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ABSTRACT

In variational data assimilation, optimal ingestion of the observational data, and optimal use of prior physical
and statistical information involve the choice of numerous weighting, smoothing, and tuning parameters that
control the filtering and merging of diverse sources of information. Generally these weights must be obtained
from a partial and imperfect understanding of various sources of errors and are frequently chosen by a combi-
nation of historical information, physical reasoning, and trial and error.

Generalized cross validation (GCV) has long been one of the methods of choice for choosing certain tuning,
smoothing, regularization parameters in ill-posed inverse problems, smoothing, and filtering problems. In theory,
it is well suited for the adaptive choice of certain parameters that occur in variational objective analysis and for
data assimilation problems that are mathematically equivalent to variational problems. The main drawback of
the use of GCV in data assimilation problems was that matrix decompositions were apparently needed to compute
the GCV estimates. This limited the application of GCV to datasets of the order of less than about 1000. Recently,
the randomized trace technique for computing the GCV estimates has been developed, and this makes the use
of GCV feasible in essentially any variational problem that has an operating algorithm to produce estimates,
given data. In this paper the authors demonstrate that the answers given by the randomized trace estimate are
indistinguishable in a practical sense from those computed more exactly by traditional methods. Then the authors
carry out an experiment to choose one of the main smoothing parameters (\) in the context of a variational
objective analysis problem that is approximately solved by k iterations of a conjugate gradient algorithm. The
authors show how the randomized trace technique can be used to obtain good values of both A and & in this
context. Finally, the authors describe how the method can be applied in operational-sized three- and four-
dimensional variational data assimilation schemes, as well as in conjunction with a Kalman filter.

form: find x to minimize

In modern global-scale numerical weather prediction
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Adaptive Tuning of Numerical Weather Prediction Models: Randomized GCV

tion to a minimization problem of the following general

models, it is common to update the state vector (x),
which will serve as initial conditions to integrate for-
ward the primitive equations, by combining observa-
tions, forecast, and possibly other physical constraints
in a manner that is (some approximation to) the solu-
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J(x) = [y - K(x)1'S7'[y — K(x)]

+(x - x*¥)'T 7 (x — x*¥). (l.1)
Here y is a vector of data that are related to the state
vector x by the possibly partly nonlinear operator K,
x* is a known vector, and the matrices S and X embody
information concerning how close y is expected to be
to K(x) and how close x is expected to be to x*. At
this point we are being deliberately vague about y be-
cause it may include forecast ‘‘data’’ as well as obser-
vational data; alternatively, forecast data may be in-
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corporated into x *. Formally, the matrices § and X may
be derived as covariance matrices under certain statis-
tical assumptions, as in Parrish and Derber (1992),
Lorenc et al. (1991), Lorenc (1986), Wahba (1990b,
1985b, 1982b), Wahba and Wendelberger (1980), and
Kimeldorf and Wahba (1970, 1971). Four-dimen-
sional assimilation with the model as a strong constraint
can be put in this framework by, for.example, letting x
be the state at an initial time and including model in-
tegrations in K. Physically based penalties—for ex-
ample, energy in gravity waves—may be incorporated
in the penalty term (x — x*)' X7 (x — x*) (see Lewis
and Derber 1985; Courtier and Talagrand 1987, 1990;
Zou et al. 1992; Zou et al. 1993; Rabier et al. 1993; Li
et al. 1993; and references cited therein). Other rele-
vant references are Hoffman (1984, 1985), Hoffman
and Louis (1990), and Bennett and Budgell (1987).

The problem is to choose certain unknown parame-
ters in 3, K| and S. This fairly simple statement of the
problem conceals many choices that must be made in
practice. The entries in ¥ and § contain numerous
smoothing, tuning, and weighting parameters that in
practice are obtained from postulated error covariances
that aim to take into account measurement error, fore-
cast error, errors of representativeness, and model error
from prior physical and statistical information about the
atmosphere, from physical intuition, and from trial and
error. Operator K may contain instrument calibration
constants, physical parameters, and so forth. Some of
the discrepancies between y and K(x) are fairly well
understood (e.g., radiosonde measurements), while
others, particularly satellite radiances, are not, due in
part to the difficulty of modeling the forward problem
accurately. This problem is exacerbated in four-dimen-
sional assimilation where K includes model integra-
tions. Forecast error covariances can, to a certain ex-
tent, be studied empirically from historical data by
comparing forecast and observation over a period of
time (see Hollingsworth and Lonnberg 1986; Lonnberg
and Hollingsworth 1986; Bartello and Mitchell 1993;
Mitchell et al. 1990; Goerss and Phoebus 1993).

It is the purpose of this paper to initiate the devel-
opment of a general theory of adaptive estimation of
smoothing, weighting, and tuning parameters based on
generalized cross validation (GCV) (Wahba and Wen-
delberger 1980; Wahba 1990b, and references therein)
and related methods, for parameters that are hidden in
X and in K and also to some extent in S, that is appli-
cable to the tuning of three- and four-dimensional nu-
merical weather prediction models and to other data
assimilation problems solved via variational problems
that can be put in the general form (1.1).

There is, of course, much interest in developing ob-
jective methods of obtaining these parameters. Aside
from work in the spirit of Hollingsworth and Lonnberg,
which involves directly fitting parametric or semipara-
metric models of covariances to large historical data-
sets of forecasts minus observations, there are several
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other trains of research with similar goals, based on
Kalman filter theory. The Kalman filter theory shows
how the forecast error covariance evolves, given past
data patterns and past observational error and ‘‘plant
noise’’ (usually considered to be model errors in this
context). Cohn (1993) looks at stochastic dynamic
equations for the growth and propagation of forecast
errors. Dee et al. (1985) and later Dee (1990) use a
simplified model for the evolution of the forecast error
covariance and fit the simplified model using historical
data. Recently, Daley (1992a,b,c,d) developed some
ingenious methods for estimating the stationary isotro-
pic part of certain required covariances in the context
of Kalman filtering, after having parameterized them
with a small number of unknowns.

The GCV estimates that we discuss here are ‘‘adap-
tive’” or ‘‘dynamic,”” in the sense that they are carried
out simultaneously with the estimation of x, unlike the
methods described in the references given above that
use historical ‘“after the fact’” data. By *‘after the fact,””
we mean that a historical sequence of estimates of X’s
are obtained from a model using whatever parameters
exist in the model. Then new parameters are estimated
given this series of X’s along with their associated series
of forecasts and data. Once these new parameters are
obtained they are then substituted in the model. After
this substitution, the model error properties may also
change, so that this procedure needs to be iterated see,
for example, Daley (1992b, section 3b). The proposed
adaptive methods can be used to monitor or fine-tune
certain parameters dynamically that have been obtained
from historical data, from a Kalman filter method, or
from other methods. This paper will focus on estimates
of parameters primarily in X, and K above, although
we will briefly mention other estimates. Historically,
the use of GCV in data assimilation problems was lim-
ited by the fact that matrix decompositions were ap-
parently needed to compute the GCV estimates. This
limited its use to datasets very much smaller than those
occurring in operational numerical weather prediction
(NWP). Recently, the randomized trace technique for
computing the GCV estimates has been developed (Gi-
rard 1987, 1989, 1991; Deshpande and Girard 1991;
Hutchinson 1989), and the method does not require
matrix decompositions. It is the purpose of this paper
to demonstrate some of the properties of this technique
in the context of variational data assimilation and meth-
ods (such as optimum interpolation—OI) that are
mathematically equivalent to variational problems and
to show how the technique may be used in essentially
any size variational problem that has an operating al-
gorithm to produce estimates given data, provided only
that the algorithm can be run several times.

Dee (1995) has used maximum likelihood (ML) es-
timates to tune parameters in covariances occurring in
a Kalman filter applied to a shallow-water equation,
and D. Dee and G. Cats (1994, personal communica-
tion) have applied ML estimates to tune error covari-
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ances in the High-Resolution Limited-Area Model
(HIRLAM). This important work demonstrates the
feasibility and potential value of adaptive on-line pa-
rameter estimation.

In section 2 we briefly review the properties of GCV,
which suggest the approximate range of validity of this
method, and identify the key role of the so-calied in-
fluence matrix in adaptive tuning of NWP models.

In section 3 we describe the randomized trace tech-
nique and demonstrate that the answers given by the
randomized trace technique are essentially indistin-
guishable from those calculated by more traditional
methods, for datasets as small as 400. Then, we carry
out an experiment to demonstrate the efficacy of the
method in the context of a variational objective analysis
problem that is approximately solved by k iterations of
a conjugate gradient algorithm. Running the experi-
ment on simulated data where the ground truth is
known, we demonstrate that a good value of a smooth-
ing parameter as well as a good value of k can be cho-
sen by this technique, without using any matrix decom-
positions.

In section 4 we descrlbe how the method can be im-
plemented in the context of objective analysis, the Kal-
man filter, and four-dimensional variational data assim-
ilation. Section 5 is a summary. Appendix A discusses
theoretical conditions for the range of applicability of
GCYV estimates, and appendix B discusses relationships
between GCV and ML. -

2. The GCV estimate

We first review the well-known statistical assump-
tions that relate OI and variational methods (see Ki-
meldorf and Wahba 1970, 1971; Lorenc 1986, 1988;
Wahba 1982b, 1985b, 1990b).

First, let x be the state vector of an NWP system.
We suppose that x has some climatological mean that
has already been subtracted out, and we suppose that
the mean values of the components of X can be treated
as though they are zero. We let y be a vector of obser-
vations. Later we will let x be an analysis increment
and y an observation increment; the mathematics will
be essentlally the same.

If u is a vector, we will use the notation u ~ W (m,
C) to mean we will treat u as though it has a multi-
variate Gaussian distribution with mean g and covari-

- ance matrix C. First we suppose x ~ N(0, bX), where
b is a (free) positive constant and X is some nonneg-
ative-definite matrix. We next suppose that y is related
to X by

y = Kx + ¢, 2.1)

where € ~ N(0, 0?S), where o? is a (free) positive
constant and S is some positive-definite matrix. The
components of Kx represent functionals of x. If they
are linear functionals, then K is simply a matrix, which
we will assume for now. In the case of satellite radi-
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ances the functionals in K are mildly nonlinear integrals
(see O’Sullivan and Wahba 1985). It is generally de-
sirable to linearize as late as is practicable. Given the
statistical assumptions on X and € above, and letting A
= ¢*/b, the conditional expectation X, of x, given the
data y, is given by the minimizer of

(y-Kx)'S'(y - Kx) + \xx'Z7'x, (2.2)
and x, is given by
%, = (K'ST'K + A=) 'K'S"y. (2.3)

The identity
(K'ST'K+ X)) '=% - 3K (KK’ + §)'KZ
(2.4)

can be used to give a formula for x, in another, possibly
more familiar, form.

However, it is not required to make any statistical
assumptions on X in order for the variational problem
of (2.2) to be sensible. The quantity x’ ¥~ 'x may, for
example, be some quadratic functional of the state vec-
tor that penalizes derivatives or penalizes some physi-
cal quantity that it is desired to partially suppress, say,
gravity wave tendencies.

To define the GCV estimate of \ and any other (iden-
tifiable ) parameters @ in K and ¥ we need to define the
(standardized) influence matrix A for this variational
problem. Let y be standardized as

y=8"", (2.5)

where §7'/? is the symmetric square root of S. If the
observation errors are independent, then S™'"2 is just
the diagonal matrix with inverse standard deviations
(scaled by o) down the diagonal. We have

§=8"Kx +g, (2.6)
where & has the standardized distribution
&€ ~ X0, a?). 2.7)

The influence matrix A(\, 8) is defined as the matrix
that relates the (standardized) data ¥ to the predicted
(standardized ) data

§ = S7?KR. (2.8)
That is,
y=Ay, (2.9)
and it can be checked that A is given by
A=S"KK'S'K+\=)'K'S'2  (2.10)

The influence matrix A is a so-called smoother ma-
trix—that is, it is symmetric, nonnegative definite and
all its eigenvalues are in the interval [0, 1]. This fact
will play an important role in the randomized trace cal-
culations to be described later. The GCV estimate A of
\ and other (identifiable) parameters in X = 3(@) and
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K = K(8) is the minimizer of V(\) [or V(\, 8)] given

by
_ yrs—llz[l _ A()\)]Zs—lﬂy
YOO =" amn:  ¢D
_ —1/2412
_ i - AQ)IS ) 212

{Tr( — AT}

where Tr is trace (see Wahba and Wendelberger 1980;
Wahba 1990b). Setting S = | wherever it occurs results
in the familiar form of V in the literature, where it is
assumed that the data vector y has already been res-
caled by 872,

The GCV estimate of A, & is based on a predictive
mean-square error criterion that attempts to obtain a
“‘best’’ estimate of x within the family of possible min-
imizers of (2.2), parameterized by \, . It will do this
under rather general conditions, independent of
whether X represents a covariance matrix, a ‘‘smooth-
ness’’ penalty, or a physical quantity suppressing, say,
some form of energy. The ‘‘predictive mean-square er-
ror’’ is with respect to data with € of (2.1) being white-
noise errors, or data normalized by a covariance matrix
so that the normalized errors & of (2.6) are at least
roughly ‘‘white.”” To be specific, let the predictive
mean-square error R(\) be defined by

ROV = 2 87" (K — KR, (213)

Here x,.. is the source of the data in (2.1), and we
consider it fixed (not a random vector). Then the GCV
estimate N of \ is a good estimate of the \ that mini-
mizes R(\), under fairly general conditions irrespec-
tive of whether X, is considered to be a fixed vector
satisfying certain conditions, or is considered as a ran-
dom vector with covariance matrix b2 (see Craven and
Wahba 1979; Wahba and Wendelberger 1980; Speck-
man 1985; Li 1986; Wahba 1990, section 4.4). Some
of these mathematical conditions are described for the
reader’s convenience in appendix A. Generally A is also
a good estimate of the minimizer of D(\) = [|x\ — K|l
under some fairly but not completely general condi-
tions (see Wahba and Wang 1990). A cross-validation-
based estimate for o that has been shown to work well
in examples is

., __ RSS(})
oY = el — AN

Here RSS(R) = [[[I — A(R)]S™""%y]? is the (scaled)
residual sum of squares when \ is used, and \ is the
GCV estimate of \, that is, the minimizer of V(\).
Viewing TrA(A) as the degrees of freedom for signal,
this estimate is the analog of the usual estimate of the
variance after linear regression (see Wahba 1983).
Note that, due to the presence of 8 in the theoretical
loss function R of (2.13), GCV in this form is not in
general appropriate to estimate unknown parameters in

(2.14)
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S. Partial GCV (see section 4b) may be used when a
sufficiently large submatrix of S is known, and other
GCV-related methods are discussed in Gao (1993,
1994) and Gao et al. 1995 (unpublished manuscript).

Various parameters ¢ in 3 = 3(8) are known to be
amenable to estimation by GCV by replacing 2 by
3(8) in (2.2) and by minimizing V of (2.11) with re-
spect to both \ and & (see, for example, Wahba and
Wendelberger 1980; Hutchinson et al. 1984; Wahba
1990, chapter 3). Certain parameters & in K = K(&)
may also be estimated this way (O’Sullivan 1991;
Wahba 1990a; Wahba et al. 1995, unpublished manu-
script), by setting & = K(&) in the ingredients of V.
Then the minimizer of V should be a good estimate of
the minimizer of R given by

1
R(xa 0) = ;l— “S_lm[K(glme)xlme - K(a)ﬁ)\,t}]”z,
(2.15)

where 8,,. contains the true (but unknown) compo-
nents of @ in K and x,. is the true (but unknown) state
vector. The establishment of which parameters can be/
should be tuned in this way is an important separate
subject that we will treat elsewhere; however, it is clear
that the Hessians of R and V with respect to the param-
eters being estimated should be well conditioned.

The minimization of V can be carried out for me-
dium-sized datasets via the algorithm of Gu and Wahba
(1991), which uses truncated matrix decomposition
methods. The code RKPACK (Gu 1989), which im-
plements this algorithm, is available over the Internet
through the public library netlib in the gcv directory
there.! RKPACK will actually minimize V with respect
to multiple smoothing parameters \;, . . . , A, that arise
in problems when Ax’E'x of (2.2) is replaced by
2r_1 N\x'Jx. The code GCVPACK (Bates et al.
1986) will minimize V in the context of the thin plate
spline described in Wahba and Wendelberger (1980),
as well as in the general context of (2.2), again using
matrix decomposition methods. GCVPACK and other
computer code containing GCV estimates can also be
found in the gev directory of netlib. Matrix decompo-
sition methods, however, are not at present suitable for
datasets of the size that occur in global-scale numerical
weather prediction.

3. The randemized computation of V

a. Exact and randomized GCV

In this section we describe a method that may be
used to calculate V in the context of operational global-
scale NWP, whenever the means are available to solve

! Write netlib@ornl.gov with the words ‘send index’’ in the body
of the message, and the netlib robot mailserver will respond with
instructions for using the system.
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the variational problem for the state vector with a (sin-
gle) random perturbation of the data, along with the
original data. The idea is to estimate the required trace
by Monte Carlo, or randomized methods, and was pro-
posed in connection with the calculation of GCV func-
tions like those of (2.11) by Deshpande and Girard
(1991), Girard (1987, 1989, 1991), and Hutchinson
(1989). Girard (1991) proved that the error due to the
randomization part was generally negligible in the con-

text of estimation of certain parameters by GCV. Let

B(0) be any n X n matrix depending on some param-
eter vector 8, with i, jth entry b,;(@), and let £ be an
n-dimensional random vector with components {¢; }
satisfying E¢; = 0, E¢;§{; = 1,i =j, = 0,1 # j, where
E is expectation. Then n '¢'B(0)¢ = n™' Z7,
{,{,bg(O) and En_lf'B(O)f = n_l 2,"’=| b,,(0) = n_l
X TrB(0). The randomized trace estimate of n™!
TrB(0) is then given by n~'¢'B(8)&, where £ comes
from a random number generator. If & ~ X(0, 1), then
the standard deviation of this randomized trace estimate
is (2n~)'"2[n~" Tr B?(0)]"* (see Girard 1989, 1991).
If B(0) is a smoother matrix, that is, it is symmetric,
nonnegative definite, with all its eigenvalues between
0 and 1, as is the case for any matrix A of the form of
(2.10), then 0 < n~! TrB < 1, and the standard de-
viation of n~'£'B(0) £ is no greater than (2n~")'’[n~!
x TrB(6)]">.

We have run a small toy problem-that demonstrates
that an estimate of a smoothing parameter \ in this
problem calculated via randomized GCV gives, for all
practical purposes, just as good a value for \ as one
calculated more exactly using matrix decompositions.
We generated data from the model

i =flx(] +e, i=1,-- (3.1)

where x(i) = [x,(i), x,(i)] is a point in the unit
square and € = (¢, - - *, €,)" ~ N(0, o?l). We took
f(x) as Franke’s principal test function. A formula
and plot of f appear in Wahba (1983) and Wahba
(1990b, Fig. 5.1), where fwas used to test Bayesian
confidence intervals; f is a smooth function with
two round peaks and a rounded valley with mini-
mum height near 0 and maximum height at ap-
proximately 1.2. The standard deviation o of the
noise ¢ was 0.1, and 676 = 262 values of x(i)
= [x,(i), x,(i)] were chosen on a regular 26 X 26
grid on the unit square. GCVPACK was used to es-
timate f given y by a thin-plate smoothing spline
(Wahba and Wendelberger 1980). The thin-plate
spline used here is the solution to the minimization
problem: find £, (in an appropriate function space)
to minimize

B R,

l n
=3~ fIx])?

i=1
ix [ 2t 4 L dnde, 32)
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where X = (x, x;). An analytical representation for f;
and for the influence matrix A(M) that satisfies
{Ax(D], AIX(2)], - -+, Alx(n)]1}" = A(N)y is part
of GCVPACK. GCVPACK uses matrix decomposition
methods to compute

y'[l =AMy

V(N =
N =TT - AMI)

(3.3)

to a large number of significant figures. The solid line
in Fig. 1 is a plot of V(M) as a function of \ as com-
puted by GCVPACK. The dotted line is R(\), the pre-
dictive mean-square error (PMSE ) function, defined by

: o
RO =+ 2 {fIx(D] = Alx(D1}2.". (3.4)

Function R(\) can be plotted only in a synthetic ex-
periment when the truth is known and it is used to check
the performance of the GCV in synthetic experiments.
Note that the minimizer of V (\), indicated by a dia-
mond in the figure, is very close to the minimizer of
R(M\), indicated by the circle. This is as predicted by
the theory. [See Wahba (1990) or Wahba and Wen-
delberger (1980) for further discussion and refer-
ences.] The dashed line in Fig. 1 is a plot of RanV (\),
given by

n'y' [ - ANy
{n7'&'[1 - AN)1EY?

- RanV()\) = (3.5)

0.015° 0.020 0.025 0.030

0.010

0.005

0.0

logyo(A)

FiG. 1. The exact GCV function and one replicate of the random-
ized GCV function with the PMSE function. Solid line, V(A\); dotted
line, R(\); dashed line, RanV(\).
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where £ came from a random number generator ¢
~ X(0,1yand Tr[I — A(\)]in V(A) has been replaced
by a randomized estimate of it. It is important to note
that the same £ is used for all values of \. Figure 2
contains the exact GCV function and PMSE function
of Fig. 1 on an expanded scale as well as 10 replicates
of RanV. Each replicate represents a different £ ob-
tained from a random number generator. It can be seen
that the minimizers of all 10 replicates do an excellent
job of estimating the minimizer of R(\), even though
the heights of the replicates vary.

b. Randomized GCV and the iterative solution of
extremely large variational problems

In modern operational global-scale numerical
weather prediction models, some iterative method, with
k iterations, is used to obtain an approximate solution
£* to the minimizer of

[y - K(x)1'S7'[y - K(x)1 + x'Z7'x, (3.6)

given K, §7', and £'. See for example Parrish and
Derber (1992), who use a conjugate gradient method,
and Lorenc et al. (1991) and Lorenc (1992), who dis-
cuss successive correction and other methods. The L-
BFGS algorithm (Liu and Nocedal 1989) is also pop-
ular. The particular method used is not important in
what follows. We assume only that there is an opera-
tional code that we call the ‘‘black box’’ that, given K,
§™', 27!, and y, returns (after k iterations ) * = £*(y),
which is an approximation to the minimizer £ of (3.6).
This black box can be augmented to return K(%*). In
what follows, we assume that $ is known and incor-
porated into § = 87 "%y and K = $72K, and we drop
the tilde on y and K in the rest of this section. The black
box may now be used to obtain a randomized estimate
of the trace of the matrix that plays the role of A(8),
where now @ represents the unknown parameters (in-
cluding \). Even if K is linear in x, the relationship
between y and K[%*(y)] is not necessarily linear in y
if the iteration is stopped before the exact minimizer X
has been found. This happens in, for example, the con-
jugate gradient algorithm if k < n. Thus, we no longer
have an influence matrix A(@) that satisfies K%,
= A(@)y but an influence operator A*(8, y) defined by
K[%5(y)] = A*(8, y). Define the matrix A’ (6) by

K(%6) =~ A5 (0)y; (3.7)

that is, A%(0) is the linearized version of the influence
operator implicitly defined by the black box, evaluated
at y. If the black box is always used to find the ap-
proximate minimizer of (3.6), then it is actually
TrA% (0) and not TrA(0) that should be used in com-

2 In Parrish and Derber and elsewhere y represents a forecast in-
crement; see section 4a.
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]

0.005
1
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.

0.0
-

logy(M)

FiG. 2. Ten replicates of the randomized GCV function along with
the exact GCV function and the PMSE function. Solid line, V(\);
dotted line, R(\); dashed lines, 10 replicates of RanV()).

puting the GCV function V(@) of (2.11). In any case,
let £ come from a random number generator with &
~ (0, ot) and let Ri(y + £) be the estimate for x
obtained by substituting (y + £) for y in (3.6) and by
using the black box to obtain the approximate mini-
mizer. Then

KIZi(y + )1 =~ AL (O)(y + §).

A randomized estimate of TrA% (8) is given by

(3.8)

1
pr (AL (B + £ - A0yl (39)

1
~ 2§ (KIRN + O] - KR}, (3.10)

where we have written 5(y + £) for &5 based on the
datay + £.

In the case of linear iterative methods, such as the
Richardson—-Landweber—Fridman-Pickard—Cimino
(RLFPC) iteration (with K linear), simple exact for-
mulas can be obtained for A%(8), not depending on y
(see Wahba 1987). It is shown there and in Fleming
(1990) that early stopping of the iteration with such a
linear method is a form of regularization, or low-pass
filtering. Roughly speaking, a stopped iteration tends
to project the exact solution toward eigenvectors cor-
responding to large eigenvalues, and these eigenvectors
tend to be smooth. Thus, both &, the number of itera-
tions, and A\, a multiplier on X', can be thought of as
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smoothing or regularization parameters. It was sug-
gested that GCV could be used to choose both &k and A
simultaneously in Wahba (1987); however, no proce-
dure for carrying out the calculations with large data-
sets was provided there.

We have constructed a semirealistic toy problem to
test and demonstrate the feasibility and efficiency of
choosing both k and X via GCV, in conjunction with
the randomized trace estimation of (3.10). Rather than
use an RLFPC algorithm for this demonstration, we
have chosen to use a preconditioned conjugate gradient
algorithm, since conjugate gradients are used opera-
tionally and are well known to have favorable proper-
ties. The experimental setup we use here is a part of
the experimental setup in Gao (1993) and Gao et al.
(1995, unpublished manuscript). European Centre for
Medium-Range Weather Forecasts (ECMWF) Grid-
ded Level IIIB First GARP (Global Atmospheric Re-
search Program) Global Experiment data for the 500-
mb height for 2 January 1979 was used to obtain a
spherical harmonic representation for this 500-mb
height field of the form

30 !
f(Py=3% ¥ xYi(P),

I=0 s=-1I

(3.11)

where P is a point on the sphere and the Y, are spherical
harmonics. This representation was obtained by solving
a variational problem given the gridded data. The amount
of smoothing was chosen to make the resulting contour
plots match the ECMWF plots visually (see Gao 1993
for details). Simulated observational data at n = 600
North American radiosonde stations was generated by

=f(P) + e, (3.12)

where € = (€, * -, €e00)’ ~ X(0, o21) and the P; are
station locations. We chose 0 = 9 m to represent ob-
servational error. A spline on the sphere analysis anal-
ogous to Wahba and Wendelberger (1980) is obtained
by letting &, = (£oox, X100, - +) be the minimizer of
n 30 {
Z [)’z - Z 2 xlels(Pi)]2
i=1 1=0 s=—1

30 {

+2Y Y DU+ DIPxE.

1=0 s=—I

The penalty functional J(f) = 2, [(D)(I + 1)1%x7 is
a multiple of J(f) = fJ (Af)?, where A is the Lapla-
cian on the sphere (see Wahba 1981, 1982a). Letting
K be the 600 X 960 matrix with entries Y, (P;) and
letting D be the diagonal matrix with Is, Is entries [{(]
+ 1)]?, then the minimizer X, satisfies

(K’K + \D)#, = K'y.

A preconditioned conjugate gradient algorithm with
(symmetric, invertible ) preconditioner C replaces x, by
C 'win (3.14) and solves for w in

(3.13)

(3.14)
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C ' (K'K+\D)C'w=C 'K’y (3.15)

(see Golub and van Loan 1989, section 10.3).
In the experiment below C was taken as [diag(K'K
+ AD)]'? The - starting point x° of the iteration was
taken as x° = D'K’y, where D! is a diagonal ap-
proximation to (K’K + \D)~' obtained by replacing
the lower right 959 X 959 dimensional block of (K'K
+ AD) by its diagonal and by inverting analytically.

Following (2.13) we define the predictive mean-
square error as

1 n
RO K = 2 AP = f(PDY?, (3.16)

where now

fiP) = 2 LY (P), (3.17)

&= (), (3.18)
and %% is the approximate solution after k iterations.
Figure 3 gives a plot of R'?(\, k) as a function of \
and k, where k is the number of iterations in the con-
jugate gradient iterative solution of (3.15).

This kind of plot is, of course, available only in a sim-
ulation study where the ground truth is known; R(\, k)
is minimized at around —log,,(\) = 4.5, and k =
Note that the value of R'?(\, k) at the minimum is about
6 m. Assuming that good approximation to these optimal
values of X and k can be found, the smoothing procedure
has resulted in a smoothed minus true standard deviation
that is about one-third less than the observational standard
deviation. (This would be reduced further if unbiased
forecast data were also available.)

Figure 4 gives a plot of the randomized version of
the GCV function of (2.11) as a function of k and \.
The randomized GCV function is computed as

_ n”ly — K&{|?
RV 0 = g 16— Kk + )
- K&5()1)))?

(3.19)

where € came from a random number generator, &
~ (0, o). The numerator in (3.19) is the mean resid-
ual sum of squares, and the expression in the denominator
is the randomized trace estimate; compare (2.11). RanV
is based only on the data. The same & was used for the
entire plot. The standard deviation o for the random vec-
tor & should be chosen carefully if A%(8)y is not linear
iny. If o, is too smali, then the calculation of the differ-
ence in (3.10) may be unstable, while if o, is too large,
the behavior at A% (6) may not be captured. After a little
trial and error we found that a o, of the order of but
smaller than the presumed o of the noise in y worked
well. In these experiments we took o, = 3 m = 1/30.
The value of RanV!/? at the minimum (11.35) is
roughly an estimate of [min, ,R(\, k) + 0%]"? = 10.8,
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as predicted by the theory (see Wahba 1990). The score is located in a region for which the PMSE score
striking thing to observe about RanV is how well it R'/? is less than or equal to 6.25, so that if a value of
actually estimates R(\, k) + o2. The minimum GCV X and a stopping rule k based on minimizing RanV were
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used, the ratio of the resulting predictive méan-square
error to the minimum possible predictive mean-square
error (known as the inefficiency) would be no larger
than 6.25/5.99 = 1.04.

Before this experiment was conducted we had con-
jectured that there would be a minimum in R(A, k) and,
consequently, in RanV (A, k) at some value of k < n,
but here the minimum is fairly shallow and the (X, k)
surfaces flatten out as-a function of k as k gets larger.
In practice, of course, one could stop as soon as the
surface has flattened out. In another experiment, where
the noise standard deviation o was inadvertently set to
the unrealistically large value of 120 m, there was a
very distinct minimum in k, suggesting that k was an
important regularization parameter. We also conjec-
tured that the best A might depend on & (that is, smaller
A might want a smaller k, due to a regularizing effect
of the smaller number of iterations) but that is not ev-
ident in Fig. 3, since the minimizing \ appears not to
depend on k. However, we do not rule out this phe-
nomena in other experiments or in practice.

4. Other applications
a. Objective analysis and Kalman filtering

In an NWP analysis such as the spectral statistical
interpolation (Parrish and Derber 1992 ), one may con-
sider that the forecast x = x + 0 where x is the true
state vector® and % is modeled as  ~ X(0, S r), where
S, = §,(0) is the putative forecast error covariance,
depending on some parameters 6, and y = Kx + e,
where € ~ X(0, 0°S). Then the Gandin (Bayes) es-
timate x¢ of x is the minimizer of

1
— (¥~ Kx)'$7!(y — Kx)

+(x —x)'S;'(x —x). (4.1)
Let y* = y — Kx”/ be the so-called innovation vector
and let 8 = x“ — x/ be the analysis increment. Repa-
rameterizing S, as b3(0), with b and 0 to be estimated
and setting A = o?/b, then 8° is the minimizer of
(y* —K&)'S!(y* —KS8) + \o'21(8)6. (4.2)
Then X and (estimable) @ may be obtained as the min-
imizers of
RanV (0, \)
_ n”'(y* — K85,)'S™'(y* — Ké3,)
[n~'(oc?&' (€ — (ST'[KdG(y* + 8'%¢)
- K&, (y")1IN1?
(4.3)

where 8§, is the minimizer of (4.2).

* This is a fiction of course. We omit discussion of the relationship
between the true atmosphere and the best vector representation of it
in a model.
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In the context of the (linearized) Kalman filter the
forecast error covariance at time ¢, call it §;, is modeled
by

sf,t =M. P_M_, +Q_, (44)

where M, is the operation that produces x/, the fore-
cast at time ¢, in terms of the analyses X, at time ¢
— 1, by x/ = M_x,, Q,_, is the model error co-
variance matrix and P{_, is the analysis error covar-
iance at time ¢t — 1; P?, in theory satisfies well-
known recursion relations that we will not repeat
here. The (usual) Kalman filter produces x“, and
hence K&* = Kx* — Kx/, although not usually by
solving the variational problem. If Q,_;, = Q,_,(6)
and P_, = P_,(0) depend on unknown (identifia-
ble ) parameters, then they may be estimated by min-
imizing RanV of (4.3) with §; = $;,(0) given by
(4.4). Dee (1995) has estimated some of these pa-
rameters by maximum likelihood. He notes that
‘‘since the underlying assumptions are actually vi-
olated, the unknown quantities . . . should be re-
garded as calibration parameters, which do not nec-
essarily have any physical meaning.”” This makes
them candidates for estimation by GCV (see appen-
dix B).

b. Four-dimensional variational objective analysis

Assuming that there is no model error, the state x, is
related to the state x, by ‘

X =M_ {M_[ - -My(x0)1} = M,(x).

Let y, be a vector of observations at time ¢ related
tox, byy = K(x,) + €, € ~ X0, S,). A four-
dimensional variational data assimilation with the
model as a strong constraint, assuming that model
errors are negligible, would find the initial state x,
to minimize*

(4.5)

z {y: - K:[Mx(xo)] },st‘l {y, - K:[Mx(xo)]}
=0 .

+ (X — X*)'T7(x — x*), (46)

* Most (but not all) authors experimenting with four-dimen-
sional variational data assimilation have found that some pen-
alty term of the form (x, — x*)'7'(x, — x*)(x* may be 0) based
on balance or related physical considerations is necessary or at
least improves the analysis. From a mathematical point of view,
in order for a variational problem of the form (y — Kx)'S™'(y
— Kx) + x'37'x to have a unique minimizer it is necessary that
the intersection of the null spaces of K and ™' are empty; that
is, Kx = 0 and ¥~ 'x = 0 imply that x = 0. If this penalty term
is omitted and there are a large number of degrees of freedom
in the model, this may not be true (see also Bennett and Miller
1991). Of course the larger T is the less important this penalty
term may become. Balance or other penalty terms may also be
imposed at some time other than ¢,.



NOVEMBER 1995 WAHBA

where x * is a starting guess, perhaps a forecast. So-
phisticated methods for finding x, to minimize (4.6)
are a subject of great interest (see, for example, Zou
etal. 1992). Letting K = { Ko[Mo()]1", Ki[M, (-)]’,
<o Ke[MZ(5)1' ', we may write (4.6) as

[y — K(x)1'S7'[y — K(x0)]

+ (% — x*)'E7 (%0 — x¥).  (47)

Letting @ be unknown parameters in K and =, and
letting x34(y) and x§4(y + S'/°£) be the minimizers
of (4.6) based on datay and y + S'/2£, respectively,
the randomized GCV estimate of @ is found by min-
imizing

-1
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RanV (6)

_ n Yy - KIx8s(y)]1}'S {y — KIxGs(y)]}
n'[o2E (& — (ST {KIx5s(y + §"8)]
- K[x§,(»)1INT?
(4.8)

If model errors are important, then one may define a
control variable x§ such that x5 = W, (&§), where x7 is
the analysis at time 7 and £ is an estimate of x§. Here,
x§ is no longer necessarily considered to be the state vector
at time 0 but rather a control variable that parametrizes
trajectories. A good estimate &§ of X is then one that pro-
vides a good analysis x% and is not necessarily the best
estimate of the state at time ¢t = 0; 8§ = £§, is taken as
the minimizer of

{yr — Ko [M(x5)1)'S7 {yr — Ko IM-(x)1} + X {y, — KIM(x5)1)' [V.(8) + 817

=0

X {3, — KIM(x5)1} + (x5 — x*)'[Vo(8) + Z] 7' (x5 — x%),

where the V,(0) are included to compensate for model
error. Note that this formulation is consistent with the
desire to estimate x; as well as possible, and then it
would be expected that the V, would increase going
backward in time, consistent with the desire to rely

Ranpanialv ( 0 ) =

(4.9)

more strongly on recent data when there is model error.
Again, consistent with the desire to obtain a good es-
timate of x,, one may then do a partial GCV, based
only on the data at time 7. In that case @ is chosen to
minimize

{yr — K [M(%60)1)'S7' {yr — K[ Mr(R50)1)

A longer version of this section with further details may
be found in Wahba et al. (1994).

5. Summary

We have demonstrated that the randomized trace
technique for computing GCV estimates of a smooth-
ing parameter gives essentially the same answer as tra-
ditional computational methods for datasets as small as
400. We have shown how this technique may be used
to choose the number of iterations when solving a var-
iational problem by an iterative method, while simul-
taneously choosing a smoothing parameter. Finally, we
have described how the technique may potentially be
used in the context of very large variational problems
as occur in operational three- and four-dimensional
data assimilation.
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APPENDIX A
Conditiens for the Validity of GCVY

Recalling that the eigenvalues of A are all in the
interval [0, 1], conditions on A given in the references
in section 2 roughly translate into a requirement that
for allowable values of \, 8, A(X, 8) essentially defines
a low-pass filter. This requires that a modest fraction
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of the eigenvalues of A are close to 1, and most of the
rest are close to 0. In addition, the signal Kx,.. should
have most of its energy concentrated in the passband
defined by A. Letting 4, = n™' TrA(\, 8) and p, = n™!
X TrA%(\, 0), the low-pass filter requirement is math-
ematically formulated as a requirement that yx, and
1}/ uy be small for \, @ near the minimizer of R. The
reader can translate these conditions on the eigenvalues
of A to a condition on the eigenvalues of the matrix
S$7'2KXK'S™'"2. Roughly speaking, it is required that
a small fraction of these latter eigenvalues be large and
most of the rest be small. It is cautioned that if the
(rescaled) (observational) noise € is strongly posi-
tively correlated, the GCV cannot be expected to ade-
quately separate it from the signal. This should not be
a problem for data such as radiosonde observations that
are spatially independent and whose vertical correlation
structure is fairly well understood. However, care must
be taken in cross-validating against data such as satel-
lite radiance observations whose error structure may be
highly correlated and poorly understood.

APPENDIX B
GCV and ML

Relationships between GCV and ML estimates, and
a third estimate, the unbiased risk estimate, are dis-
cussed in Wahba (1990b). According to statistical the-
ory (Cramer 1954 ), if the unknowns are parameters in
distributions of random variables, and all of the as-
sumptions concerning these random variables are true,
then maximum-likelihood estimates will in general
give the best estimates of the parameters, in the sense
of minimizing the variance of the distributions of the
estimates. If the statistical assumptions are sufficiently
violated, however, then the maximum-likelihood esti-
mates may fare relatively poorly with regard to other
criteria, such as mean-square error of prediction (see
Wahba 1985a). The GCV estimates have good prop-
erties irrespective of the nature of the second term in
(1.1), and, for example, this term may represent an
energy penalty and have nothing to do with a covari-
ance. The primary requirement for the validity of the
GCV estimates, aside from the condition described in
appendix A, is that the observation error covariance
matrix S is known sufficiently well that $'%¢ is close
to white. If the components of this vector are strongly
positively correlated, then the GCV may have difficulty
telling signal from noise. The randomized trace tech-
nique may also be used to estimate some special pa-
rameters in maximum likelihood estimates (see Wahba
etal. 1994).
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