continuous derivatives and [§(g(")(r))*dt <o, then for n large, and
A\ = \* (the minimizer of ER(A*)), we have in Section 6

n

ERQ®)=an' Y s5;(0%) (1+0(1)), (1.2)

i=1

where o(1)—>0 as n—>o, and « is some number between [1+ (1/4m)] [1—(1/2m)] and 1
(depending on g). This expression says, that provided A ~ \*, then the average of the posterior
variances which are used in the construction of the confidence intervals, asymptotically comes
close to the average square bias plus variance of g, a.

The theoretical confidence interval results here extend immediately to the generalized splines
discussed in Section 3 of Wahba (1978). For applications to splines on the plane, in Euclidean 3-
space and the sphere see Wahba (1981a, 1982), Wahba and Wendelberger (1980) and Wendelberger
(1981, 1982). In Section 3, we give an example of the confidence intervals computed for a thin
plate smoothing spline estimate of a two-dimensional surface with n = 169. In this first (and only)
two dimensional example tried, the confidence intervals covered 162 or 95.8 per cent of the true
functional values.

_ Our results may be uscd to obtain confidence intervals centred around quantities like
B= f},w(z‘)g,,j(t)dt, which is an estimate of 8 = [w(£)g(£)dt.

A number of theoretical results, Monte Carlo cxperiments and applications concerning smooth-
ing splines with GCV are available, for cxample sce Merz (1978), Nogues and Sielken (1980),
Utreras (1979a), Wegman and Wright (1980) and references cited therc. If g has m — 1 continuous
derivatives and f§(g(")(¢))*dt <o, then the expected predictive mean square error with optimum
A converges rapidly, that is

ERO\*) - O(I’I -2mf(2m+1 ))’

these rates agree with the best achicvable rates in Stone (1980).

Knafl et al., (1982) has also recently proposed confidence intervals for some non-parametric
cstimates which are sometimes related to smoothing splincs. For more on non-parametric
regression, sce, for example, Agarwal and Studden (1980), Gasser and Rosenblatt (1979) and Rice
and Rosenblatt (1981). Our philosophy is in the spirit of one suggested by Berger (1980), which
is, derive confidence intervals based on some prior distribution, then forget the prior and sec how
well the intervals can be expected to perform on cases of interest.

2. THE POSTERIOR COVARIANCE OF g, a(¢) IN THE BAYES MODEL
To cstablish the notation we repeat from Wahba (1978) the prior distribution on g(¢),
t€10,1] for which g, \(1), t € [0, 1] is the posterior mean. It is: g(¢), £ € [0, 1] has the same
distribution as
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m
Xe(H=Y 0;6;(5)+b3Z(r). t€[0,1], (2.1)
j=1
where 8= (04, ...,0,,) ~NQO. &l pxm). ¢;(t)=t/"1[G— 1), j=1,...,m, b=0*/n\ and Z(+) is
the m-fold integrated Wiener process,

"t —uyn-1
Z(t) = —— dW(u),
(m—-1)
]
W(u) being the Wiener process, and £ = oo. Then (from Wahba, 1978)

gn (1) =lgim E{g) | Y=y},

where Y = (Y(t1),...,Y(t)). ¥ =(1.....»n) and E; is expectation over the posterior
distribution of g(#) with the prior (2.1) (§ = oo corresponds to a “partially improper” prior).

Before proceeding with the derivation of the posterior covariance of g, A(¢) we observe that, in
the m = 1 case, if g is continuous and [§(g'(¢))*dt < oo, then we must have

k

2
lim &7 Y [k(g(i>—g<53)ﬂ - Y(yQWdz (22)
Kk — oo T k k . ’ '

i=

but if g is distributed according to the prior (2.1) then g(¢) is distributed as 8, + bi W(t) and

e Ele(e(t)o(5)) ] = e £ [(F)w(5)]

i=1 i=1
= lim kb =oo.
k— oo
This argument can be repeated for m =2,3, ... using mth divided differences instead of first

differences. (More generally, where fo(g(m)(z‘))zdt is replaced by | | Ppg | |% in Section 3 of Wahba
(1978) it can be shown that E | [ Pog | |K =o0)
We now proceed to the derivation of the posterior covariance. Let

R e
0@, ) = S sy du =EZ(s)Z(¢),

0

let T be the n x m matrix with juth entry #,(t) and let Q,, be the n X n matrix with jkth entry
0(¢;. tr)- We always assume that the matrix 7T is of rank m; for this it is sufficient that therc be at
least m distinct #;’s. It will be convenient to use the so-called influence matrix A(X) defined by

gu N "= A(?\)y,

where g, x = (8n,7(f1). . . .. &n, A())'. In the Bayes model discussed here we will substitute

o*[n\ for b, until further notice. A rather involved formula for A(N) is given in Wahba (1978,
p. 367) but it can easily be seen, by substituting (4.2) of Wahba (1978) into (4.4) of Wahba (1978)
that A(A) has the representation

A(\) =I-n\B'(BQ,,B' + n\I)"'B,

where B is any n —m x n dimensional matrix whose n —m rows are orthonormal, and orthogonal to
the columns of 7. For later use we note that the ijth entry a;;(X) of A(N) satisfics



136 WAHBA
0gn, A (1)
ayj

which is the source of the terminology “influence matrix”.

a;j(A) =

Theorem 1. The posterior covariance matrix of &\ I8
cov(gy a | Y(#1), ..., Y(t,)) = a’AQ).

[No. 1,

(2.3)

2.4

It is of some interest to obtain the complete posterior covariance function, call it On, (5, 1), of

&n,(5), where
Qn,}\(s7 [) = cov {gn,}\(s),gn,)\(t) | Y(t1)7 cee Y(tn)}

This is because the posterior variance of a linear functional § of g can be estimated as the corres-
ponding linear functional of g, », it will be the Bayes estimate, and furthermore its posterior
variance can be determined by applying the functional to Q,, ) separately in each of its arguments.
For example, let w(?) be some continuous function and let § = [ow(£)g(£)dt, B = [oW(t)g,, A(2)dt.
Then it can be shown that 8= FE(8|y) and var (8 | y) = [5SoW(s)W(£)Qn,A(s, t)dsdt. It is possible
to extend this result to all linear functionals of g which are continuous in the appropriate repro-

ducing kernel Hilbert space discussed in Section 3 of Wahba (1978).

Theorem 2. Let 0<¢;,<...,<t, (sothat Q, is invertible). The posterior covariance function

On, (s, 1) of g a(2), 2t € [0, 1] given (Y(24,. . ., Y(t,)) is given by
On,\ (5, 1) = cov{(g(s), &(1)) | &(t1), - - -, &(tn)}
+0M{(@1(5), - - (NI T +(Q(s, 1), - - -, O, 10)) P }
x AM{Q7' TO T (@1(), - - ., (D)) + Pu(Q(t, 11), - . ., Ot, 1))},

where
0=T'0,'T, P,=Qy'—0Q;'T07'T'Q;"
and
$1(0)
cov{(g(s), &) 1 &(t1), - . -, &(tn)} = b { ($165), - - -, Bml(5))0 ! ( ) +06s,0)
bm(t)
é1(2)
=06, 11), - - -, (s, 1)), TO T ( )
)
$1(5)
—(Q(t,11), - - - O, 1,))Q7' TO ( )
bm5)

Q(t’ tl)

_(Q(S,fl),,..,Q(S,tn))Pn ( )}.

Q(t ’ tn )'

We remark that b enters only if both s and ¢ are not one of (¢4, . . ., t,,).
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We now give the proofs of Theorems 1 and 2. The proofs are a direct application of Lemma 1
below.

Lemma 1. Let y, g and € be zero mean Gaussian n-vectors and / a zero mean Gaussian / vector
(all column vectors) with

y=gte,

Eee' =0*1, Egg' = bEFg,Egh' =bZ gy, Ehh' =bZyy,, Eeh'=0,Eeg'=0. Let n\=0’/b and
AN) = Zgp(Zge + nN)™, and suppose that Zg, is strictly positive definite. Then

E(h|y)=Zp(Zge + ANy ly, (2.5)
cov(hh' | ) =b(Zpn — ZngTgg Zgn) + 0 ZpeTed AN Zgg T (2.6)
In particular, setting 2 = g gives
Egy)=AMN)y, (2.7)
cov(g |y) = > A(N). (2.3)

The proof follows by application of Anderson (1958, p. 28), and tedious but straightforward
algebra.

To prove Theorems 1 and 2, set g = (g(¢1), . - -, &(tn))', =1, h = g(s) and n=§/b. Then Zy;,
Zpe and X, are determined, respectively by

Eg(s)g()=b [n ) ¢V(S)¢V(f)+Q(S,f)], 5,1 €10, 1], (29)
- v=1

Eg(s)g = b[nT(@1(5), - - ., dm () + (QGs. 11), . . . (s, 1))],  s€ [0, 1], (2.10)
Egg' = b[nT'T+ Qy). (2.11)

To complete the proof of Theorem 2, X, Zpg and Z,, based on (2.9)—(2.11) are substituted
into (2.5)—(2.8) and the limits taken as n —> 0. These limits may be found using the following
results (2.12)—(2.14) all found in Wahba (1978, equations (2.7)—(2.9)),

(TT' +0,)" =0, =0, o {I+0n71 07 } ' T'Q,", (2.12)
lim nT'(nTT"+Q,)"' =6T'0,", (2.13)
n—

lim (nTT'+Q,)' =P, (2.14)

n—w

and also
lim {nlxm =0T (Qn +nTT ") ' T'n} =671, (2.15)
n— oo

which can be obtained, after some manipulation by substituting (2.12) into the left-hand side,
expanding powers of n and taking the limit. The author is grateful to Dr B. W. Silverman who
provided (2.12)—(2.14).

The GCV estimate A of A used in the experiments below is the minimizer of the GCV function
V(M) defined by

T =AM P
o= n'Trl— AN (2.16)

for further details, see Craven and Wahba (1979).
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3. THE MONTE CARLO EXPERIMENTS

The main Monte Carlo experiment consisted of a detailed study of the three cases of functions
given below.

Case 1 g(r) =4 Bio,5(t) + 5 B7,7(t) + 5Bs, 10(2),
Case 2 g(t) = f5B30,17(¢) + 16 B3, 11 (1),

Case 3 g(1)=} B2o,s(1) + H Biz,12(5) + % B7,30(2),
where

L' +q)

Bp,q()= ————— tP-1(1-19-1, 0<:<I.
I'(p)I'(@)
All three functions satisfy g,g' continuous, [§(g"(£))*dt <o, and are non-negative functions
integrating to one. In all the experiments in this section we set m = 2. The choice of m is discussed
further in Section 5. In addition, in an attempt to defeat the method Case 4 was chosen with a
discontinuity in its first derivative and Case 5 was chosen to be discontinuous.

Case 4 g(H)= O, 0<r<},
=36(t—}), §<t<j,
-36G-0. 3<i<,
= 0, I<r<l,

Case 5 g(r)= 0, 0<t<},
=72(1t-3), 3<t<j},
= 0, 1<e<1.

In all cases, t; = i/n.

To simplify the computer programming and economize in computer time, a periodic version of
the smoothing spline estimate was actually implemented. The general case can be handled by the
program developed by Wendelberger (1981). The test functions were deliberately chosen to satisfy
the periodic boundary conditions g(*)(0) = g*)(1),» =0, 1, 2, 3 so no new source of error is being
introduced. The results can be expected to be similar to the general case provided g satisfies the
Neumann boundary conditions g"(0) =g"(0) =g"(1) =g" (1) which are always satisfied by the
smoothing spline with m =2. Let n be even and let F,, be the n-dimensional space of functions
spanned by the sine and cosine functions

{1, cos 2mvt,v=1,2,...,n/2,sin 2mvt,v=1,2,....n/2—1}.
It can be demonstrated that the minimizer in F,, of

1

n .
l
nTty (g<-~> —y,->2+k§ @M (1)) dt (3.1)
i=1 n 0
is
n2-1 ) cos 2mvt + b, sin 2mt a, o COSs TNt
N=aq +2 C 2 i P , 32
EnA() =40 Zl [1+A2m)*"] [1+\am)>™] G2

where
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n n

) )
a,=n"! Z (cos27rv—>yj, v=0,1,...,n/2; b,=n"! Z (sinZnV“>yi,
n . n
/:1 \
v=1,2,...,n/2—-1. (3.3)

gn,n of (3.2) is the estimate of g(¢) that we will be using. The demonstration of (3.2) can be
carried out by noting that if the discrete Fourier coefficients {a,, b, } of (any) vector y are defined
by (3.3) then

nf2-1 . . .
i i i
Vizap+2 Y < @,cos 27rv<—> + b,sin 27w<* ) ) +a,/3c0s 2m(n/2) < ~—> "
b1 n n n
and vice versa, and by using the second derivatives of the sine and cosine functions, and by
substituting into (3.1).
It is not hard to show that

nf2-1 ) 2 " 2
Z—AQ)y | P =RSS) =2 ¥ < > @ +b2)+< ) apa,
p=1 )\V+>\ )\n/2+)\ (34)
nj2-1
A Nas2
N =a=n"1+ 2 v _ypt M
@) =a@)=n HEI ST ws

where A, =(2m)72". V(\) of (2.16) is computed from V(A)=RSSQ)/n(l —a(\))*, and X
is its minimizer. N is found by a global search based on equal increments in logjoA.
02 (\) = RSS(A\)/n(1 —a(\)), where n(1 —a(\)) = EDF(N), the equivalent degrees of freedom for
error when A is used. (na(\) = TrA(A) is the EDF(X) for signal, by analogy with regression.)  The
estimated 95 per cent confidence intervals (CI) are given by g, a(i/n) £ 1 960(?\) \/(a()\)) There
is a conceptual question whether 1.96 or the 0.025 point of the ¢ distribution with EDF(?\) degrees
of freedom should be used. When n = 128 or 64, the EDFA(?\) was typically greater than 30 and
to.025s (EDF(N)) = 1.96. For n = 32, the use of #9.025(EDF(N)) instead of 1.96 would most likely
have improved the confidence intervals obtained here somewhat. We also examined properties of
the 95 per cent pseudo confidence intervals (PCI) given by g, X(i/n) £ 1.960 \/(a(?\)) Here o is the
standard deviation used in the generation of the {¢;

The main Monte Carlo experiment consisted of studying all 3 X 3 x 5 =45 combinations of
Cases 1, 2,3, n=32,64, 128 and 0 =0.0125, 0.025, 0.05, 0.1 and 0.2. Data were generated for 10
rephcat1ons of each of these 45 combmatlons of Cases o’s and n’s. To evaluate the method, for
each replicate we computed the inefficiency ISUBV = R()\)/mm;\ RO\) which measures how well
A estimates the minimizer ofRO\) the VRATIO = 6*(A\)/n"! £ €}, summing over i from 1 to n,
which indicates how good 62(A) is, and CI 95 and PCI 95. CI 95 is the percentage of the true
g(i/n) which were covered by the CI’s and PCI 95 is the percentage of the true g(i/n) covered by
the PCI’s. We first show a few examples. Fig. la gives a plot of g(¢), simulated data and g, x(¢) for
one replicate of Case 1 with ¢ =0.1,n = 128. Fig. 1b gives g(¢) and the simulated data from Fig. la
along with a confidence “band”. For visual effect the two dashed lines which are the curves
NG ER! 960(7\) v/(a(\)) have been plotted. Strictly speaking these curves only have meaning at
t = i/n, where they are the endpoints of the confidence intervals. All 128 of the CI’s covered the
true_ g(i/n), but “Gust barely”. Fig. 1c gives V(\) and R(\) plotted against log \. We had
log A =—5.778, the log of the minimizer of R(A\) was —6.000, ISUBV = 1.078 and VRATIO was
1.04. Figs 2 and 3 are analogous to Fig. 1b, with one replicate each of Case 2, 0 = 0.1, n = 64 and
Case 3, 0=0.1, n =32 given. Table 1 gives ISUBV, VRATIO, PCI 95 and CI 95 for each of the
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Fig. 1a. g(¢), simulated data, and g,,j;(t) for an example of Case 1.
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Fig. 1b. g(¢) and data of Figure 1 with 95 per cent confidence bands.
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I'ig. 3. g(¢), data and confidence bands, Case 3.

10 replicates for the combination Case 2,n = 64, 0 = 0.1, as well as the sample mcans and standard
deviations of the columns. This table and the corresponding tables for the other 44 combinations
tried appears in Wahba (1981b). Due to lack of space thesc results will only be summarized here.

TABLE 1
Summary data for 10 replications of Case 2,n =64,0=0.1

REPL ISBUV VRATIO PCI 95 CI 95
1 1.023 0.90 96.88 96.88
2 1.134 0.85 95.31 95.31
3 1.000 1.02 95.31 95.31
4 1.070 0.96 100.00 100.00
5 1.001 0.81 90.63 89.06
6 1.012 1.03 96.88 100.00
7 1.024 1.14 100.00 100.00
8 1.089 0.95 100.00 100.00
9 1.057 1.00 96.88 96.88
10 1.081 1.05 95.31 96.88
Sample mean 1.049 0.97 96.72 97.03
Sample S.D. 0.042 0.09 2.75 3.24

The excellent results in Table 1 were typical of all of the n = 128 combinations, all but two
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of the n = 64 combinations and some of the n = 32 combinations. That is, the efficiency ISUBV of
the GCV estimate of is very close to 1, good estimates of ¢* are obtained (VRATIO =~ 1), and
the CI 95’s (as well as the PCI 95’s) are quite close to 95. (Visual inspection of the replicates with
CI 95 =100 showed that the CI’s were close to having CI 95 <100.) Table 2a gives the sample
mean of the 10 values of CI 95 for each of the 45 combinations of Cases, ¢’s and n’s. All entries
less than 85 have been circled. For comparison, Table 2b gives the sample mean of the 10 values
of PCI 95 for each of the 30 combinations with n = 64 or 32. These numbers are seen to range
from 91.56 to 99.06, so that the poor performance of the CI’s in the circled combinations is
directly attributable to poor estimates of o*.

TABLE 2
(a) CL 95 (b) PCI 95
n=128 n=64 n=32 n=64 n=32

6 =0.0125

Case 1 97.42 95.94 86.87 96.09 95.31

Case 2 96.88 80.31 31.56 96.56 92.50

Case 3 96.09 91.25 12.19 96.09 94.37
6 =0.025

Case 1 97.11 96.41 85.94 97.34 94.94

Case 2 97.42 72.66 67.19 95.47 95.31

Case 3 96.72 92.97 74.06 95.78 95.00
¢ =0.05

Case 1 96.64 95.16 74.06 95.78 92.19

Case 2 96.56 94.06 82.81 97.66 93.44

Case 3 95.16 92.66 65.63 96.72 92.19
¢=0.1

Case 1 94.92 92.97 96.56 93.59 98.44

Case 2 95.55 97.03 92.19 96.72 95.44

Case 3 97.27 90.31 87.81 94.53 96.88
¢=0.2

Case 1 94.14 97.03 91.25 97.97 91.56

Case 2 95.86 98.91 90.00 99.06 93.75

Case 3 96.56 93.12 82.19 97.34 97.19

In the Case 2, 0 =0.0125, n = 64 combination, where the mean of ten CI 95 values was 80.31,
two of the ten replications were identificd as having a VRATIO < 0.02. These two poor estimates
of ¢ could be easily identified by an experimenter with cven a crude knowledge of 2. Upon
eliminating thesc two replications the average CI 95 over the remaining eight cases was 96.48.
Similarly in the Casc 2, 0= 0.025, n = 64 combination there were two replications with mani-
festly bad cstimates of o®. (VRATIO <0.01.) Upon eliminating these two cases the average
CI 95 over the remaining cascs was 90.82. For the n = 32 combinations, there were several cases
of wildly erroneous CI 95°’s; however, they were almost uniformly detectable given a knowledge
of 6 to a factor of 10. In many of these cases, EDF(A) was small. Then one cannot really expect
the method of estimation of ¢* to work well, although it is nice to know that we can usually detect
cascs where it is awful. It can be seen from Table 2b that the PCI’s are working well. A few
examples of n =16 werc tried, and the results unsatisfactory. Neither GCV nor these CI’s arc
recommended for n = 16.

Figs 4 and 5 are analogous to Fig. 1a, for one replicatc of Case 4, n =64, 0=0.1, and Case 5,
n =064, 0 =0.1. Neither of these cases satisfy g, g’ continuous, f(g"(¢))*dt < e and hence, none of
the theory developed here is necessarily applicable. For these two cases, only the four examples of
all combinations of n =64, n =128, 6=0.05 and ¢ = 0.1 were tried. For Casc 4, the mean CI 95
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true g, confidence bands and data
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Fig. 4. g(¢), data and confidence bands. Casc 4.
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Fig. 5. g(t), data and confidence bands. Case S

for each of the ten replications appears as an inset in Fig. 4. The average VRATIOS were about the
same as for the Cases 13, but the variability is larger. The results are better than we expected but
suggest caution in using the method on functions with discontinuous first derivative. The
asymptotic result of Section 4 below does not apply to this case, and results could be worse for
larger n.

Case 5 represents an attempt to defeat the method soundly. Ordinarily one would not attempt
to estimate a function with a jump by a cubic spline, which has a continuous second derivative.
Case 5 has a jump of 12 at £=0.5. We ran the same four examples of 7, ¢ combinations as we did
for Example 4. Here o was overestimated by a factor between around 30 and 300. Overshoot (or
“Gibbs effect™) in g, i near £=0.55 is clearly visible in Fig.5. The two confidence intcrvals
adjacent to the jump failed to cover the true value. In the n = 64 examples exactly 62 (= 96.88 per
cent) and in the n = 128 case examples exactly 126 (98.44 per cent) true values of g were covered
by the confidence intervals in each replication.

4. A BIVARIATE EXAMPLE
Finally, we give a bivariate example, kindly provided by J. Wendelberger, using the computer
program developed in his thesis (Wendelberger, 1981, 1982). Fig. 6 depicts Franke’s “Principal
test function”

(9xr—- 2)2 + (9y —2)2 :|

fx,»)=0.75exp [— 2
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Fig. 6. Franke’s principal test function.
Ox+1)* -9 +1
+0.75 exp [—
49 10
(9x — 7)2 + (9 - 3)2
+0.5 exp | — )

—0.2 exp [—(9x—4)* -9y —T7)7].
which Franke (1979) used in an extensive comparison of different interpolation methods. Data
were generated by the model
2y = 01, ¥j) * €
with
2i+ 1 2j+1
v VT , i,j=1,2,... N,

with N =13, giving n =N? = 169 data points. The peak height of f was approximately 1.2 and
o was taken as 0.03. Here, f was estimated as the so called “thin plate smoothing spline” which is
the minimizer (in an appropriate space) of

X;=

oo oo

n
R ORIy I I A
i=1

It is not required in this method that a regular grid (x;, ;) be chosen. A regular grid was selected
here so that we could plot cross-sections easily. Details of the theory, the cross-validation estimate
of X and a computational scheme are given in Wahba and Wendelberger (1980). An improved
computational algorithm and further numerical results are given in Wendelberger (1981). Fig. 7
gives the resulting thin plate smoothing spline estimate of f. Fig. 8 gives four selected cross-sections
for 4 fixed values of x, x =(2i+ 1)/N, for i=7, 9, 11, 13. In each cross-section is plotted
f((2i + 1)/N,y), 0<y <1 (solid line), f,, A((2i + 1)/N,y) 0<y <1, where f,, § is the thin plate
smoothing spline (dashed line), the data z;;, j=1,2,...,13, for i fixed, and confidence bars,
which extend between

fn,i((z“' 1)/N,y]~) + 1.963(5‘\) \/(aij,ii(s‘))’
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Z-axis

Fig. 7. Spline fit 169 points with sigma = 0.03.
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Fig. 8. Cross-sections of g, gn,’f\; data, and confidence intervals.

where a;; ;;(A) = [0g,,a(x;, /)] /0z;;. Of the 169 confidence intervals, 162 or 95.85 per cent

covered the corresponding true value of f{(x;,y;). This example was not “cooked” but was in fact
the only example run by J. Wendelberger.

5. ON THE CHOICE OF m AND THE ESTIMATION OF b
So far we have been considering m fixed and given. Then m = 2 corresponds in some sense to a
prior belief that [§(g"(#))*dt is small, and since this corresponds to mean square curvature, it may
be thought of as corresponding to visual smoothness, or lack of visual “wiggliness”. This might
perhaps explain its popularity. Cubic splines tend to be aesthetically pleasing. From the point of
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view of optimizing predictive mean square error, m may be estimated by generalized cross-
validation, see Gamber (1979b) and Wahba and Wendelberger (1980). In the latter paper, in some
two-dimensional examples based on f(x;, y;) = simulated 500 millibar height, where the {x;, y;} are
locations of the North American radiosonde network, an m of 5 was found to be optimum. In
some meteorological applications on the sphere the so-called “penalty functional” [§(g(")(¢))*d¢t
can be replaced by a penalty functional defined on the sphere, which can be determined from
prior (available) meteorological data on certain sample Fourier—Bessel coefficients. Due to lack of
space we omit discussion of this approach here but details may be found in Wahba (1982). We
remark, however, that in the case of periodic functions (on the circle or sphere) the highest
derivative being assumed square integrable governs a bound on the rate of decay of the Fourier
coefficients. R

In order to use Theorem 2 to obtain the posterior variance of 8 and similar quantities, it is
necessary to “know” or estimate b. In the case f§(g(")(¢))*dt < oo the appropriate meaning of b
is not completely obvious. We conjecture that it should be b =n"" [§(g(")(¢))*dt, where n is the
sample size. We are presently studying the estimate b defined by

by = g @R (i TeA), b =b).
0

If g is a random function with b = ¢*/n}, it can be shown that EBO\) = b. Further work is needed,
especially for use with the interesting application 8 = g'(¢o).

2 n

g
6. ON THE RELATION BETWEEN ER (A*) AND — Z a;(\*)
n
i=1

The following theorem describes a relationship between ER(A*) and (0? /n) 2 | a;(\*).

Theorem 3. Let g have m — 1 continuous derivatives and f§(g(")(¢))*dt <o and let g, » and
R() be as in Section 1. Let #;=i/n,i=1,2,...,n. Let \* be the minimizer of ER(\). Then, as

n—> oo,

?
ERQA¥)=a— Y a;(\*)(1+0(1)) (6.1)
=1
forsome a € [(1+,1) (1—-,%),1].

Argument:

We must consider the case g(*)Emy,_; (polynomials of degree <m—1), and g¢m,_q
separately. If g€m,,_;, then A\* =00 4() is the orthogonal projection operator onto the
discretized polynomials (columns of 7 defined in Section 2). A()=A%*() and
ER(«) = (¢*/n) TrA(e), so (6.1) holds with a = 1. Suppose g & 7,,,_; . We have

o2
ER(N) =b*(\N)+— TrA2(N),
n

where

PP =n"t [ IT-AMN)g| 2.
Let {v,,nb,}, v=1,2,...,n—m, be the eigenvectors and eigenvalues of BQ,B'. These are

independent of the choice of B, but do depend on n, that is v, = v,,,, b, = b,,,. Let g, = (g, 7,,).
Then
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)\2g2
M= Y
yoq Byt D)
n—m b 2 n—m |
ntTrA*(N)=n"t ) (_)3_) =nt Yy e
Lo VA+D, o= (L+Nb,)
n n—m 1
nt Y ayMN) =Tt TrAQ) ="t Y
S 21 (1+Nby)
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From Craven and Wahba (1979), and Utreras (1979b, 1980, 1981), it follows, (for ¢; = i/n), that

there exists some C such that

Cly,
ntTrA*() =~ n' TrAN)~ ——=

n)\1/2;' n)\l/".m ’
provided n\'/?™ — oo _where
; T dx 7 Sm dx
"o . (1+x2my2" ™ (1+x*>™)

It is shown in Craven and Wahba (1979) that
b? () < M p(8).

where
1

Im(g) = S (g™(t))2dr.

0

(6.2)

(Inequality (6.2) actually holds for all the seminorms considered in Section 3 of Wahba (1978),

whether or not the {¢;} are equally spaced.) More generally, if

n—m g2
v

Z 'l;fg‘]mp(g).
v=1 "V

where J,,,, is independent of n, and 1 < p < 2, then clearly
b2(>\) < )\ernp(g)~
Forp=2,if g & m,,_; then it can be secn that

n—m o

S8 <)

v=1 v

cntails that
b2\ = N Ty (g) (1 +0(1))

(6.3)

as A—>0, n—> oo, It appears that if the {¢;} arc approximately equally spaced, then it is sufficient

for (6.3) that g has a representation of the form
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1 m -1

g(r)= S O, )p($)ds+ ). 0,0,(5),
0 v=1
where p(= g(2™)) is some sufficiently regular function. See Wahba (1979) for a heuristic argument
in the thin plate spline case, also Wahba (1977a).
Letting J,,,,(g) = gp. we have

zlm

R < <)\ng+ 7 > (1+0(1)) (6.4)

n)\1/2m
as A= 0, n\!/?™ oo for each p € [1, 2] for which gp is finite, with equality forp =2, if g <ee,
The minimizer of the right-hand side of (6.4) is

N <0.2 Clm _1> 2m[(2mp+1)

N=|——mn
P \g 2mp

and, letting 6 = 2mp/(2mp + 1) gives

" @\ .,
RS | ——— &, (2mp +1) 6.5)
2mpn
2 2 6
o " o Clm> 2m
— TrAQ,) =~ | =—2 (1=0) mp)| —— |,
p ) <2mpn g’ (2mp) P

where we have used INm/lm = (2m)/(2m — 1). Arguing heuristically that equality in (6.5) must hold
for some p between 1 and 2 gives

RQ\, 2mp +1 2m—1
_imm@eﬂ o~ <_2{)_f S >(1 +0(1))
o * mp m
& TrAQ)

for somep € [1, 2] . Since this quantity is between

1 1 1 1
<1+_,><1_V4> and <l+=:><1—gm),
4m 2m 2m 2m
the result follows.

We remark that this argument can be repeated in the general context of Wahba (1978)
whenever the rate of decay of the eigenvalues {b, } and the generalized fourier coefficients {g, }
are known and some summability conditions on the {b,,} are satisfied. Thus by using the
conjectures concerning the {b,} in Wahba (1979), our arguments can no doubt extend to the
thin plate spline. See Wahba (1977b).
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