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Abstract

Overview of regularization methods in reproducing ker-
nel Hilbert spaces and the representer theorem.Varieties
of cost functions, the bias-variance tradeoff, complex
penalty functionals and smoothing spline ANOVA mod-
els. An application to modeling of climate (global warm-
ing) data. Models with complex input and output struc-
ture.
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OUTLINE

1. Review of positive definite matrices and functions.

2. Reproducing kernel Hilbert spaces (RKHS) and
Gaussian processes.

3. Regulariztion problems in RKHS and the represen-
ter theorem.

4. Varieties of cost functions. (Univariate case)

5. The bias-variance tradeoff and adaptive tuning.

6. More complex penalty functionals (abstract ver-
sion).

7. SS-ANOVA, or, ANalysis Of VAriance in RKHS.

8. A time and space model for global warming.

9. Some models with multivariate complex structure.
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♣♣ 1. Positive definite matrices and functions.

Let T be an index set. A symmetric function of two
variables, K(s, t), s, t ∈ T is said to be positive defi-
nite (pd) if, for every n and t1, · · · , tn ∈ T , and every
a1, · · · , an,

n
∑

i,j=1

aiajK(ti, tj) ≥ 0.

In the case T = {1,2, · · · , N} K reduces to an N ×
N matrix. But we will be interested in a (limitless)
variety of other index sets-anything on which you can
construct a positive definite function:

T = (. . . ,−1,0,1, . . . )

T = [0,1]

T = Ed (Euclidean d-space)
T = S (the unit sphere)
T = the atmosphere
T = {♦,4,♥} (unordered set)
T = A Riemannian manifold
T = A collection of trees

etc, etc.
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♣♣ 1. Positive definite matrices and functions
(cont.).

For matrices A and B of appropriate dimensions, the
sum (A ⊕ B), and the (Kronecker) product,

A ⊗ B =











a11B . . . a1nB
a21B . . . a2nB

... ...
an1B . . . annB











are pd, and this carries over to positive definite func-
tions on arbitrary domains: Let

u, u′ ∈ T (1), v, v′ ∈ T (2)

s = (u, v), t = (u′, v′) ∈ T = T (1) ⊗ T (2)

K1(u, u′), K2(v, v′) be pd.

Then K ≡ K1 ⊗ K2:

K(s, t) = K1(u, u′)K2(v, v′)

is pd on T ⊗ T . Thus tensor sums and products
of pd functions on arbitrary domains provide an inex-
haustible source of models.
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♣♣ 2. Reproducing kernel Hilbert spaces (RKHS)
and Gaussian processes.

Recall: An RKHS (reproducing kernel Hilbert space)
is a Hilbert space HKof functions on a domain T with
all the evaluation functionals t : f → f(t) bounded.
That is, for each t ∈ T there exists a representer ηt ∈

HK such that f(t) =< ηt, f >HK
.

Furthermore, let K(s, t) =< ηs, ηt >HK
. Thus, K

is a uniquely determined pd function, and the famous
Moore-Aronszajn theorem says that the converse is
true: to each positive definite function on T ⊗T there
corresponds a unque RKHS HK , with

ηt(·) = K(t, ·).

ηt is the so-called ’representer of evaluation’ at t.

Remark: K is also the covariance of a zero mean
Gaussian process (GP): (Bayesian interpretations, large
GP literature in machine learning.)
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♣♣ 3. Regularization Problems in RKHS.

The canonical regularization problem in RKHS: Given

{yi, ti}, yi ∈ Y, ti ∈ T ,

and {φ1, · · · , φM}, M special functions defined on
T . Find f of the form

f =
M
∑

ν=1

dνφν + h

with h ∈ HK to minimize

Iλ{y, f} =
1

n

n
∑

i=1

C(yi, f(ti)) + λ‖h‖2HK
.

C is a convex function of f for each yi ∈ Y and it is
required that the minimizer of 1

n

∑n
i=1 C(yi, f(ti)) in

the span of the φν be unique. f(ti) may be replaced
by Li(f), where Li(f) is a bounded linear functional
on HK and well defined on the φν: For example:

Li(f) =

∫

T
Hi(s)f(s)ds.

For some H, observed derivatives can also be used.
So a wide variety of observation types can be used.
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♣♣ 3. Regularization Problems in RKHS (cont.), the
representer theorem.

Iλ{y, f} =
1

n

n
∑

i=1

C(yi, f(ti)) + λ‖h‖2HK
.

C measures ”fit to data”, ‖h‖2HK
is ”complexity” and λ

governs their tradeoff. The minimizer of I{f, y} has a
representation of the form:

f(s) =
M
∑

ν=1

dνφν(s) +
n

∑

i=1

ciK(ti, s).

d = (d1, · · · dM)′ and c = (c1, · · · , cn)′ are found
using

‖
n

∑

i=1

ciK(ti, ·)‖
2
HK

= c′Knc

where Kn is the n×n matrix with i, jth entry K(ti, tj).
If f(ti) is replaced by Li(f) then K(ti, ·) is replaced
by ξi obtained by applying Li to one of the arguments
in K, for example if Li(f) =

∫

T Hi(s)f(s)ds then

Li(K(t, ·)) =

∫

T
Hi(s)K(t, s)ds = ξi(t)
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♣♣ 4. Varieties of Cost Functions (Univariate Case).

C(y, f)

Regression
.........
Gaussian data (y − f)2

Bernoulli, f = log[p/(1 − p)] −yf + log(1 + ef)
Other exponential families other log likelihoods
Data with outliers robust functionals
Quantile functionals ρq(y − f)
.........
Classification: y ∈ {−1,1}
.........
Support vector machines (1 − yf)+
Other ”large margin classifiers” e−yf and other

functions of (yf)
..........

(MV) Density estimation: y ≡ 1 −yf +
∫

ef

(Here (τ)+ = τ, τ ≥ 0,= 0 otherwise,
ρq(τ) = τ(q − I(τ ≤ 0)).
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♣♣ 5. The bias-variance tradeoff and adaptive
tuning.

Iλ{y, f} =
1

n

n
∑

i=1

C(yi, f(ti)) + λ‖h‖2HK
.

Letting fλ be the minimizer:

fλ(t) =
M
∑

ν=1

dνφν(t) +
n

∑

i=1

ciK(ti, t).

As λ → ∞, fλ → the minimizer of 1
n

∑n
i=1 C(yi, f(ti))

in span {φν}, and as λ → 0, fλ → interpolate the
data. (if Kn is strictly pd). λ controls the bias-variance
tradeoff.
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♣♣ 5. The bias-variance tradeoff and adaptive
tuning (cont.).

Methods for choosing λ from the data:

• Gaussian Data: Generalized Cross Validation (GCV),
Generalized Maximum Likelihood (GML)(aka REML),
Unbiassed risk (UBR), others (google ”methods”
”choose” ”smoothing parameter” gave 2850 hits)

• Bernoulli Data: Generalized Approximate Cross
Validation (GACV) (XW96),other earlier related

• Support Vector Machines: GACV for SVM’s (WLZ00)
other related, esp. Joachim’s ξα method.

• Multivariate Density Estimation: GACV for density
estimation. (WLL02)

• All problems: Leaving-out-one, k-fold cross vali-
dation
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♣♣ 5. The bias-variance tradeoff and adaptive
tuning (cont.).

1979 Figure: A cubic smoothing spline-minimizer of
1
n

∑n
i=1(yi − f(ti))

2 + λ
∫

(f ′′(s))2ds
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Top to bottom: λ too small, λ too large, λ ’just right’.
Gaussian white noise, λ estimated by GCV.
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♣♣ 6. More complex penalty functionals, multiple
smoothing parameters (abstract version).

Let H be the direct sum of p orthogonal subspaces,

HK =
p

∑

β=1

⊕Hβ

In the penalty functional Iλ{y, f}, replace λ‖h‖2HK
by

p
∑

β=1

λβ‖P
βh‖2HK

≡
p

∑

β=1

λβ‖P
βh‖2Hβ

where P β is the orthogonal projection of h onto Hβ.
The representer theorem along with some rescaling of
components of K can be used to obtain the desired
representers with the multiple smoothing parameters
{λβ} explicitly available for tuning.
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♣♣ 7. Smoothing spline ANOVA, or, analysis of
variance in RKHS (SS-ANOVA).

t ≡ (t1, · · · , td) ∈ T ≡ T (1) ⊗ · · · ⊗ T (d)

f(t) = f(t1, · · · , td)).

Let dµα be a probability measure on T (α) and define
the averaging operator Eα on T by

(Eαf)(t) =

∫

T (α)
f(t1, · · · , td)dµα(tα),

giving the SS-ANOVA decomposition of f :

f(t1, · · · , td) = µ +
∑

α
fα(tα) +

∑

αβ

fαβ(tα, tβ) + · · ·

µ =
∏

α
Eαf

fα = (I − Eα)
∏

β 6=α

Eβf

fαβ = (I − Eα)(I − Eβ)
∏

γ 6=α,β

Eγf

... ... Eαfα = 0, EαEβfαβ = 0, etc.
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♣♣ 7. Smoothing spline ANOVA, or, analysis of
variance in RKHS (cont.).

The idea behind SS-ANOVA is to construct an RKHS
H of functions on T so that the components of the SS-
ANOVA decomposition represent an orthogonal de-
composition of f in H. Then RKHS methods can
be used to explicitly impose smoothness penalties of
the form

∑

α λαJα(fα) +
∑

αβ λαβJαβ(fαβ) + · · · ,
(where, however, the series will be truncated at some
point.)
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♣♣ 7. Smoothing spline ANOVA, or, analysis of
variance in RKHS (cont.).

Let H(α) be an RKHS of functions on T (α) with
∫

T (α) fα(tα)dµα = 0 for fα(tα) ∈ H(α), and let

[1(α)] be the one dimensional space of constant func-
tions on T (α).

Construct H as

H = ⊗d
α=1

[

[1(α)] ⊕H(α)
]

= ⊗d
α=1[1

(α)] ⊕
∑

j

H(α) ⊕
∑

α<β

[H(α) ⊗H(β)] ⊕ · · · ,

Factors of the form [1(α)] are omitted whenever they
multiply a term of a different form. Thus H(1) is short-
hand for H(1) ⊗ [1(2)]⊗ · · · ⊗ [1(d)] (which is a sub-
space of H).

The components of the ANOVA decomposition will be
in mutually orthogonal subspaces of H.
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♣♣ 7. Smoothing spline ANOVA, or, analysis of
variance in RKHS (cont.).

Consider

I =
d

∏

α=1

[Eα + (I − Eα)] =

d
∏

α=1

Eα +
d

∑

α=1

(I − Eα)
∏

β 6=α

Eβ

+
∑

α<β

(I − Eα)(I − Eβ)
∏

γ 6=α,β

Eγ + · · · +
d

∏

α=1

(I − Eα).

and note that the the terms match up with the expan-
sion of

H = ⊗d
α=1

[

[1(α)] ⊕H(α)
]

Jα(f) = ‖PH(α)
f‖2. (Details allowing for unpenal-

ized terms omitted here.)
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♣♣ 8. A Time and Space Model for Global Warming.

t = (t1, t2) = (x, P ), x = 1, · · ·30, (year) P = S
(latitude, longitude).

H =

[

[1(1)] ⊕ [φ] ⊕H
(1)
s

]

⊗

[

[1(2)] ⊕H
(2)
s

]

time space

φ is linear in time orthogonal to [1(1)]. H and f have
the (six term) decompositions given below:

H = [1] ⊕ [φ] ⊕ [H
(1)
s ] ⊕ [H

(2)
s ]

f(x, P ) = µ + dφ(x) + f1(x) + f2(P )
= mean + global + time + space

time main main
trend effect effect

⊕ [[φ] ⊗H
(2)
s ] ⊕ [H

(1)
s ⊗H

(2)
s ]

+ φ(x)fφ,2(P ) + f12(x, P )

+ trend + space−
by space time

effect interaction

20



These terms correspond to what meteorologists call
anomalies, deviations from some average. Our aver-
aging operator on time was the ordinary average and
the averaging operator on the sphere was integration.

A sum of squares of second differences penalty was
applied to the time variable, and a spline on the sphere
penalty [W81,82] was applied to the space variable.
There are four smoothing parameters for the last four
terms.

We [CWJT99] fitted average winter temperatures 1961-
90 from 1000 observing stations, n = 23,119 with
missing data. Use tensor product structure to fit, with
an EM-like algorithm [LWJ98] for missing data. (Fig-
ures next: Alan Chiang).

21



−150 −100 −50 0 50 100 150

−80

−60

−40

−20

0

20

40

60

80

Longitude

La
tit

ud
e

−40 −30 −20 −10 0 10 20 30 40

Mean of the historical average winter temperature (oC),
1961-1990.

(space main effect)

22



(a)

Year

W
in

te
r 

m
e
a
n
 t
e
m

p
e
ra

tu
re

(C
)

1
2
.5

1
3
.0

1
3
.5

1
4
.0

1960 1965 1970 1975 1980 1985 1990

(b)

Year

W
in

te
r 

m
e
a
n
 t
e
m

p
e
ra

tu
re

(C
)

9
.5

1
0
.0

1
0
.5

1
1
.0

1
1
.5

1960 1965 1970 1975 1980 1985 1990

(c)

Year

W
in

te
r 

m
e
a
n
 t
e
m

p
e
ra

tu
re

(C
)

1
4
.5

1
5
.0

1
5
.5

1
6
.0

1960 1965 1970 1975 1980 1985 1990

(d)

Year

W
in

te
r 

m
e
a
n
 t
e
m

p
e
ra

tu
re

(C
)

1
4
.5

1
5
.0

1
5
.5

1
6
.0

1960 1965 1970 1975 1980 1985 1990

(e)

Year

W
in

te
r 

m
e
a
n
 t
e
m

p
e
ra

tu
re

(C
)

1
4
.5

1
5
.0

1
5
.5

1
6
.0

1960 1965 1970 1975 1980 1985 1990

(f)

Year

W
in

te
r 

m
e
a
n
 t
e
m

p
e
ra

tu
re

(C
)

1
4
.5

1
5
.0

1
5
.5

1
6
.0

1960 1965 1970 1975 1980 1985 1990

Yearly average winter temperatures 1961-90 (oC): (a)
Historical (b)-(f) Five climate models. (mean + global
time trend + time main effect)



−150 −100 −50 0 50 100 150

−80

−60

−40

−20

0

20

40

60

80

Longitude

La
tit

ud
e

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

Linear trend of the historical average winter tempera-
ture (oC/yr), 1961-1990.

(trend by space term)

Disaster for Cross-Country Skiiers in the Midwest!
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♣♣ 9. Some models with complex multivariate
structure.

• Multivariate correlated Gaussian observations

f(t) = (f1(t), · · · fk(t)),

y = (y1, · · · , yK)′ = (f1, · · · , fK)′ + (ε1, · · · , εK)′

Can use

K(s, t) =











K11(s, t) . . . K1K(s, t)
K21(s, t) . . . K2K(s, t)

... ...
KK1(s, t) . . . KKK(s, t)











Formulas look the same as before (!) [W92] (Me-
teorological and other variables which are corre-
lated)
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♣♣ Some models with complex multivariate structure
(cont.).

• Multiple correlated Bernoulli observations. y =

(yjk, j = 1, · · · , J, k = 1, · · ·Kj) represents
correlated Bernoulli outcomes for a subject with
J endpoints and Kj repeated measurements on
each endpoint. Then, for example [GWKK01]

C(y, f, α) =

J
∑

j=1

Kj
∑

k=1

fjkyjk +
J

∑

j=1

∑

k1<k2

αjk1,jk2
yjk1

yjk2

+
∑

j1<j2

∑

k1,k2

αj1k1,j2k2
yj1k1

yj2k2

+... + α11,12,...,JKJ
y11y12....yJKJ

− b(f, α),

where the f ′s and α′s may depend on covariates
(b detail is omitted here). (J = 2 eyes, Kj = K

diseases)
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♣♣ 9. Some models with complex multivariate
structure (cont.).

• Class membership-Polychotomous penalized like-
lihood estimates. Observe class membership of
each subject and their covariates, Estimate non-
parametrically, the probability of being in each class
as a function of the covariates. [XL98]

• Class membership-Multicategory Support Vector
Machines. Observe class membership and co-
variates and estimate the vector with 1 in the jth
position if the subject is in class j, and −1

(k−1)
oth-

erwise. [LLW02]

These two class membership models will be discussed
in Lecture III.
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♣♣ Bottom Line

A very broad variety of nonparametric regression and
classification problems can be solved via the use of
optimization problems in RKHS!

Wald II: Likelihood Basis Pursuit (LPB) for model se-
lection.
Wald III: Polychotomous penalized likelohood and Mul-
ticategory Support Vector Machines for categorical ob-
servations.
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