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CONSTRAINED REGULARIZATION FOR ILL
POSED LINEAR OPERATOR EQUATIONS, WITH
APPLICATIONS IN METEOROLOGY AND MEDICINE1

Grace Wahba

Department of Statistics
University of Wisconsin
Madison, Wisconsin, U.S.A.

I. INTRODUCTION

We are interested in the Hilbert space version of constrained
ridge regression, which we will show has many interesting appli-
cations.

The (ridge) regression setup is:

(1.1) Yox1 = XnXpoX1 * e

™
<

N(O,UZI)
N(0,bz)

™
e

where X and I are known, 02, b are unknown. A ''ridge-Stein"

estimate of R, call it BA,'is given by the minimizer of QK(B)’
1 2 -
Q, (8) = | [y-x8||* + as'z7 s,

where ||-|| is the Euclidean norm. If A is taken as oz/nb, then

it is not hard to show that

(1.2) 8, = E(8]n.

If it is known that B is in some closed convex set C in Ep, and

1This work was supported by the Office of Naval Research
under Contract No. N00014-77-C-0675.
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384 GRACE WAHBA

it is believed that 8'2—18 is not "too large', then one may
estimate £ as the minimizer of QA(B) subject to the constraint
BeC. Some interesting C are those determined by a finite number
of linear inequality constraints, for example Bi >0,
i=1,2,...,p, Or Bl 3_62 33..3_BP. M. E. Bock discusses a rela-
ted setup in these proceedings.

We particularly want to allow B to have a partially improper
prior, for example, g7 = = Then E_l is defined in the natural
way and will then not be of full rank. This causes no problem

provided X and £’ are such that

Lgixxg +28's7'8 = 0 B = 0.

(1.3) n

An example of a Hilbert space version of this problem (an

indirect sensing experiment) is

1
(1.4)  y(ty) = [K(t;,8)f(s)ds + e, 1= 1,2,...,m,
0 0 <t, <...< t_ <1,
— 71 n —

E N N(O,UZI)

where K is known, f is known to be in the Sobolev space
Wg = {f: f,f',...,f(m_l) abs. cont., f(m)eLz[O,l]}, see Adams
[1]), and 02 is unknown. A so called "regularized" estimate fA

of £ is given by the minimizer in WY of

2
n 1 1
1 2 2
(1.5) Q, () = = ¥ (y(t)-[K(t;,s)E(s)ds) " [(£™ (5))%s.
i=1 0 0 ’
Qk(f) is analogous to
1 2 -1
Q, (8) = | [y-xg||" + ag'z 8.
1
If the linear functionals f - f K(ti,s)f(s)ds are bounded in
0

W; for each i = 1,2,...,n, and



ILL POSED LINEAR OPERATOR EQUATIONS 385

(1.6) %

1

N ~13

! 2 b om), .2
[K(t;,s)E(s)ds)” + Af (£ (s))7ds = 0= £ = 0
10 0

then Ql(f) will have a unique minimizer, call it fl’ in wg.
If f is endowed with the zero mean Gaussian prior defined by:

f is /b times an unpinned m-fold integrated Weiner process (Shepp

[33]), with a diffuse prior on the initial conditions, then it

can be shown (Kimeldorf and Wahba [23], Wahba [47]), that

(1.7) £,(t) = E{£(t)|y(t)), ...,y (t )},

where 3 = oz/nb. This prior may be colloquially described as

1
”f(m) = white noise'. However, with this prior Ef(f(m)(s))zds is
0

not finite, and the meaning of b as a process parameter becomes
~unclear for fewg. If it is assumed that fewg, then it appears. to
be more appropriate to view A as the "bandwidth parameter' which
governs the square bias-variance tradeoff.

if (1.6) holds, then Qk(f) will have a unique minimizer in
any closed convex set C < H (see Wong [59], Gorenflo and Hilpert
[19]). The set of non-negative functions {f: f(s) > 0,0 <s f_l}
is closed and convex in W? for m = 1,2,..., and the set of mono-
tone increasing functions {f: f'(s) > 0, 0 < s f_l} is closed
convex in Wg for m = 2,3... . See also Wright and Wegman [60].

We are interested in the general formulation of the above

problem. The model is

Y = Ltif e, 1= 1,2,...,n

where it is known that feC < H, where H is a given Hilbert space,

C is a closed, convex set in #, and Lt ee.L are n continuous
1 n
linear functions on H. J(+) is a seminorm on H with an m dimen-

sional null space, and it is '"believed" that J(f) is not too

large. We propose estimating f as the minimizer of
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=N

t 2
_Zl(Lt_f_yi) + AJ(F)
1= 1

(1.8) Q) -

subject to feC.
1f

INe~13

(Lt_f)z + AJ(E) = 0

1
n 1 i

1

=» £ = 0, then there will be a unique solution, call it fg. We
will refer to this solution as the constrained regularized esti-
mate, sometimeés dropping the superscript C.

There are now two problems. One, given A, how does one com-
pute a good approximation to fg, and two, how does one estimate
a good value of A. In many interesting cases, when H is a repro-
ducing kernel space, the constraint set C can be discretized in a
convergent way, see Wahba [44]. For example, the minimizer of
QA(f) subject to feC = {f: f(s) > 0, 0 < s < 1} is well approxi-
mated by the minimizer of Qk(f) subject to feCL = {f:

£3) > 0, i = 1,2,...,L) for H = W), J(+) = z(f(m)(s))zds, L
large. 1If CL is any (closed) set defined by L linear inequality
constraints, the problem of minimizing Qx(f) subject to feCL can
be reduced to a quadratic programming problem with linear in-
equality constraints in at most n + m + L variables. See
Kimeldorf and Wahba [23]. The researcher interested in numerical
methods for this and related problems may consult Anselone and
Laurent [4], Utreras [42], Wahba [47], [50], [51], [53], Wahba
and Wendelberger [54]. (The formulae in Kimeldorf and Wahba are
inappropriate for computational purposes.) Remarks concerning
the effect of quadrature in this setting may be found in Nychka
[30] and Wahba [53]. Library software for solving the quadratic

programming problem by the principal pivoting method is
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available, for moderate n + m + L, see MACC [25]. We will go
through a relatively simple example in Section 4.

Our main interest in this paper is the development of a
method for choosing A which is suitable for the constrained prob-
lem,

In this paper we propose an extension of the generalized
cross validation (GCV) method, to the constrained case. This
method was proposed in the unconstrained case in Craven and Wahba
[10], Golub, Heath and Wahba [18], and Wahba [45]. The GCV esti-
mate of A we propose in the constrained case can be expensive to
compute. Thus we propose a first order approximation to it which
is very much cheaper to compute, and appears to be satisfactory
in the examples we tried.

We experimentally tested the constrained reguléfization
method with the approximate GCV estimate of A on a convolution
equation with several simulated data sets generated according to
the model (1.4) with non-negative f's. For comparison, we first
estimated f by minimizing Qk(f) in W; and using the (usual)
unconstrained GCV estimate A for A. We then estimated f by
minimizing Q, (£) in C_where C_ = {f: £G) > 0, i = 1,2,...,n},
and choosing A by the approximate GCV method for constrained
problems. The constrained estimates with the approximate GCV
choice of A were all dramatic improvements over the unconstrained
estimates. As a practical matter, they displayed a remarkable
ability to resolve closely spaced peaks in the solution that have
been blurred in the data by the convolution operation. The con-
volution equation is i1l posed, and the positivity constraints
are apparently supplying much needed information. Three cases of
the exact GCV method for constrained problems were tried for
choosing A. It gave a very slightly better (and possibly more
stable) estimate of the optimal A. However it's much more expen-

sive to compute.
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IT. SOME APPLICATIONS

2.1 Meteorology

In recent years several satellites have been put in orbit
which carry detectors which measure the upwelling radiation at
selected frequencies. The obsetved radiation at frequency v,
when the subsatellite point is P, may be modelled (after some
linearization and approximation) as

I,(P) = f K,(P,PT)T(P')dP",

fp

where P' is a point in the atmosphere, 25 is the volume within
the detector field of view when the subsatellite point is P,
T(P') is the atmospheric temperature at point P' and Kv is deter-
mined from the equations of radiative transfer. See for example
 Fritz et al [14], Smith et al [35], Westwater [56]. It is
desired to estimate T(P) to use as initial conditions in numeri-
cal weather forecasting. Occasionally, outside information, such
as the existence of a temperature inversion, is available, thus
providing some inequality conditions on the derivative of T(P) in

the vertical direction.
2.2 Computernized Tomoghaphy

Computerized tomography machines are in most well equipped
hospitals. Computerized tomography machines observe line (or
more accurately, strip) integrals of the X-ray density f of parts
of the human body, and from this data

y, = [ £(P)ap + e, 1=1,2,...,m,

L.
1

estimates of f(P) are made. Algorithms for estimating f must be
capable of dealing with n = 105, see Herman and Natterer [20],

Shepp and Kruskal [34]. The true f is non-negative.
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2.3 Steneology

Scientists studying tumor growth feed laboratory mice a
carcinogen, sacrifice the mice, and then freeze and slice the
livers. Images of the liver slices are magnified and areas of
tumor cross sections are measured. It is expensive to examine
the liver slices, thus it is desired to take a sample of the
possible slices and from the resulting data infer numbers and
(three dimensional) size distributions of tumors in the entire
liver from data from a few slices. In the "random spheres' model,
the tumors are assumed to be spherical with the radii density
f(s). If the slices are '"random" then the cross sectional (two
dimensional) density g(t)} is related to f by

g(t) = %—f —g%%%: ds, ¢ = f sf(s)ds.

t /52—t2 0

See Anderssen and Jakeman [2], Watson [57], Wicksell [58]. This
setﬁp does not fit into the model (1.4) because i) in theory a
random sample from the population with density g is observed (not
g(ti) + si) and ii) in practice the liver is embedded in a paraf-
fin block and sliced systematically perpendicular to an axis
which (roughly) maximizes the cross sectional area of the liver
being sliced. Nonetheless, it is fruitful to think of this prob-
lem in the context of ill posed integral equations (see Anderssen

and Jakeman [2], Nychka [30]).
2.4 Convolution Equations

Convolution equations in one and higher dimensions arise in
many areas of physics. .See, for example Chambless [6], Davies

[11]. These equations can be surprisingly ill posed.
2.5 Othern Applications

Other applications may be found in the books of Anderssen,
de Hoog and Lukas {[3], Deepak [12], Golberg [17], Tihonov and
Arsenin [40], Twomey [41], Nashed [29].

~
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III. CROSS VALIDATION FOR CONSTRAINED PROBLEMS

We first define the ordinary cross validation (OCV} or 'leav-
ing out one" method of choosing A.
Let Li = Lt , and let f{k] be the minimizer of
i
1 ¢ 2
(3.1) = _Z (Lyf-y )" + AJ (D)
i=1
itk
subject to feC € H, where we assume sufficient conditions on the
{Li} and J(-) for existence and uniqueness. A figure of merit

can be defined for A by

[k] .2

1
(3.2) Vo) = = 1

k

Il ~153

(k]
i
A and using A. The OCV estimate of A is the minimizer

where L is the prediction of Yy given the data yl""’yk;l’

Y. P
0§+¢0(A). In the unconstrained ridge regression case this esti-
mate is known as Allen's PRESS (see Hocking's discussion to Stone
[39]). The names of Mosteller and Tukey [28], Geisser [16],
M. Stone [39] and others are associated with early work on ordi-
nary cross validation. See also Wahba and Wold [55]. In the
ridge regression case the OCV or Allen's PRESS has the undesir-
able property of not being invariant under arbitrary rotations
y > Ty of the data space. If one observed I'y instead of y the
OCV estimate of X may be different. GCV (to be defined below)
may be thought of as a rotation invariant version of OCV, for
which some good theoretical properties may be obtained. For fur-
ther discussion see Craven and Wahba [10], Golub, Heath and Wahba
[18], Wahba [45], Utreras [43], Speckman [36].

To extend the definition of the GCV estimate of A to con-

strained problems, we will use the Theorem given below.
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THEOREM. Let H be a Hilbert space, J(-) a semi norm on H and
Lysevesl be n continuous Linearn functionals on H, with the prop-
enty, that gon any fixed » > 0,

(Lif)2 +AJ(£) =0=>f=0, k=1,2,...,n.

=1 =
= I~

i
i

1
k
Let C be a closed convex set in H and Lot fik][z] and fx[z] be
the minimizens in C of

2 2
_Z (L;£-2.)7 + AJ(£)

1i=1
i%k

=N

and
n
1 2
H-izl (Lif-2.)7 + M (),

nespectively, where z = (zl,...,zn)'. Then

5.3 £ Iyve, ] = £50y], k= 1,2,000m

whene §k = (0,...,0,ka£k][y]-yk,O,...,O)', (the non 0 enthy 45

in the kth position).

Remark. This theorem says, that given data
1
Yk-1
[k]
Yirl

n

the minimizer of Ql(f) in C is f{k][y].
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Proof§. Proofs in special cases may be found in Craven and
Wahba [10] and Golub, Heath and Wahba [18]. A proof in the gen-
erality cited here is in Wahba [51,52], although no doubt the re-

sult is a special case of classic optimization theory results.

Now define the "differential influence'" of Yy when A is used,

%
by ap (A,

(3.4) a* (A\) =

kk 6k
where
(3.5) 5 = L yl-y,.

aik(k) is a divided difference of kaA considered as a function
of the kth data point (and is well defined).
Applying Lk to both sides of (3.3) and substituting the re-

sult into (3.4) and (3.4) into (3.2) gives the identity

no (L £, [yl

1
(3.6) V.(A) = =
0 K21 (1-ap, )

The GCV estimate of A is obtained by replacing aik(k) in

n
(3.6) by the "average differential influence" %— z aik(k), that
k=1

is, the GCV estimate of A is obtained by minimizing V(A) = VC(A)
defined by

2

—
e~

L (L)

(3.7) Vg = —2

n

1
1 B2
(-5 L af ()
1=1

Some properties of this estimate in the unconstrained case

are known. First, in the unconstrained (C=H) case, ka[y] is
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linear in y, and there exists an influence matrix A(X) with the

property

Llfk
: = A(Q)y.
Lan

In this case aik(k), the divided difference of kaA with respect

to Yi ¥ 6k and Yy is also the first derivative
oL, f. .
KA
g (A = vy A ()

vhere akk(k) is the kkth entry of A(A). Then V{()) can be written

1 2
= (z-A())y] |

(3.8) V) = 5 .
& Tr(I-A()))

To understand the known (and potentially obtainable) properties

of the GCV estimate of A we will first compare it with the

unbiased risk estimates of Stein (see Hudson [21], Mallows [26]1).
Let L({(f,A) be the predictive mean square error when A is used

1

- 2
L(£,2) = o izl(kak_ka)

i}

1 2
- Llaoy-el|

where g = (Llf,...,Lnf)' = Efy. If 02 is known (or an unbiased

estimate of it is available) then an unbiased estimate ﬁ(l) of

2
ROD = EL(EN) = 2] @-a0))g|]? + & 1rA® (1) is available and

is given by

2 2
RO = S -a00y |2 & tr-aon® « Zomea’ ),

see Mallows [26], Craven and

this corresponds to Mallows' CL’
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Wahba [10]. To talk about convergence, consider a family L s

3 eessL
t1 tn

a subset. Let K be the operator which maps H into the real val-

t € [0,1] of continuous linear functionals on H, with L

ued functions on [0,1] by (Kf)(t) = Ltf' Loosely speaking, if
K(H) is a reproducing kernel space with sufficiently smooth repro-

ducing kernel, then as t cesty become dense in [0,1],

17"
ELVOL) ~ E.L(E,A) + o2
£ & o Rgeths ©

for A in the neighborhood of the minimizer of EfL(f,A). See
Wahba [45]. Under various circumstances it can be shown (Craven

and Wahba [10])}, that

EL(f,2)

min E.L(F,N)
N f

(3.9) +lasn-»w, fef

where A is the minimizer of EfV(A). Utreras [43] and Speckman

[37] have recently rigorized and strengthened these results.
In general for (3.9) to be true one appears to need that

ul(h) -+ 0 and uf(l)/pz(l) -+ 0 for X in the neighborhood of X*

where ui(x) = %—TrAi(A) and A* is the minimizer of EfL(f,A).
Intuitively, this means that the signal must be concentrated in a
small "corner" of the data space En' Optimal rates of conver-
gence for fA* corresponding to those given by C. Stone [38] can
be obtained in some cases Wahba ([45], [46], [49]),Craven and
Wahba [10], Rice and Rosenblatt [32], Cox [9], Lukas [24],
Ragozin [31], Speckman [36]. Rigorous results concerning conver-
gence of fi to fA appear to be harder to obtain. Some related
results are reported in Chow, Geman and Wu [7].

We now return to the constrained case, feC. We consider only
the case where C is (or is well approximated by) the intersection

of a finite number of half-spaces,

C, = {f: N >a(8), &= 1,2,...,L},
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where the Nﬂ are continuous linear functionals on H. Even in
this special case it appears that to evaluate V(A) of (3.7) for a
single A one must solve n quadratic programming problems in as
many as n + m + L variables, To avoid this we propose the fol-
lowing approximation: Replace the divided difference in (3.4),
oy £ [y+6,1-L £, [y]
kk 6y ’

by the derivative

o~ _ 9
(3:20) a0 = 5L I¥1l,
Thus VC(A) of (3.7) is replaced by V° a) =V o)
: P ¥ Yapprox ~ approx
defined by
n
1 2
n kzl(ka)\ Vi)
(3.11) v ) =
: approx N 5
(-5 L 3 ka| )
k=1 Yk
For each A, V () can be obtained by solving one quadratic
approx

optimization problem. We outline the procedure, for more
details, see Wahba [51] and the example in Section 4. First,
solve the quadratic optimization problem to obtain fA and deter-
mine which constraints are active. Suppose these correspond to

N ,N ,...,N . f. is then also the solution to the quadratic
21 £2 2L' A
optimization problem: Minimize QA(f) subject to NQ f =
i
u(li), i=1,2,...,L'. The solution to this latter problem is
linear in y and is related to the data through an influence ma-

trix, call it AL,(A). Then

1 5 1
(3.12) = __Z_ W}Z L f |y = = TrA, (A).
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AL,(A) is given explicitly in Wahba [51], see also below. The
ingredients for computing TrAL,(A) will generally have been ob-
tained in the process of setting up and solving the quadratic

optimization problem.

Unfortunately 5;—-L f, | may be only piecewise well defined
k

k"Aly
and continuous in A. If a change in )\ causes a change in the ac-

tive constraint set, then one or more of the —2—-L f | may have
Yy kK"Aly

a jump. This can be seen in the examples in Section 4 and is the
major drawback of the method. The exact cross validation func-

tion V(A) of (3.7) appears to be a continuous function of X for
A > 0.

IV. NUMERICAL EXPERIMENTS
We numerically studied convolution equations with the model

1 .
1 .
y; = ék&a -s)f(s)ds + e;, i =1,2,...,n, n even,

f(s) >0, 0 <s <1,

1
with J(£f) = f(f(m)(s))zds. The constraints will be discretized
0

to f(%) >0, i=1,2,...,n. To simplify the calculations while
retaining many of the features of the original problem we assumed
that k(+) and f(+) were both in the n dimensional subspace Fn of

Wg spanned by

{1,cos2mnvt, v = 1,2,...,n/2, sin2wvt, v = 1,2,...,n/2-1}.

Thus all functions in Fn are periodic and the null space of J(-)
in Fh is spanned by the single function '"1'". Also, f and k are
of the form

n/2-1 n/2-1
(4.1) f(t) = a,+2 ) avc052nvt+ ) B sin2mvt+o,

0 cosmnt
v=1 v=1

/2
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n/2-1 n/2-1
(4.2) k(t) = g4+2 E g cosZmts Z nV51n2ﬂvt + gn/2c05nnt
v=1 v=1
where
1 % i .4 1 0 i.i
(4.3) a = H'.Z cos2mv E—f(ﬁa, Bv = —-_; 51n2nvﬁ-f(ﬁa
i=1 : i=1
1 % i i 1 % i i
(4.4) £, = ﬁ'-z cos2my T k(), n = E-_Z sin2nv H-k(ﬁa.
i=1 i=1
We have
1
(4.5) g(t) = [ k(t-s)£(s)ds
0
n/2-1
= ano + 2 Z (dvgv—anv)COSZﬂvt
v=1
n/2-1 1
+ 2 VZI (avnv+8v£u)51n2ﬂvt + Ean/zgn/ZCOSﬂnt,
and
n/2-1
(4.6) J(f) =

2 2 2m 2 2m
2 [ @ @m) ™ e /2,

fA’ the minimizer in Fn of

TR 2 L), .2
@.7) QP =5 LU kG -s)E(s)ds-y;)" + AJ(£77(s))7ds
i=1 0 0
is given by
) n/2-1_ n/2-1
(4.8) £,(t) = ap + 2 E u§c052ﬂvt + 2 Z Bv51n2ﬁvt
w=1 v=1
+ &n/ZCOS‘nnt
where
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(4.9) ay = ao/g0
G = st — (a g -b )
v E2+ 2+M AVRAVERNRVIRRY
v My v v=1,2,...,n/2-1
B = 5 12 (2 n+b £ )
Vo enZon NEAVRREVASS
v v Ty
®n/2 71 &;2 o n/2%n/2
2 "n/2 ""n/2
with
(4.10) A, = (2mv) "
n .
(4.11) a =L ) cos2my = v=0,1 n/2
. v - ih = yj ERTERRY
; m .
b, == Vsin2nmvdy. v=1,2,...,n/2-1.
voon gL n’j

The cross validation function V({X) of (3.8) in the uncon-
strained case becomes

n/2-1 A

v 2.2 .2 n/2 2 2
27 [ 1% (a%b )+ ] /2 42,
2 2 v vt 2 n/2
v=1 E+n +AX = +AA

4 ~ v oy Ty 2 °n/2 ""n/2
(4.12) V(L) = 5= T 3

[2 Il/Z 1 )\\) . _1_ An/z JZ

n = 2 2 nl, k2
L VRl g, §_gn/2+lln/2

In principle m can be chosen by cross validation (see Gamber [15],
Wahba and Wendelberger [54]). In these .experiments we have
(arbitrarily) set m = 2.

To study the constrained caée we write this problem as fol-

lows: Letting x = (f(%),...,f(%J)‘, we have

(4.13) Q, () = ||KWx-Wy|\2 + X W'INX

where the nxn matrices K, J and W are given by
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0
- 2 Cl -
-2 cn/2—1
W =
- cn/ 5 -
- /7 51 -
-2 Sn/2-1

1
€ =1 (1,...,1)

o
I
!

1 (cos2mv 13 cos2Tv 2-,...,cosZ-nv BJ
n n n n

1 . 1 \ 2 . n
s == {sin27nv =, sinZwy — ...,5in2mv —}.
L = Vs n)

Note that WW' = %

I. We let fi be the minimizer of (4.13) subject
to x > 0. The program QUADPR in the Madison Academic Computing
Center Library (MACC [25]) was used to find x to minimize the
right hand side of (4.13} subject to x > 0. This code employs the

principal pivoting method of Cottle [8]. Call the minimizer X, .

S |
1) > L,
for which xl(i) > 0 are determined. Let E be the n x L' indicater

Letting the ith component of Xy be xA(i), the indices i

matrix of these indices, that is, E has a 1 in the ith row and jth
column if i = ij, j=1,2,...,L', and zeroes elsewhere. The solu-

tion to the problem: minimize

(4.13) | | Kwx-Wy | |2 + AX'W'IWx
suject to x(i) = 0 for i not one of il""’iL' is
(4.14) X, = E(E'W‘K'KWEH\E'W'JWE)-lE'W'K'Wy.

A
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- C
Defining g, by

1
gg(t) - é k(t—s)fi(s)ds

C . s C.1 C.n
where fA £ Fn satisfies (fA(ﬁa,...,fA(Ea) = X,, we have
C_ cC,i
Lifk = gA(HJ’ and
C
LlfA
(4.15) . = nW'KW X = AL,(A)y
C
Lnfk

where

-1
AL () = nw'KWE(ZK + AZJ) E'W'K'W,
with
Ly = E'W'K'KWE, ) = E'W'JWE.
Therefore (provided all i for which xk(i) = (0 are active con-
straints!) we have

BkaA

1 Wy

Tr(1-Ap, (1))

o]
i

I~
1]

i
= n-L'+ATrB
where

B =] (T + AL

agd the approximate cross validation function Vapprox(k) =
() is
approx
2
s g ||KWxA-Wy||
(4.16) approx(A) -

q% (n-L'+kTrB))2 .

N
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TrB = TrZJ(ZK+AZJ)—l is computed by first using LINPACK (Dongarra
et al [13]) to solve L' linear systems for B defined by

(gralp)B = Ly

and then computing TrB.

We pause to caution the reader that roundoff error lurks
everywhere in calculating with ill posed problems (as this will
be if k is at all "smooth"}, alf calculations must be done in
double precision and care must be taken with such simple quanti-
ties as ||u—v||2 (don't compute (u,u)-2(u,v)+(v,v}!).

To get a nice example function h in Fn for our Monte Carlo
study, we began with a convenient analytically defined function
hoo(t) with hoo(O) e hoo(l), constructed a function ho(t) satisfy-
ing hO(OJ = ho(l) by setting

1
h (t) = h (8} + (b (0)-h_ (1))t + 5 (b (1)-h  (0)).

Then we took as our example function h the trigonometric interpo-
lant to hO via (4.1)-(4.4). For n = 64 the h00 and h we used as
example functions cannot be distinguished visually on a 8 %—x 11
plot. For our examples we constructed k and several f's g Fh

from k and the £ _'s given below:
00 00

2 2 2 2
1 e—t /2s . e—(l—t) /2s

koo(t) = , .043

V2ns

L1 ~GesyPast - (t-w) %725

1 2 1 2
foo(t) =3 e + 3 e
V27s ‘ V27s
1 2
where

s; = -015, s, = .045

and four different f's were generated by letting the peak separa-

tion y - .3 be as in Table 1. 1In each example
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Table 1.
Example Peak separation IDOMAIN IRANGE
1 .2 1.005 1.002
2 .15 1.016 1.081
3 .10 1.224 1.081
4 .05 - 6.650 1.318

1 .
g(t) = fk(t-s)f(s)ds is computed from (4.3)-(4.5) given k(),
0

f(%J for 1 = 1,2,...,n. Figure 1 gives a plot of k(t). Figures

1
2a, 3a, 4a and S5a give f(t), g(t) = [k(t-s)f(s)ds, and
0

y; = g(ig *oeg, for examples 1-4, where the € were i.i.d. N(O,oz)

pseudo random variables with ¢ = .05. Figures 2b, 3b, 4b and 5b

give f, fi and fg for these same 4 examples. A is the minimizer
: C
of V(X) for unconstrained problems given by (4.12) and computed

by evaluating V(X) at equally spaced increments in loglok, per-
forming a global search, evaluating V(A) at a finer set of equally

spaced increments centered at the previous minimum etc. The final
1
9

% is the minimizer of VC (A) of (4.16). 1In these examples
approx

the minimum was found by evaluating VC (A) at values of ) sat-
approx

search is performed on V(A) evaluated at increments of in log »X.

isfying logA—logX = j(.1) for j = 0, +1,...,etc. The possible
perils of this process will be discussed later.

In each example, a 'ringing' phenomena in the unconstrained
solution is very evident. Intuitively, the approximate solution
retains some high frequency components in an attempt to capture
the two narrow peaks. In each of the four examples the imposi-
tion of positivity constraints provided a dramatic improvement in

the solution. Anyone who has attempted a numerical solution of
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an ill posed problem knows that the visual character of the solu-
tion can vary significantly with A (and to a lesser extent with m,
given the optimal A for that m.} In the unconstrained solutions,
the cross validation estimate of )\ was near optimal in Examples 1
and 2, good in Example 3 and poor (from the point of mean square
error of the solution) in Example 4. The data behind this remark
are given in Table 1. The inefficiencies IDOMAIN and IRANGE in
that table are defined by

rr ottt T

Figure 1. The convolution kernel k(t).
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I B i=1
DOMAIN — 1 E
min = (£, -f(=))
A n i=1 A
1 X 1 i .2
o izl(gi(ﬁﬂ-g(ﬁa)
IRANGE 1 n
min = ] (g, &)-gn’
A i=1

~

The theory (Equation (3.9)) concerning the GCV estimate A says

(roughly) that I = (1+0(1)) as n » =,

RANGE
We now discuss Example 3 in greater detail. Figure 6 gives

the mean square error of fA’ fC and gg.as a function of A.

A By

n . .
1 1 1..2 ..
(MSE(£,) = E-iélcfk(ﬁa-f(ﬁo) , etc.). We have taken the origin

as 10gi(logi =-9.889). Since the GCV estimate of A estimates
the minimizer of MSE(gA) or MSE(gA), it will generally be a good
estimate of the minimizer of MSE(f ) or MSE(f ) to the extent

that MSE(fA) and MSE(gA), or MSE(fA) and MSE(gA) have the same
minimizer. The minimizers of the four curves are marked by
arrows. In these and other cases we have tried (ne[30,100],

smooth f, o a few percent of max|g(t)|), the optimal X for
t
MSE(fA) and MSE(gA) appear to be close, as a practical matter.

As a theoretical phenomena for large n it may or may not be true,
see Lukas (1981) for some asymptotic results on the optimal A for

different loss functions in the unconstrained case.

C

C
approx(K) of (4.16) and V (})

Figure 7 gives V(1) of (4.12), V

C .
of (3.7) for Example 3. V(A) and Vapprox(k) were computed at in-

crements of .1 in logA. XC was taken as the global minimizer of

the computed VC values. V and VC at their respective
approx approx
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012 1 1 | } I 1 L} i | 1 i

.0lo

MEAN SQUARE ERROR

.008

.006

MSE(g:)
004

oopl—t 1L o Voo 1 9 1o 1oy 1oy |
-3.00 -2.50 -2.00 -1.50 -1.00 -0.50 0 0.50

logx - logX

Figure 6. Comparison of mean square error of
estimates of f and g, as a function
of A,
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© 0048} >
»
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.0040
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Figure 7. V, VC and VC

approx

minimizers A and XC are marked by a large *, In Figure 6, the

corresponding MSE values at A and A are also marked by a large

C

*, In Figure 7, some of the computed values of Vgpprox have been

connected by a smooth curve. Two adjacent points have not been

connected if the set of active constraints is different for the
C

approx
at least one discontinuity somewhere between the two correspond-

two corresponding values of A. can be expected to have
ing values of A, (including the end points). Although the esti-
mates XC worked well in this and the other three examples tried,
there are obvious pitfalls in minimizing a discontinuous function,
e.g. sensitivity to the increment in logh.

We decided to invest a fair amount of computer time to com-

pute VC(A) for this one example. The computed values are

~
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indicated by o in Figure 7. The computation was attempted for

logh-logh from -3.00 to .6 in steps of .1. There are missing val-
ues whenever the quadratic optimization routine QUADPR terminated
with an error message. This happened during the constrained min-
imization of the leaving out one version of (4.13) in the process
of calculating aik of (3.4), for some k (typical error message:
"no complement variable found"). Nevertheless it appears possi-
ble to connect the computed values by a smooth curve and find the
minimum by a global search in a neighborhood about or below A

VC at its global minimizer is marked by ] in Figure 7, and the

MSE curves for fg and gg in Figure 6 are also marked by a[] at

the minimizer of VC. Out of concern for the computational fail-
ures with QUADPR noted above, it was decided to try this example
for n = 50, The difficulty of the quadratic program increases

with n. Two replications were tried. In the first, VC(A) as

C &
well as Vapprox(x)) was successfully computed for logh-loghi.in
steps of .1 from -2.4 to .6. The CPU time for n = 30 was around
%‘(W(%%JS) times that for n = 64. VC(A) was visually smooth and

convex near its minimum when plotted to the same scale as Figure
. C e . C

7 (equivalently, to 3 but not 4 significant figures). V
approx

showed the same apparently piecewise continuous behavior as in

the example for n = 64, Both functions had their global minimi-

zers at logA—logi ~-.7 while MSE(fi) was minimized at

C C . .
DOMA IN of 1.009 (IDOMAIN is defined

with f replaced by fC, etc.) 1In the

logh-logh = -.8, for an I

analogously to IDOMAIN

second replication the computation of a VC(A) for a few scattered
values of A terminated in an error message but nevertheless a

C of

.. C ] :
minimum of V ()) was easily found, and resulted in IDOMAIN 0

1.02.
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The innocucus-looking convolution equation we have studied
here is very 1ill posed, a phenomena surprisingly common in many

experiments. We may write
y = nW'KWx + €,

thus the design matrix X is nW'kKW. If k is symmetric (as it is
here), then the nv's are all 0 and K is diagonal., Table 2 gives
the gv's of (4.2) and (4.13), which are also the singular values
of the design matrix. El""’gn/Z—l are of multiplicity 2. Also
o and év defined by (4.3) and
(4.9), with A = &, If gv is sufficiently small then @ s Bv are

given in Table 2 are the a s Bv’

not estimable with double precision arithmetic and it is seen
that &v and év are 0 (to as many figures as we have printed).
Although XX' is theoretically of full rank (64), the 40th largest

eigenvalue is around 10714

times the largest.

From the examples we have studied, it appears that the imposi-
tion of positivity constraints can be an important source of in-
formation in very 111 posed problems, and that the GCV estimate
for X for constrained problems, and its approximate version
appear to do a good job of estimating A. Of course not all prob-
lems will show such a dramatic improvement, with the imposition
of constraints, since, if no constraints are active, then no in-
formation has been added. In some sense the samples tried here
were chosen in anticipation of negative unconstrained solutions
(and, we must admit, with some subjective hunches on the part of
the author concerning the type of problem the method is likely to
do well on).‘

The evaluation of VC(A) required n + 1 calls to QUADPR at a
cost per call for n = 64 of around 5 to 8 seconds CPU time on the
Madison UNIVAC 1110 while the computation of Vgpprox(x) requires
one such call. It is possible that a clever search procedure

C {A) could be used to
approx

utilizing information from V(1) or V
obtain the minimizer of VC(A) with a small number of functional

evaluations, particularly with an improved quadratic optimization
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Table 2
Singular values of the design matrix and true and
(unconstrained) estimates of Fourier coefficients
of the solution, Example 3.
Fourier Fourier coefficients Singular
coefficients of f of fi values of X
v % B, %y Bv Ev
0 1.0000000 1.0056082 1.0000000
1 -0.6207604  0.6921165 -0.6215382 0.6961828  0.9641602
2 -0.0893528 -0.7328304  -0.0848581 -0.7304837 0.8641653
3 0.4028712  0.2542137 0.4029176 0.2489338  0.7200172
4 -0.1885802 0.0885568 -0.1962951 0.0855699  0.5575829
5 -0.0528778  0.0000001 -0.0537360 -0.0080144 0.4015413
6 -0.0401296 -0.1772403 -0.0061505 -0.1518747 0.2687643
7 0.2459903 0.0681774 0.2405176 0.0936209 0.1672289
8 -0.1869963 0.1965549  -0.1173723 0.1667934  0.0967274
9 -0.0930543 -0.2366141  -0.0004572 -0.1894057  0.0520099
10 0.2260386 -0.0000008 0.0572545  -0.0546176  0.0259969
11 -0.0644608 0.1883329 0.0076649 0.0190262 0.0120796
12 -0.1416100 -0.1053629  -0.0047088 -0.0089655 0.0052178
13 0.1275488 -0.0917606 0.0015188 0.0017124  0.0020952
14 0.0429244 0.1325941 0.0000653 -0.0001728 0.0007821
15 -0.1226323 -0.0000074  -0.0000249  -0.0000563 0.0002714
16 0.0330138 -0.1016884 -0.0000495 0.0000217 0.0000876
17 0.0747306 0.0542659 -0.0000043 -0.0000022 0.0000263
18 -0.0639485  0.0464957  -0,0000009 -0.0000012 0.0000073
19 -0.0207693 -0.0637932 0.0000007  -0.0000003 0.0000019
20 0.0564273 -0.0000585 0.0000000 0.0000000 0.0000005
21 -0.0144560 0.0447695 0.0000000 0.0000000 0.0000001
22 -0.0315319 -0.0227541 -0.0000000 0.0000000 0.0000000
23 0.0256734 -0.0188771 0.0000000  -0.,0000000 -0.0000000
24 0.0082505 0.0245512 0.0000000 0.0000000 0.0000000
25 -0.0208860  0.0003692 0.0000000 0.0000000  0.0000000
26 0.0045742 -0.0160679  -0.0000000 -0.0000000  0.0000000
27 0.0112024 0.0072426  -0.0000000 0.0000000  0.0000000
28 -0.0079654  0.0070270 0.0000000  -0.0000000  0.0000000
29 -0.0039043 -0.0075671  -0.0000000  -0.0000000 -0.0000000
30 0.0067293 -0.0018679  -0.0000000 -0.0000000 -0.0000000
31 0.0006966  0.0059954 0.0000000  -0.0000000 -0.0000000
32 -0.0057113 -0.0000000 -0.0000000
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routine. On the other hand the minimizer of VC may be ade-
approx

quate in many situations. It is clear that both the exact and

the approximate GCV method warrants further study, both theoreti-

cally and numerically.
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