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iAbstractWe consider the penalized likelihood method with smoothing spline ANOVA for estimating non-parametric functions to data involving a polychotomous response. The �tting procedure involvesminimizing the penalized likelihood in a Reproducing Kernel Hilbert Space. One Step BlockSOR-Newton-Raphson Algorithm is used to solve the minimization problem. Generalized Cross-Validation or unbiased risk estimation is used to empirically assess the amount of smoothing (whichcontrols the bias and variance trade-o�) at each one-step Block SOR-Newton-Raphson iteration.Under some regular smoothness conditions, the one-step Block SOR-Newton-Raphson will producea sequence which converges to the minimizer of the penalized likelihood for the �xed smoothingparameters. Monte Carlo simulations are conducted to examine the performance of the algorithm.The method is applied to polychotomous data from the Wisconsin Epidemiological Study of Di-abetic Retinopathy to estimate the risks of cause-speci�c mortality given several potential riskfactors at the start of the study. Strategies to obtain smoothing spline estimates for large data setswith polychotomous response are also proposed in this thesis. Simulation studies are conducted tocheck the performance of the proposed method.
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1Chapter 1Introduction1.1 MotivationIn many demographic medical studies, records of attribute vectors as well as records of the outcomefor each example (patient) for n examples are available as training data. Usually, the outcome isa categorical random variable that takes on a �nite number of values (nominal) which we refer toas classes. This is a multiple classi�cation problem in statistics if we want to predict the outcomebased on the attribute vectors. In some other situation, we might be interested in the estimationof the class probability given the attribute vectors.Many methods have been proposed for the multiple classi�cation problems. One of the pop-ular modern multiple classi�cation techniques is CART (Breiman, Friedman, Olshen and Stone,1984), which approaches the multiple classi�cation problem using recursive partitioning techniques.Hastie, Tibshirani and Buja (1994) introduce 
exible discriminant analysis, which combines non-parametric regression techniques with discriminant analysis. Villalobos andWahba (1983) proposedclassi�cation using an approach of estimating the posterior class probability based on maximumpenalized log likelihood estimation using multivariate thin plate splines. Bose (1994) proposesclassi�cation using splines which employs least squares regression and additive cubic splines. InComputer Sciences, neural networks is one of the popular techniques for classi�cation. See Ripley(1994) for details.It can be shown that the optimal classi�cation rule predicts Y to beargmaxkP (Y = kjX). Most of the popular classi�cation methods try to �nd argmaxkP (Y = kjX)without precise estimation of the conditional class probability. For multiple classi�cation problems,it is assumed that any two examples with the same attribute vector will always be in same class,whereas in some studies this is not necessarily the case. For example, in medical studies two pa-tients with the same attribute vector will not necessarily have the same medical outcome. Clearly,multiple classi�cation methods are not useful in such applications. Instead, we are more interestedin estimating the probability of a particular outcome given the attribute vector.A popular technique used to obtain an estimate of all the conditional class probabilities is mul-tiple logistic regression (polychotomous regression). Traditionally, we assume linear (parametric)forms for all the logit functions to be estimated. The details of the linear polychotomous regressiontechniques can be found in Hosmer and Lemeshow (1989). However, the linear assumption or evenquadratic or cubic models may not be adequate in some applications , and the results obtained byassuming linear forms might be misleading.A variety of approaches have been proposed to allow more 
exibility than is inherent in simpleparametric models. We will not review the general literature, other than to note that regressionsplines have been used for this purpose by, for example Kooperberg, Bose and Stone (1997). In theirpaper, they combine MARS with polychotomous regression to provide estimates for conditional classprobabilities. On the other hand, the smoothing spline analysis of variance, as a nonparametricmethod, has been successfully used in many area as a tool for data analysis. Wahba, Wang, Gu,Klein and Klein (1995, referred as WWGKK) provide a general setting for applying smoothing



2spline ANOVA to data from exponential families. Their method is successfully applied to analyzemedical data with Bernoulli outcomes. This is a motivation to use smoothing spline ANOVA tomodel data with polychotomous response.In this thesis, we will investigate various approaches using smoothing spline ANOVA techniqueto obtain an estimate of the class probabilities for data with polychotomous responses. For mod-erate data sets, an iterative method based on penalized likelihood is proposed. For large data sets,two methods are proposed to overcome the computational di�culties. In one method, we proposea fast algorithm for a large data set with Bernoulli responses and model the polychotomous databased on the binary data algorithm. Alternatively, we can use the techniques employed in devel-oping the fast algorithm for binary data to speed up the iterative method based on the penalizedlikelihood for polychotomous data.1.2 Outline of the ThesisIn Chapter 2 of this thesis, we discuss the penalized polychotomous regression using SmoothingSplines Analysis of Variance. The penalized likelihood for the polychotomous response is estab-lished and the existence of the solution is investigated. We also review smoothing spline analysisof variance and apply it to the polychotomous regression.In Chapter 3, we propose a numerical method called `Block one-step SOR-Newton-Raphson'to solve the penalized polychotomous regression problem. A connection between the smoothingestimate and a Bayesian problem is also discussed in this chapter.In Chapter 4, we �rst introduce a fast algorithm to get the smoothing spline estimate for binarydata. A randomized version of generalized cross-validation is derived to choose the smoothing pa-rameters. An approximate solution is proposed to speed up the computation. Bayesian con�denceintervals are constructed for the approximate solution. To obtain smoothing spline estimate forlarge data sets with polychotomous response, we will discuss two possible strategies: (1) using thefast algorithm for binary data; (2) deriving a randomized GACV formula similar to that for binarydata.To illustrate the penalized polychotomous regression method, we apply it to investigate the as-sociation between some risk factors and the cause-speci�c mortality in a data set collected form theWisconsin Epidemiologic Study of Retinopathy. This is done in Chapter 5. Finally, a concludingremark is made in Chapter 6.



3Chapter 2Penalized Polychotomous Regressionusing smoothing spline ANOVA2.1 Polychotomous Logistic RegressionAssume that the categories of the outcome variable, Y , are coded 0; 1; � � � ; k: Suppose the distri-bution of Y depends on the predictors x1; � � � ; xd, where x = (x1; :::; xd) ranges over the subset Xof Rd. Now let x be distributed as a random vector, i.e. consider a random pair (X;Y ). SupposeP (Y = ijX = x) > 0 and letfi(x) = log P (Y = ijX = x)P (Y = 0jX = x) ; i = 1; � � � ; k; (2.1.1)then P (Y = ijX = x) = exp(fi(x))1 + exp(f1(x)) + :::+ exp(fk(x)) ; i = 1; � � � ; k; (2.1.2)P (Y = 0jX = x) = 11 + exp(f1(x)) + :::+ exp(fk(x)) : (2.1.3)We refer to ( 2.1.1) as the polychotomous regression model; when k = 1 it is referred to as thelogistic regression model.Denoting pi(t) = P (Y = ijX = t), we can write down the conditional likelihood of observing ygiven covariate X=t as follows,kYi=0 pi(t)I[y=i] = expf kXi=1 I[y = i]fi(t)� log(1 + kXi=1 efi(t))g;so the negative log-likelihood is� kXi=1 I[y = i]fi(t) + log(1 + kXi=1 efi(t)):Suppose we have observations (t1; y1); : : : ; (tn; yn), then the negative log-likelihood based on theobservations is L(y; f1; :::; fk) = � nXj=1f kXi=1 I[yj = i]fi(tj)� log(1 + kXi=1 efi(tj))g: (2.1.4)



4If we denote yij = I[yj = i], the negative log likelihood can be written as follows,L(y; f1; :::; fk) = nXj=1f� kXi=1 yijfi(tj) + log(1 + kXi=1 efi(tj))g: (2.1.5)The usual parametric approach to the polychotomous regression problem is to use linear modelfi(x) = �i0 + �i1x1 + � � �+ �idxd:The parameters �ij are obtained by the maximum likelihood method. The negative log likelihoodis convex and twice di�erentiable, and iterative procedure such as Newton-Raphson method can beused to get the ML estimate of the parameters.2.2 Penalized Polychotomous RegressionTo achieve greater 
exibility, many authors proposed nonparametric regression models to relaxthe rigid linear assumption. In particular, the penalized likelihood smoothing spline for data fromexponential families (O'Sullivan, 1983; Wahba et al., 1995) assumes that the function is smoothbut imposes some roughness penalty on the function. Following this approach, we can assumeeach logit function fi is smooth but imposes a roughness penalty J(f1; � � � ; fk) on the functions.More precisely, we will assume that fi 2 Hi, where Hi is a reproducing kernel Hilbert space.A reproducing kernel Hilbert space(RKHS) is a Hilbert space of functions on X in which theevaluation functional is continuous (Aronszaj, 1950). The penalized polychotomous regressionestimates f1; � � � ; fk are obtained by �nding fi 2 Hi to minimize the penalized likelihoodL�(f1; � � � ; fk) = � nXj=1 lj(f1; � � � ; fk) + J�(f1; � � � ; fk); (2.2.1)where the �rst part is the negative log-likelihood and lj = Pki=1 yijfi(xj) � log(1 +Pki=1 efi(xj)).It measures the goodness of �t. The second part is the penalty function. For simplicity and easyinterpretation, we will assume that the penalty function is in additive form, i.e.,J�(f1; � � � ; fk) = kXi=1 �iJ i(fi):Suppose Hi = Hi0 �Hi1, where Hi0 is �nite dimensional ( the \parametric" part, usually poly-nomials), and Hi1 (the \smooth" part) is the ortho-complement of Hi0 in Hi. Let J i(f) = jjP i1f jj2,where P i1 is the orthogonal projection operator in Hi onto Hi1, then the penalized likelihood willbecome L(f1; � � � ; fk; �) = � nXj=1 lj(f1; � � � ; fk) + kXi �ijjP i1fijj2: (2.2.2)Denoting J? be the null space of H1 � � � � � Hk with respect to the penalty function J�, we havethe following theorem.Theorem 2.1 If the minimizer of ( 2.2.2) exists in J?, it uniquely exists in H1 � � � � � Hk



5Before we prove this theorem, we will �rst state two lemmas.Lemma 2.1 L(y; f1; : : : ; fk) in (2.1.5) is a convex function of f1; : : : ; fk:Proof. See page 438, example 5.3 of Theory of Point Estimation(Lehmann,1983).The following Lemma is Theorem 4.1 from Gu and Qiu (1993).Lemma 2.2 Suppose L(g) is a continuous and strictly convex functional in a Hilbert space H =J? �HJ , where HJ has a square norm J(g) and J? is the null space of J(g) of �nite dimension.If L(g) has a minimizer in J?, then L(g) + J(g) has a unique minimizer in H.Proof of Theorem 2.1Let H = fgjg(x; i) = fi(x); i = 1; : : : ; k; where fi 2 Hig.Then H is a Hilbert space with squaresemi-norm J(g) = J(f1; : : : ; fk). Let L�(g) = L(y; f1; :::; fk). By Lemma 2.2, it su�ces to showthat L�(g) is continuous and strictly convex in H. Continuity is obvious. Strict convexity followsfrom Lemma 2.1. Q.E.D.2.3 Smoothing Spline Analysis of VarianceSmoothing Spline Analysis (SS-ANOVA) models for Gaussian data are described in some generalityin Wahba (1990, Chapter 10) where references to the previous literature are given. Wahba et al.(1995) and others, discussed further various aspects of these models. The code RKPACK (Gu 1989)will �t speci�ed SS-ANOVA models given Gaussian data. The code GRKPACK (Wang 1997) whichcalls subroutines in RKPACK will �t speci�ed SS-ANOVA models given data from one parameterexponential families.Given a fairly arbitrary function f(x1; � � � ; xd), a (functional) ANOVA decomposition of f maybe de�ned asf(x1; :::; xd) = �+ dX�=1 f�(x�) +X�� f��(x�; x�) + :::+ f1;:::;d(x1; :::; xd); (2.3.1)where the f� are the main e�ects, f�� are the two factor interactions, and so on. For those fsatisfying some measurability conditions, a unique ANOVA decomposition of the above form canalways be de�ned as follows. Let d�� be a probability measure on T (�) and de�ne the averagingoperator E� on T by (E�f)(x) = ZT (�) f(x1; :::; xd)d��(x�): (2.3.2)Then the identity is decomposed asI =Q�(E�) + (I � E�))=Q� E� +P�(I � E�)Q� 6=� E� +P�<�(I � E�)(I � E�)Q
 6=�;� E
+:::+Q�(I � E�) (2.3.3)The components of this decomposition generate the ANOVA decomposition of f of the form (2.3.1)by C = (Q� E�)f; f� = ((I � E�)Q� 6=� E�)f; f�� = ((I � E�)(I � E�)Q
 6=�;� E
)f , and so forth.The idea behind Smoothing Spline ANOVA is to construct an RKHS H of functions on T sothat the components of the SS-ANOVA decomposition represent an orthogonal decomposition off in H. Then RKHS methods can be used to explicitly impose smoothness penalties of the form



6P� ��J�(f�) +P�� ���J��(f��) + :::, where, however, the series will be truncated at some point.This is done as follows. Let H(�) be an RKHS of functions on T (�) with RT (�) f�(x�)d�� = 0 forf�(x�) 2 H(�), and let [1(�)] be the one dimensional space of constant functions on T (�). ConstructH as H = dYj=1(f[1(�)]g � fH(�)g) = [1]�X� H(�) �X�<�[H(�) 
H(�)]� : : : (2.3.4)where [1] denotes the constant function on T . With some abuse of notation, factors of the form[1�] are omitted whenever they multiply a term of a di�erent form. Thus H(�) is a shorthand for[1(1)] 
 � � � 
 [1(��1)] 
 [1(�+1)] 
 � � � 
 [1(d)] (which is a subspace of H). The components of theANOVA decomposition are now in mutually orthogonal subspaces of H. Note that the componentswill depend on the measures d�� and these should be chosen in speci�c application so that the�tted mean, main e�ects, two factor interactions, etc. have reasonable interpretations.Next, H(�) is decomposed into a parametric part and a smooth part, by letting H(�) = H(�)� �H(�)S , where H(�)� is �nite dimensional (the "parametric" part) and H(�)S (the "smooth" part) isthe ortho-complement of H(�)� in H(�). Elements of H(�)� are not penalized through the device ofletting J�(f�) = kP (�)S f�k2 where P (�)S is the orthogonal projector onto H(�)S . [H(�) 
H(�)] is nowa direct sum of four orthogonal subspaces: [H(�) 
H(�)] = [H(�)� 
H(�)� ]� [H(�)� 
H(�)S ]� [H(�)S 
H(�)� ]� [H(�)S 
H(�)S ]. By convention the elements of the �nite dimensional space [H(�)� 
H(�)� ] willnot be penalized. Continuing this way results in an orthogonal decomposition of H into sums ofproducts of unpenalized �nite dimensional subspaces, plus main e�ects `smooth' subspaces, plustwo factor interaction spaces of the form parametric 
 smooth, smooth 
 parametric and smooth
 smooth and similarly for three and higher factor subspaces.When a model is chosen, we can regroup and write the model space asM = H0 � qXl=1 Hl; (2.3.5)whereH0 is a �nite dimensional space containing functions which are not going to be penalized. Thenorms on the composite Hl are the tensor product norms induced by the norms on the componentsubspaces, jjf jj2 = jjP0f jj2+Pql=1 jjPlf jj2, where Pl is the orthogonal projector inM onto Hl. Thesmoothing spline ANOVA estimate of f is the solution to the following variational problemminf2Mf nXi=1(yi � f(xi))2 + n qXl=1 �ljjPlf jj2g: (2.3.6)The �rst term in (2.3.6) is the sum of squared residuals which measures the goodness of �t whilethe second part is the penalty on roughness of the estimate. The �l's are smoothing parameterscontrolling the trade-o� between goodness of �t and roughness. These smoothing parameters canbe estimated from data by the generalized cross validation method or by the unbiased risk method(see Wahba 1990).2.4 Penalized Polychotomous Regression Using Smoothing SplineAnalysis of VarianceWe assume that the data are polychotomous response data and we have chosen a model spaceMi =Hi0�Pqil=1Hil for each logit function fi. As a direct generalization of (2.2.2) to multivariate functions



7and a direct generalization of (2.3.6) to polychotomous response data, a penalized polychotomousregression smoothing spline analysis of variance estimate is the solution to the following variationalproblem: minfi2Mi;i=1;��� ;kf� nXj=1 lj(f1j ; � � � ; fkj) + n2 kXi=1 qiXl=1 �iljjP il fijj2g; (2.4.1)where fij = fi(xj): The �rst part in ( 2.4.1) is the negative log likelihood. It measures the goodnessof �t. In the second part, P il is the orthogonal projector inMi onto Hil and jjP il f jj2 is a roughnesspenalty. The �il's are a set of smoothing parameters which controls the trade-o� between goodnessof �t and roughness of the estimate. We will discuss how to choose the smoothing parameters andsolve the variational problem in the next chapter. If we let �il = �i=�il, (2.4.1) becomesminfi2Mi;i=1;��� ;kf� nXj=1 lj(f1j ; � � � ; fkj) + n2 kXi=1 �ijjP i�fijj2�ig; (2.4.2)where P i� =Pqil=1 P il is the orthogonal projection in Mi onto Hi� =Pqil=1Hil andjjf jj2�i = jjP i0f jj2 + qiXl=1 ��1il jjP il f jj2;is a modi�ed norm of Mi indexed by �i = (�i1; � � � ; �iqi). We denote by Ril the reproducing kernelfor Hil under the original norm. It can be shown that �ilRil is the RK for Hil under the norm jj � jj�i .Thus the RK for Hi� under jj � jj�i is R�i = qiXl=1 �ilRil : (2.4.3)Since the RK of the tensor product space is the product of the RK's of the component space,the computation of the Ril 's is straightforward. For example, if RH(j)� (�; �) and RH(k)S (�; �) are theRK corresponding to the Hilbert spaces H(j)� and H(k)S respectively, the RK corresponding to thetensor product space H(j)� 
H(k)S isRH(j)� (xj(j1); xj(j2))RH(k)S (xk(k1); xk(k2));where xu(v) denotes the uth coordinate of the vth design point.Similar to Wahba (1990), we will show that the minimizer of the penalized likelihood for poly-chotomous response data is within a �nite dimensional linear space.Theorem 2.2 The solution to ( 2.4.2) has the formfi(t) = �i(t)T di + �i(t)T c; (2.4.4)where f�ivgMiv=1 is a set of basis functions spanning the null space Hi0, �i(t)T = (�i1(t); � � � ; �iMi(t)),�i(t)T = (R�i(x1; t); � � � ; R�i(xn; t)).



8Proof See Wahba (1990).Substituting ( 2.4.4) into ( 2.4.2), we can estimate ci and di by minimizingI�(c; d)= �Pnj=1 lj(�1(xj)T d1 + �i(xj)T c1; � � � ; �k(xj)Tdk+�k(xj)T ck) + n2 Pki=1 �iciTQ�ici (2.4.5)where Q�i is an n � n matrix with entry Q�i(l; j) = R�i(xl; xj). Since lj 's are not quadratic,(2.4.5) can not be solved explicitly. In the next chapter, we will discuss how to obtain the estimatenumerically.



9Chapter 3Fitting the Penalized PolychotomousRegression3.1 IntroductionAs mentioned in Chapter 2, we need to use numerical methods to obtain the solution of thepenalized polychotomous regression since a closed form solution can not be obtained. Since we caneasily obtain the gradient and Hessian of the penalized negative log likelihood, methods withoutusing the gradient and Hessian will not be considered. Technically, the Newton-Raphson algorithmcan be used to obtain the solution because it is a quadratic convergent algorithm. However, thecomputational complexity of the Newton-Raphson algorithm for this problem will be O((nk +M1 + � � � +Mk)3) since we need to solve a (nk +M1 + � � � +Mk)) � (nk +M1 + � � � +Mk) linearsystem in each iteration. Meanwhile this algorithm requires computer memory on the order ofO((nk +M1 + � � � +Mk)2). Usually, M1; � � � ;Mk are small so nk will decide the computationalcomplexity and the required memory in a given application. The Newton-Raphson algorithm willde�nitely be desirable when nk is not large. However, nk might be large or very large in lots ofapplications, and the Newton-Raphson will not be desirable in these situations.In this chapter, an iterative method called Block one-step SOR-Newton-Raphson is proposedto solve the problem when n is moderate and nk is large. This method is a combination of theSOR method and the Newton-Raphson method. The computational complexity for this method isO(n3) and the convergence for this method is superlinear. We sacri�ce the convergent rate a littlebit while reducing the computational complexity dramatically in each iteration. Methods whichare designed to solve the problem when n is large will be considered in Chapter 4.We will �rst review the Nonlinear SOR method in Section 3.2. In Section 3.3 we discuss theimplementation of block one-step SOR-Newton-Raphson method to the penalized polychotomousregression problem. We discuss the method for choosing the smoothing parameters in Section3.4. Connections between the smoothing spline estimate of the penalize polychotomous regressionproblem and a Bayesian problem is investigate in section 3.5. Some Monte Carlo simulations areconducted in section 3.6 to illustrate the performance of the smoothing spline estimates.3.2 Block Nonlinear SOR methodsIn this section, we will review some iterative methods to solve a large nonlinear system.Assume we are concerned with the following nonlinear system8><>: f1(x1; � � � ; xm) = 0... ... ...fm(x1; � � � ; xm) = 0:



10By partitioning the x as x = (x1; � � � ; xp), and by grouping, the above nonlinear system will become8><>: F1(x1; � � � ; xp) = 0... ... ...Fp(x1; � � � ; xp) = 0:The basic step for the block nonlinear SOR is as follows. First, we solve the ith nonlinear systemFi((x1)k+1; � � � ; (xi�1)k+1; xi; (xi+1)k; � � � ; (xp)k) = 0 (3.2.1)for xi and set (xi)k+1 = (xi)k+!(xi�(xi)k). In order to obtain xk+1 = ((x1)k+1; � � � ; (xp)k+1) fromxk = ((x1)k; � � � ; (xp)k), we successively update the block component of x by the above methoduntil all components are updated. The ! in the updating formula is called the relaxation parameter.The process is called block nonlinear Gauss-Seidel method if we set ! equal to 1 in every update.See Ortega and Rheinboldt (1970) for details.Notice that in the block nonlinear SOR process described above, we still need to solve a nonlinearsystem in each update. In most applications, we usually don't have a closed form solution for thenonlinear system (3.2.1) and the solution should be obtained by the Newton-Raphson method. Inthis case, the nonlinear process is called block nonlinear SOR-Newton-Raphson.Furthermore, if we use one step Newton-Raphson iteration (the value from previous SOR iteratetaken as the initial value) to approximate the solution of the nonlinear system (3.2.1), the nonlinearSOR process is called the block one-step SOR Newton-Raphson method accordingly. Speci�cally,the updating formula for the block one-step SOR-Newton-Raphson is(xi)k+1 = (xi)k+1 � ![@iFi(yk;i)]�1Fi(yk;i); (3.2.2)where yk;i = ((x1)k+1; : : : ; (xi�1)k+1; (xi)k; : : : ; (xl)k):In the statistics literature, the nonlinear system usually arises from a minimization or maximiza-tion problem in which we need to �nd a set of parameters to minimize (or maximize) a function.Speci�cally, suppose we are going to �nd x 2 Rm to minimize a twice di�erentiable multivariatefunction g(x), then the updating formula for the block one-step SOR-Newton-Raphson method willbecome (xi)k+1 = (xi)k � ![r2iig(yk;i)]�1rig(yk;i); (3.2.3)where r2iig is the submatrix of the Hessian and rig is the sub-vector of the gradient.By putting some conditions on the nonlinear system we are going to solve or the function we aregoing to minimize, we will have some convergence properties for the general block nonlinear SORand the block one-step SOR-Newton method. We will state the convergent results which appearedin Ortega and Rheinboldt (1970) in the remain of this section.Let F 0(x) = D(x) � L(x) � U(x) be the decomposition of F 0(x) into block diagonal, strictlyblock lower-triangular and strictly block upper-triangular parts, whereD(x) = 0BBBB@@F1@x1 0 � � � 00 . . . ...... . . . 00 � � � 0 @Fp(x)@xp
1CCCCA :



11For ! > 0, let H!(x) = [D(x)� !L(x)]�1[(1� !)D(x) + !U(x)]: (3.2.4)The local convergence of the block nonlinear SOR procedures is stated in the following lemma. Theproof of this lemma can be found in Ortega and Rheinboldt (1970).Lemma 3.3 (Local Convergence and Rate of Convergence) Assume F : Rm ! Rm be con-tinuously di�erentiable over a compact set S0, and x� 2 S0 such that F (x�) = 0. If D(x�) isnonsingular and �(H!(x�)) < 1, then there exists an open ball S = S(x�; �) in S0 such that for anyx0 2 S, both the block nonlinear SOR and the block one-step SOR-Newton sequence converge to x�,and they share the same convergent factor R1(xk; x�) = �(H!(x�)).We will state the global convergence result in term of the minimization problem.Lemma 3.4 (Global Convergence) Assume g 2 C2(Rm) , r2g(x) > 0 and S0 = fxjg(x) �g(x0)g is bounded, then for suitable chosen relaxation parameter !, the iterative sequence from theblock one-step SOR-Newton method converges to the unique solution x�.The proof of the above lemma can be found in Schechter (1968). From the above lemma, we can seethat in general the block one-step SOR-Newton-Raphson method with �xed ! is not guaranteedto converge globally. In practice, we can either change the initial value or tune the relaxationparameter to make the algorithm converge. The following lemma adapted from Varga (1962) canbe used to check the conditions for the local convergence.Lemma 3.5 Let A = D � E �ET be a symmetric positive de�nite matrix, and D is also positivede�nite. Denote H! = (D�!E)�1((1�!)D+!E). If D�!E is nonsingular for 0 � ! � 2, then�(H!) < 1 for 0 < ! < 2.By applying the above lemma, we have the following corollary.Corollary 3.1 If A = D�E�ET is symmetric positive de�ne and D is block diagonal matrix, E isstrictly block lower triangular matrix. If D is nonsingular, then for 0 < ! < 2, we have �(H!) < 1.According to Corollary 3.1, we note that if A is Hessian of a twice di�erentiable convex function,we will always have �(H!) < 1 for 0 < ! < 2. Speci�cally, the local convergent property holds ifwe use block nonlinear Gauss-Seidal or block one step Gauss-Seidal-Newton-Raphson method to�nd the minimizer of a twice di�erentiable convex function.3.3 Implementation of the AlgorithmIn this section, we will describe how to apply the block one step SOR-Newton-Raphson method toget the estimate for the penalized polychotomous regression numerically. ! will be taken to be 1in our implementation.For polychotomous response data, we havelj(f1; � � � ; fk) = � kXi=1 yijfi(xj) + log(1 + kXi=1 efi(xj)); (3.3.1)



12where yij = I[yj = i]: Let uij = �dlj=dfij , uTi = (ui1; � � � ; uin), wij = �d2ljdf2ij ,Wi = diag(wi1; � � � ; win),and Si = (�i(x1); � � � ; �i(xn)). Also, with abuse of notation, let fij = fi(xj) and fTi = (fi1; � � � ; fin).Then we have uij = �yij + e�i(xj)T di+�i(xj)T ci1 +Pl 6=i efl(xj) + e�i(xj)T di+�i(xj)T ci ; (3.3.2)wij = e�i(xj)T di+�i(xj)T ci1 +Pl 6=i efl(xj) + e�i(xj)T di+�i(xj)T ci 1 +Pl 6=i efl(xj)1 +Pl 6=i efl(xj) + e�i(xj)T di+�i(xj)T ci ; (3.3.3)hence @I�=@ci = Q�iui + n�iQ�ici, @I�@di = STi ui, @2I�=@ci@ciT = QiWiQi + n�iQi, @2I�=@ci@di =QiWiSi and @2I�@di@diT = STi WiSi.The Block one-step SOR Newton-Raphson updating formula for the coe�cient (ci; di) becomes� cidi � = � ci�di� ��� QiWi�Qi + n�iQi QiWi�SiSTi Wi�Qi STi Wi�Si ��1� Qiui� + n�iQici�STi ui � ; (3.3.4)where the subscript minus indicates the quantities evaluated at the latest update. By rearranging(3.3.4) we will have the following linear system,� QiWi�Qi + n�iQi QiWi�SiSTi Wi�Qi STi Wi�Si �� ci � ci�di � di� � = � �Qiui� � n�iQici��STi ui� � : (3.3.5)According to Theorem 1.1, fi = Sidi +Qici; i = 1; � � � ; k is always unique as long as Si's are of fullrank. If Qi is nonsingular, (3.3.5) is equivalent to the linear system� Wi�Qi + n�iQi QiWi�STi 0 �� cidi � = � Wi�fi� � ui�0 � : (3.3.6)If Qi is singular, any solution to (3.3.6) is also a solution to (3.3.5). Let~Qi =Wi�1=2QiWi�1=2; ~c(i) =Wi��1=2ci; ~Si =Wi�1=2Si;~di = di; and ~yi =Wi��1=2(Wi�fi� � ui�);( 3.3.6) can be simpli�ed to � ( ~Q�i + n�i)~ci + ~Si ~di = ~yi~STi ~ci = 0 : (3.3.7)It can be shown that the solution of the linear system (3.3.7) is equivalent to the solution of thefollowing variational problem, �nd ~ci; ~di to minimize1n jj ~yi � ( ~Q�i~ci + ~Si ~di)jj2 + �i(~ci)T ~Q�i~ci: (3.3.8)



133.4 Choosing the Smoothing ParametersIn Section 3.3, the smoothing parameters �il = �i=�il are �xed. As all �il ! 0, fi follows the dataand is very wiggly. It then has small bias but large variance. As all �il !1, fi is forced in the nullspace H0i , which is a parametric �t. It then has large bias but small variance. As the �il's vary,we have a family of models. Therefore choosing appropriate smoothing parameters is crucial fore�ectively estimating the true functions from data by �tting smoothing spline models. Choosing the�il's is equivalent to choosing �i and �i = (�i1; � � � ; �iqi) after imposing an identi�ability constrainton �i and �i. We call �i's the main smoothing parameters and �i's the subsidiary smoothingparameters.Reconsider the linear system (3.3.7), it is easy to see that the solution of (3.3.6) gives theminimizer of ( ~~yi � fi)TWi�( ~~yi � fi) + n2�i qiXl=1 �iljjP li fijj2; (3.4.1)where ~~yi = fi� �Wi�1� ui�. The one step block SOR-Newton procedure iteratively reformulatesthe problem of updating each logit function to estimate the function fi from the pseudo-data byweighted penalized least squares successively. The following lemma shows that the pseudo-dataapproximately have the usual data structure if f1�; � � � ; fk� are not far away from f1; � � � ; fk.Lemma 3.6 If jfij� � fijj = o(1) uniformly in j, and pi(t) bounded away from 0 and 1, then~~yij = fij + �ij + op(1)where �ij has mean 0 and variance w�1ij , and �i1; � � � ; �in are independent.Proof Let pij = pi(xj). Then E(yij) = pij, V ar(yij) = pij(1 � pij) = wij , uij = pij � yij. Hence,we have E(uij=wij) = 0 and V ar(uij=wij) = w�1ij .Let 
 = fij� � uij�=wij� � (fij � uij=wij) = fij� � fij � (pij� � yijwij� � pij � yijwij )Then E(
) = fij� � fij � pij� � pijwij�Since there exists 0 < c1 < c2 < 1 such that c1 � pi(t) � c2, we have c1 � pij � c2. Fromjfij� � fijj = o(1) uniformly in j, we have jpij� � pijj = o(1) uniformly in j. Hence, for large n,there exists 0 < c�1 < c�2 < 1 (does not depend on n) such that c�1 � pij� � c�2. Then, for large n,there exists 0 < d1 < d2 < 1 (does not depend on n) such that d1 � wij� � d2. Hence, E(
) = o(1).Meanwhile V ar(
) = ( 1wij� � 1wij )2wij = (wij� � wij)2wij�1� w�1ij = o(1):So ~~yij = fij� � uij�=wij� = fij � uij=wij + 
 = fij + �ij + op(1);where �ij = �uij=wij has mean 0 and variance w�1ij . The independence of �i1; � � � ; �in follows fromthe independence of yi1; � � � ; yin. Q.E.D.From the above discussion, we can use well known methods to select smoothing parameters ateach update of the block one step Newton-Raphson procedure. Two of the commonly recognized



14data driven methods for choosing smoothing parameters are the generalized cross validation (GCV)and the unbiased risk methods (Wahba 1990). The GCV method estimates smoothing parameterby minimizing the GCV scoreV (�i;�i) = 1=njj(I �A(�i;�i))Wi�1=2 ~~yijj2[(1=n)trace(I �A(�i;�i))]2and the UBR score U(�i;�i) = 1n jj(I �A(�i;�i)Wi�1=2~~yjj2 + 2n�2trA(�i;�i);where A(�i;�i) satis�es(wi1�1=2fi(t1); : : : ; wi1�1=2fi(tn))T = A(�i;�i)(wi1�1=2 ~~yi1; � � � ; win�1=2 ~~yin)T ;fi(tj)'s are computed from the above linear system, ~~yi = ( ~~yi1; : : : ; ~~yin)T , and ~~yij = fij��uij�=wij�.When using the UBR method, we use �2 = 1. A generic code RKPACK (Gu, 1989) can be usedto solve the linear system in each update and estimate � and � via GCV or the UBR method atthe same time. The whole iterative process will stop when the relative weighted mean square erroris less than a threshold. However, since changing � and � at each update means modifying theproblem successively, convergence is not guaranteed.3.5 Bayesian InferenceWe will �rst extend Gaussian posterior calculations to the case where the responses are vector. LetF i�(x) = miXv=1 �v;i�v;i(x) + b1=2i qiX�=1p��;iZ�;i(x)where � = (�1;1; : : : ; �m1;1; : : : ; �mk;k)T � N(0; �I), Z�;i are i.i.d, zero mean Gaussian stochasticprocesses, independent of � , with E[Z�;i(s)Z�;i(t)] = R�;i(s; t)Let Zi(x) = qiX�=1p��;iZ�;i(x);then E[Zi(s)Zi(t)] = Ri(s; t)where Ri(s; t) =Pqi�=1 ��;iR�;i(s; t). Suppose observations have the formyij = F i�(xj) + �ij ; i = 1; � � � ; k and j = 1; � � � ; nwhere � = (�11; : : : ; �kn) � N(0; �2W�1), with W positive de�nite and known. Let n�i = �2=bi,f�(x) = (f1�(x); : : : ; fk� (x))T and F�(x) = (F 1� (x); : : : ; F k� (x))T , we havef�(x) = lim�!1E(F�(x)jy);where f� is the minimizer of the penalized weighted least square problem(y � f)TW (y � f) + n kXi=1 �i qiX�=1 ��1�;ik P�f i k2: (3.5.1)
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Denote Q = 0BBBB@Q1 0 : : : 00 Q2 : : : ...... : : : . . .0 Qk

1CCCCA ; S = 0BBBB@S1 0 : : : 00 S2 : : : ...... : : : . . .0 SK
1CCCCA ;and M = Q+ n0BBBB@�1In�n 0 : : : 00 �2In�n : : : ...... : : : . . . ...0 : : : : : : �kIn�n

1CCCCAW�1
where (Qi)uv = Ri(xu; xv) and (Si)uv = �v;i(xu). Similar to Wang (1994), We have the followingtheorem.Theorem 3.3 Let gi0;v(x) = �v;i�v;i(x) and gi�(x) = b1=2i p��;iZ�;i(x). ThenE(gi0;v(x)jy) = div�v;i(x)E(gi�(x)jy) = Pnj=1 cij��;iR�;i(x; xj)1b1=2i b1=2j Cov(gi0;v(s); gj0;u(t)jy) = �v;i(s)�u;i(t)eTv;i(STM�1S)�1eu;i1b1=2i b1=2j Cov(gi�(s); gj0;v(t)jy) = �dv;�;i(s)�v;j(t)1biCov(gi�(s); gi�(t)jy) = ��;iR�;i(s; t)�Pnj=1 cj;�;i(s)��;iR�;i(t; xj)1b1=2l b1=2i Cov(gl
(s); gi�(t)jy) = �Pnj=1 cj;
;l(s)��;iR�;i(t; xj)where ev;i is the ((i � 1)n) + v)th unit vector, d�;i(s)T = (d1;�;i(s); � � � ; dMi;�;i(s)) and c�;i(s)T =(c1;�;i(s); � � � ; cn;�;i(s)) are given by0BBBBBBBBBB@

�...�d�;i(s)�...�
1CCCCCCCCCCA = (STM�1S)�1STM�1

0BBBBBBBBBBBBBBB@
0...0��;iR�;i(s; x1)...��;iR�;i(s; xn)0...0

1CCCCCCCCCCCCCCCA ;



160BBBBBBBBBB@
�...�c�;i(s)�...�
1CCCCCCCCCCA = [M�1 �M�1S(STM�1S)�1STM�1]

0BBBBBBBBBBBBBBB@
0...0��;iR�;i(s; x1)...��;iR�;i(s; xn)0...0

1CCCCCCCCCCCCCCCA :
Next, we can use Laplace method to approximate the posterior distribution based on polychoto-mous data (k + 1 categories). With abuse of notation we will denotey = (y11; � � � ; y1n; � � � ; yk1; � � � ; ykn)T :Suppose the priors for the logit functions are f1(x) � F 1� (x); � � � ; fk(x) � F k� (x). Let �, � be anyone of �v;i�v;i(x), �u;j�u;j(z), p��;iZ�;i(x) or p��;jZ�;j(z) for arbitrary points x and z. DenotingfT = (f1(x1); : : : ; f1(xn); : : : ; fk(x1); � � � ; fk(xn));the sampling distribution of y given f is proportional to expf�Ly(f)g. Letting � ! 1, we havethe posterior distribution �(�; �)jy) / Z p(f jy)q(f)r(�; �jf)df;where p(f jy) / expf�Ly(f)g,q(f) / expf� 12bfT (Q�1 �Q�1S(STQ�1S)�1SQ�1)fgand r(�; �jf) is Gaussian with mean and variance given in Theorem 3.3 with �2 = 0 and y = f .Denoting p̂(f jy) be the approximation using Taylor expansion centered at the mode f� ofp(f jy)q(f), and approximating �(�; �jy) by�̂(�; �)jy) / Z p̂(f jy)q(f)r(�; �jf)df;we have the following theorem. The proof of this theorem is the same as in Gu (1992).Theorem 3.4 The approximate posterior density �̂(�; �jy) is Gaussian with mean and covariancegiven in Theorem 3.3.Based on the above result, we can construct approximate Bayesian con�dence interval for eachcomponent, each logit function and the di�erence of logit fi � fj.To apply the results derived above, it is necessary to compute the quantities involved. FromTheorem 3.3, we can see that the computation focuses on the computing of (STM�1S)�1, c�;i(s)and d�;i(s). We will discuss the calculation of these quantities in the following.It can be shown that the solution of the variational problem ( 3.5.1) has the expression asthose in Theorem 1.2, where cT = (cT1 ; � � � ; cTk )T = M�1(I � S(STM�1S)�1STM�1)y and dT =



17(dT1 ; � � � ; dTk )T = (STM�1S)�1STM�1y. c and d can be calculated by back�tting algorithm. Byreplacing y with(��;1R�;1(s; x1); � � � ; ��;1R�;1(s; xn); � � � ; ��;kR�;k(s; x1); � � � ; ��;kR�;k(s; xn))T ;we can use back�tting to get c�;i(s) and d�;i(s).To calculate (STM�1S), we will �rst compute M�1a for a given vector a. Denoting z =M�1a,we can obtain z by solving the linear system Mz = a. Again, we can use Gauss-Seidal (linear SORwith ! = 1) method to solve this linear system.3.6 Monte Carlo ExamplesIn this section, we conduct several simulations to evaluate the performance of the proposed method.The comparative Kullback-Leibler distance (CKL) will be used to measure the performance. Thesampling CKL between the estimate and the true probabilities for polychotomous response data isCKL(p; p̂) = � 1n nXj=1 kXi=1 pi(xj)logp̂i(xj)where p(x) = (p0(x); � � � ; pk(x))T and xj 's are design points.The �rst example is for univariate case. The domain and range are taken as X = [0; 1] andY = f0; 1; 2g. The conditional class probabilities are taken as p1(x) = ef1(x)=(1 + ef1(x) + ef2(x)),p2(x) = ef2(x)=(1+ef1(x)+ef2(x)) and p3(x) = 1�p1(x)�p2(x), where f1(x) = 0:3ex2+0:4cos(2:7x)and f2(x) = x2+2cos(3x). Two di�erent sample sizes are used: n = 200 and n = 500. We generatedthe design points xi from an uniform distribution on [0, 1] and generated the polychotomousresponses using the underlying functions. Designs and responses are generated for 200 replicatesfor each simulation. The penalized likelihood for this example isnXj=1(� 2Xi=1 yijfi(xj) + log(1 + ef1(xj) + ef2(xj))) + n�12 Z 10 (f 001 (t))2dt+ n�22 Z 10 (f 002 (t))2dt:The algorithm proposed in this chapter is used to get the smoothing spline estimate for eachsimulated data set. We select the 5th, 50th and 95th percentile best estimates ordered by CKL.Their probability estimates are plotted in Figure 1.The second example is for the multivariate case. Here we present an example which has three-category response and two predictors. The domain and range are taken as X = [0; 1] � [0; 1] andY = f0; 1; 2g. The sample size in this experiment is 500. The covariates are generated uniformlyfrom [0; 1] � [0; 1]. The logit functions are taken asf1(x1; x2) = 3:5e�(2:0(x�0:5)2+8:0(y�0:8)2) + 1:5e�((x+y�0:4)2+15:0�(x�y)2) � 1:5and f2(x1; x2) = 2:0(x � y)2 � 0:4(x + y)2:The polychotomous responses are generated using the above logit functions. Responses are gener-ated for 100 replicates. The following functional ANOVA decomposition is used,f1(x1; x2) = const+ h1(x1) + h2(x2) + h12(x1; x2):
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Figure 2: The true probability functions and their estimates.



20Chapter 4Strategies for Large Data SetsAs mentioned in Chapter 3, the algorithm proposed there is not desirable when n (number ofobservations) is very large. In this chapter, we will discuss some strategies on how to apply thesmoothing spline to model large data sets with polychotomous responses.4.1 Binary CaseWhen k=1, the polychotomous response data reduces to binary data. In this case, the algorithmproposed in Chapter 3 will reduce to the iterated UBR method proposed in Wahba et al. (1995).Although it has been successfully applied in practice, it can not be used to deal with large data setsdue to its computational capacity. For large data sets, we will �rst propose a randomized version ofgeneralized approximate cross validation to choose the smoothing parameters for binary data. Atthe same time, strategies to obtain an approximate smoothing spline are also discussed. Combiningthese two schemes, we can apply the smoothing spline ANOVA to a very large data set with binaryresponses. We also construct a Bayesian Con�dence Interval for the approximate smoothing spline.The performance of the proposed method compared with the Iterated UBR method will be studiedthrough Monte Carlo Simulations.4.1.1 Generalized Approximate Cross ValidationAlthough it appears that the algorithms based on UBR generally converges, it is not guaranteed todo so, since changing � along the iteration also changes the optimization problem. Based on thisconsideration, Xiang and Wahba (1996) began with a leaving-out-one or ordinary cross validation(OCV) estimate of CKL(�), namelyOCV (�) = 1n nXi=1 [�yif�i� (xi) + b(f�(xi))]where f�i� is the �t of f� based on leaving out the ith data point. Computing f�i� repeatedlyfor large n is out of the question, they have obtained a generalized approximate cross validation(GACV) by a series of approximations, including one similar to that used in obtaining GCV (wahba1990). The result isGACV (�) = 1n nXi=1 [�yif�(xi) + b(f�(xi))] + Tr(A)n nXi=1 yi(yi � ��(xi))n� Tr(W 1=2AW 1=2) (4.1.1)where A is the n� n inverse Hessian of the penalized likelihood I� with respect to the componentof f = (f�(x1; � � � ; f�(xn))0, ��(xi) = b0(f�(xi) and W is diagonal matrix with diagonal entrieswi = b00(f�(xn)); i = 1; � � � ; n: It can be shown that A = [W (f�) + n��]�1, where �� satis�esfT��f = cTQ�c. It can be seen that �� is not of full rank, and in general its direct computationwill be a numerically unstable.



214.1.2 RGACV and One-Step-RGACVLet A be a symmetric, non-negative de�nite matrix, and � = (�1; � � � ; �n)0, where the � are inde-pendent, identically distributed normal variables with common variance �2. It is easy to see thatthe expected value of 1�2 �0A� is Tr(A). 1�2 �0A� is called a randomized trace estimate of Tr(A). Inthe Gaussian case, Girard (1991) has shown that using a randomized trace estimate as part of theevaluation of the GCV function gives a negligibly di�erent estimate of smoothing parameters froman exact calculation of the GCV function, for large n. See also Wahba, Johnson, Gao, and Gong(1995).In the calculation of the GACV function, we need to compute Tr(A) and Tr(W 1=2AW 1=2).The direct computation would involve the inverse of a large matrix which requires computationalcomplexity of O(n3). Meanwhile, as indicated in the last section, in general the direct computationof A will be numerically unstable for large n. Based on these considerations,a method which doesnot require the direct computation is highly desired. Similar to the randomized trace estimate inGaussian case, we can use randomized trace estimate of Tr(A) and Tr(W 1=2AW 1=2) as part of theevaluation of the GACV function.Considering the disturbance � � N(0; �2In), we have E(�TA�) = �2Tr(A), E(�TWA�) =�2Tr(WA) = �2Tr(W 1=2AW 1=2). Hence, we can use �TA�=�2 to estimate Tr(A) and �TWA�=�2to estimate Tr(W 1=2AW 1=2).Notice that the penalized log likelihood can be rewritten as follows,I�(f; Y ) = � nXi=1 lj(yj ; f(xj)) + n2 f 0��f (4.1.2)where lj(yj ; f(xj)) = yjf(xj)�b(f(xj)) is the log likelihood, f = (f1; � � � ; fn)T and fj = f(xj). Fora �xed �, let f̂Y� be the minimizer of (4.1.2) with respect to data Y . If we put a small disturbanceon Y to get a new pseudo data set, Y + �, we expect f̂Y+�� and f̂Y� to be very close according tothe following lemma.Lemma 4.7 For a �xed �, the minimizer f̂Y� of (4.1.2) is continuous in Y.Proof Let Y ! Y0 and denote f and f0 to be their corresponding solutions. Hence,�Y + b0(f) + n��f = 0 and � Y0 + b0(f0) + n��f0 = 0:Subtract the second equation from the �rst one we get,b0(f)� b0(f0) + n��(f � f0) = Y � Y0:For �xed Y0, if Y is within a small neighborhood of Y0, then f is bounded. For any sequence ofY ! Y0 within a small neighborhood of Y0, denote f� to be one attraction point of the correspondingsequence of f. Then we have, b0(f�)� b0(f0) + n��(f� � f0) = 0:The solution to the above nonlinear system is unique by observing that the derivative of theleft side with respect to f� is a positive de�nite matrix. As a result, we have f� = f0. So thebounded sequence of f converges to f0 since it has one unique attraction point f0. Hence f ! f0 as



22Y ! Y0.Q.E.D.Since f̂y+�� and f̂y� are minimizers of (4.1.2), we have@I�@f (f̂y+�� ; Y + �) = 0 and @I�@f (f̂y� ; Y ) = 0:Using a Taylor expansion to expand @I�@f (f̂y+�� ; Y + �) at (f̂y� ; Y ) we have the following equation,@I�@f (f̂y+�� ; Y + �) = @I�@f (f̂y� ; Y ) + @2I�@fT @f (f�; Y �)(f̂y+�� � f̂y�)+ @2I�@Y T @f (f̂�; Y �)(Y + �� Y ) (4.1.3)where (f�; Y �) is some point between (f̂y� ; Y ) and (f̂y+�� ; Y + �).Notice that @2I�@fT@f =W (f) + n�� and @2I�@Y T@f = �In�n:Therefore, from (4.1.3) we get f̂y+�� � f̂y� = (W (f̂��) + n��)�1�:When � is very small, (f̂y+�� ; Y + �) is very close to (f̂y� ; Y ). Hence (f̂�; Y �) is very close to (f̂y� ; Y ).W (f̂�) can be approximated by W (f̂y�) and we will havef̂y+�� � f̂y� � (W (f̂y�) + n��)�1� = A�: (4.1.4)This gives us the following lemma.Lemma 4.8 f̂y+�� � f̂y� = A�+ o(j�j).When � is small hence � will be small, we can use f̂y+�� � f̂y� to approximate A� by lemma 4.8.Thus, we have �TA� = �T (A�) � �T (f̂y+�� � f̂y�):Thus, Tr(A) � �T (f̂y+�� � f̂y�)=�2and Tr(W 1=2AW 1=2) = Tr(WA) � �TW (f̂y+�� � f̂y�)=�2:By replacing Tr(A) and Tr(W 1=2AW 1=2) in (4.1.1) with their estimates and use �T �=n to estimate�2, we have a randomized version of the GACV function,RGACV (�)= 1n nXi=1 [�yif�(xi)+ b(f�(xi))]+ �T (f̂y+�� �f̂y�)n Pni=1 yi(yi � ��(xi))�T �� �TW(f̂y+�� � f̂y�) : (4.1.5)Thus, we replace the computation of a large matrix inverse problem with a iterative proceduresimilar to that used to get the estimate f̂y� . Suppose we just use one replicate of perturbation, weneed about twice the time needed to get the f̂y� to evaluate the RGACV. If the time to get oneestimate is expensive, it still requires a lot of computing time. Besides, we need to choose the �very carefully so that A� can be well approximated by f̂y+�� � f̂y� . This motivates us to look for analternative way to calculate A�.



23Consider the Newton Raphson procedure when we solving the nonlinear system for the per-turbed data Y +�. If we take the solution f̂Y� to the nonlinear system for the original data Y as theinitial value for a Newton-Raphson calculation of f̂y+�� things become even simpler. Letting f̂y+�;1�be the result of one step in a Newton-Raphson iteration givesf̂y+�;1� = f̂y� � ( @2I�@fT@f (f̂y� ; Y + �))�1 @I�@f (f̂y� ; Y + �): (4.1.6)Notice that @I�@f (f̂y� ; Y + �) = ��+ @I�@f (f̂y� ; Y ) = ��and [ @2I�@fT@f (f̂y� ; Y + �)]�1 = [ @2I�@fT@f (f̂y� ; Y )]�1:Thus, f̂y+�;1� = f̂y� + [ @2I�@fT@f (f̂y� ; Y )]�1�:Hence we haveLemma 4.9 f̂y+�;1� � f̂y� = A�: (4.1.7)Hence we have the following one step randomized generalized approximate cross-validation formulaOneStepRGACV (�) = 1nPni=1[�yif�(xi) + b(f�(xi))]+ �T (f̂y+�;1� �f̂y�)n Pni=1 yi(yi���(xi))�T ���TW (f̂y+�;1� �f̂y�) : (4.1.8)To reduce the variance in the term after the second `+' sign in ( 4.1.8), we may draw R independentreplicate vectors �1; � � � ; �R, and replace the term after the `+' in ( 4.1.8) by1R RXr=1 �Tr (f̂y+�r;1� � f̂y�)n � Pni=1 yi(yi � ��(xi))�Tr �r � �TrW (f̂y+�r;1� � f̂y�)to obtain a R-replicate version of OneStepRGACV.We summarize the One-Step Randomized Generalized Cross Validation in the following algo-rithm:Algorithm: One-Step Randomized GACV algorithm1. For �xed �,� Based on the original data set Y , we iterate the Newton-Raphson algorithm till it con-verges to get f̂y� .� Generate perturbation � � N(0; �2In), add it to the data set Y to get the pseudo dataset Y + �.� Take f̂y+�;0� = f̂y� as initial values, calculate the �rst Newton-Raphson step based on thenonlinear system @I�@f (f; Y + �) = 0, call it f̂y+�;1�� Take f̂y+�� = f̂y+�;1� and apply formula (4.1.8) to evaluate OneStepRGACV value.2. Find � to minimize OneStepRGACV (�), call it �̂.3. f̂ = f̂ ŷ� is our �nal estimate for f .The performance of using this new criteria to choose the smoothing parameters compared with theiterated UBR method will be studied through Monte Carlo simulations later in this chapter.



244.1.3 Approximate Smoothing SplineFor large n, and the `true' function f not too `complex', it can be seen that f� of (2.4.4) shouldbe well approximated in the span of a much smaller subset of the �i. See Wahba (1980) andXiang (1996). Suppose the number of basis function used is k, and denote the basis functionsas �i1 ; �i2 ; � � � ; �ik which is a subset chosen from �1; �2; � � � ; �n. Typically for medical risk data, kmay be at most a few hundred even with n very large. In order to get a good approximation,we need the chosen k basis functions to have the least possible correlation. The closer the designpoints, the closer the corresponding basis functions. As a result, if we choose the design pointshaving maximum separation, their corresponding basis functions should be expected to have leastcorrelation. Considering this problem from another point of view, what we want is to group pointsinto k groups with those groups spaced as far as possible from each other. Thus, the classical clusteranalysis can be used to choose the representative design points, i.e, we cluster the n data points intok groups, take one representative point from each group to form the k basis functions. For clusteringthe data, we will use the FASTCLUS procedure in SAS, which is designed for the disjoint clusteringof very large data sets in minimal time. With each cluster, we select the design point closest to thecluster center as the representative point to be included in our subset. Assume xij ; j = 1; � � � ; kare the selected points, then their corresponding basis functions will be �ij (x) = Q�(xij ; x). Weapproximate f� as f�(x) = MXv=1 dv�v(x) + kXj=1 cj�ij (x): (4.1.9)Denote Xk� to be the n � k matrix with ijth entry Q�(xi; xij ) and Qk� to be the k � k matrixwith ijth entry Q�(xii ; xij ), and let Rk� be the k � k matrix with ijth entry R�(xii ; xij ). It is easyto see that for f� of the form (4.1.9) we have kP �f�k2 = c0Rk�c. Then the Newton-Raphson updatefor �nding the minimizer c = (c1; � � � ; ck)0 and d is equivalent to solving the following linear system� (Xk�)0W�Xk� + nQk� (Xk�)0W�SS0W�Xk� S0W�S �� c� c�d� d� � = � �(Xk�)0u� � nQk�c��S0u� � ; (4.1.10)It is highly possible that the coe�cient matrix of the linear system (4.1.10) would be com-putationally singular even if it is nonsingular in theory. In order to get a stable solution, QRfactorization with pivoting is used. Also, when we solve the linear system using the QR decom-position, we select a cuto� parameter � (such as the machine precision times the largest absolutediagonal element of the R matrix). Whenever jriij � � (where rii denotes the diagonal element ofthe R matrix in the QR decomposition), the corresponding solution is set to be zero.In practice, the following procedure can be used to get an approximate solution for large datasets.Guideline to decide the number of bases:(I) Decide the number of basis functions to start with.(II) For a �xed number k, use Cluster method to cluster the data into k groups. A representativepoint is chosen from each group to form the basis functions. Solve the variation problem inthe approximating space.(III) Increase the number of basis functions by some factor (e.g, 2), repeat step (II)



25(IV) Stop this procedure if the di�erence between solutions based on two consecutive steps issmaller than a given tolerance, as judged byjjf�̂(2k)�f�̂(k)jjjjf�̂(k)jj � 10�4.4.1.4 Minimizing the OneStepRGACV functionIn this section, we will discuss some e�cient ways to search for the minimizer � of the On-eStepRGACV function. The OneStepRGACV function involves the solution of some nonlinearsystem so it cannot be explicitly expressed in terms of the smoothing parameters. Thus, we don'thave the �rst or second derivative of the OneStepRGACV. Hence, optimization method which doesnot require the derivative information is highly desired. For one smoothing parameter case, goldensection method should be a good method in �nding the minimizer �. Our major concern is in thesituation that there are more than one smoothing parameter, say 4 or 5 smoothing parameters.Standard optimization methods, such as Newton method or conjugate gradients are not suitablefor our problem here since they require �rst and possibly second derivatives. Powell method anddown hill simplex method might be possible ways to use since they don't require any derivative.For all iterative procedure for solving a nonlinear optimization problem, a starting guess usuallyshould be provided. A good starting guess might make the search faster. Although the issue ofhow to set a good initial guess is somewhat problem dependent, we believe that when the shapeof the function is not too `complicated' some automatic way to decide the starting point which isnot too far away from the minimum (or local minimum) should be possible. In this thesis, we willinvestigate using computer experiment design technique to set a possible good starting guess.The basic idea of computer experiment design is as follows. First we generate some design pointsat the possible region and evaluate the function value over the design points. Then a smooth surface(e.g., thin-plate spline, quadratic polynomial, etc.) can be interpolated over the design points andthe minimum is found for the interpolating surface. In the case of using low degree polynomial, theleast square solution can be used. We can use the minimizer of the interpolating (or least square)surface as the starting guess for the down hill simplex search (or Powell search). Since this is justa pre-screen procedure, a small number of design point should be enough for our purpose if a gooddesign method is employed. With a small number of design points and high dimension, we decideto use Latin hypercube design to generate the design points.For a very large data set, we may encounter the situation that one step randomized GACVfunction is still expensive to evaluate, i.e., in the case that it is exceedingly expensive to get asmoothing spline �t for a �xed �. Fortunately we will see that the surface of the OneStepRGACVis generally in a very good shape so that the minimizer of the interpolating surface would be goodenough. In this case, we can use the computer experiment design to locate the minimum roughly.To be conservative, we can use multi-stage computer design to look for the minima.4.1.5 Bayesian Con�dence Intervals for the Approximate SolutionThe basis for our approach is a �nite-dimensional Bayesian formulation of the smoothing splineestimation problem similar to the approach used by Silverman (1985). For the exact smoothingspline estimation, the conclusions of Silverman's approach parallel closely those of Wahba (1978,1983). Due to the setup of the variational problem for the approximate smoothing spline estimate,the argument used by Wahba (1978, 1983) is di�cult to be extended to our setting but the argumentused by Silverman can be easily extended.Firstly let's look at the Bayesian formulation of the approximate smoothing spline estimate.



26Suppose on domain T one observes yj = f(tj) + �j , j = 1; � � � ; n, where tj 2 T , and (�1; � � � ; �n) �N(0; �2W�1) with W (positive de�nite) known. By section 4.1.3, the approximate smoothingspline estimate of f(t) is in the �nite-dimensional space spanf�1; � � � ; �m; �i1 ; � � � ; �ikg. Hence f canbe written as f(t) = Pml=1 dl�l(t) +Pku=1 cu�iu. De�ne b = n��2 . Using the notation c= to mean\equals up to a constant", take the prior log likelihood to belprior(c; d) c= �12bcT�11c; (4.1.11)where (�11)lj =< �il ; �ij >, and �i1 ; � � � ; �ik are the selected basis from �1; � � � ; �n. Followingstandard Bayesian manipulation, we have the posterior log likelihood as follows,lpost(c; d) c= �12bcT�11c� 12�2 (Y ��c� Sd)TW (Y � �c� Sd); (4.1.12)where (�)lj =< �l; �ij > and (S)iu = �u(xi). This leads to the following theorem.Theorem 4.5 The posterior distribution of (c,d) is multivariate normal with mean (ĉ; d̂) and co-variance matrix �2M�1, where M = ��TW�+ n��11 �TWSSTW� STWS� (4.1.13)and � ĉ̂d� =M�1��TST�Y: (4.1.14)De�ning y = (y1; � � � ; yn)T and f = (f(t1); � � � ; f(tn))T with abuse of notation, the connectionswith the approximate spline smoothing becomes clear by noting that�2�2n lpost(f) c= 1n(y � f)TW (y � f) + �Z f 00(t)2dti.e., the approximate smoothing spline estimate f̂ is the posterior mean in the Bayesian formulationdescribed above.Further, from the posterior variance/covariance of (c; d) obtained above we obtain the posteriorvariance of f(s) which is given in the following theorem.Theorem 4.6 V arpost(f(s)) = �2uTM�1u; (4.1.15)where u = (�i1(s); � � � ; �ik(s); �1(s); � � � ; �m(s))T .De�ning the in
uence matrix A(�) satisfying ŷ = A(�)y, it is easy to verify thatA(�) = (� S)M�1��TST�W:On applying Theorem 4.6, we obtain Corollary 4.2.Corollary 4.2 V arpost(f) = �2A(�)W�1.



27Now let to turn to the Bayesian formulation of approximate smoothing spline estimate in Non-Gaussian case (binary data especially). it is assumed that the sampling likelihood of y is pro-portional to expf� 1�2L(yjf)g = expf� 1�2Ly(c; d)g, where L(yjf) = Ly(c; d) is the negative loglikelihood which is convex and f(s) =Pmi=1 di�i(s)+Pkj=1 ci�ij (s). For binary data sets, � is equalto 1. The approximate smoothing spline is the solution of the penalized likelihood problemminfLy(f) + n2�J(f)g; (4.1.16)where f 2 spanf�1; � � � ; �m; �i1 ; � � � ; �i;kg. By substituting, we solve for (c; d) by the solution of thefollowing variational problem minfLy(c; d) + n2 cT�11cg: (4.1.17)Under the same prior speci�ed for the Gaussian case and following standard Bayesian manipu-lation, we have the posterior log likelihood as follows,lpost(c; d) c= � 1�2Ly(c; d) � n2 bcT�11c: (4.1.18)Letting L̂y(c; d) be such an approximation of Ly(c; d) with the Taylor expansion centered at themode (c�; d�) of the posterior distribution expflpost(c; d)g, one getsL̂y(c; d) = (~~y �W�1u� �c� Sd)TW (~~y � �c� Sd); (4.1.19)where ~~y = �c� + Sd� �W�1u, u = (@L=@f)jf� , W = (@2L=@f@fT )jf� and f� = �c� + Sd�. Weapproximate the posterior likelihood lpost(c; d) via~lpost(c; d) c= � 1�2 L̂y(c; d) � n2 bcT�11c: (4.1.20)Theorem 4.7 The approximate posterior distribution expf~lpost(c; d)g is Gaussian with mean (ĉ; d̂)and covariance given in Theorem 4.5, where (ĉ; d̂) is the solution of ( 4.1.17) and the matrix W isthe Hessian matrix de�ned above.Proof. It is easy to see that expf~lpost(c; d)g is identical to a Gaussian sampling likelihood withcovariance �2W�1 and observations ~~y; hence, the mean and covariance of expf~lpost(c; d)g can becalculated via Theorem 4.5. Hence, it is left to show that� ĉ̂d� = ��TW�+ n��11 �TWSSTW� STWS��1��TST� ~~y:We have (c�; d�) = (ĉ; d̂) by noting that��lpost(c; d) c= Ly(c; d) + n2�cT�11c:By de�nition of (c�; d�), it is easy to show that (c�; d�) satis�es��TW�+ n��11 �TWSSTW� STWS��c�d�� = ��TW ~~ySTW ~~y� :



28This completes the proof.Similar to Theorem 4.6 and Corollary 4.2, it is easy to see that V arpost(f(s)) � �2uTM�1u andV arpost(f) = �2A(�)W�1.For the computation of the approximate variance and covariance, we can take advantage of theintermediate results when we solve for the estimate. When we solve for the the estimate (ĉ; d̂), weneed to solve a linear system of the formMx = z. This is done through QR decomposition. Hence,when we calculate posterior variance and covariance, the major computation M�1u can be doneusing the existing QR decomposition in the last step of Newton-Raphson iteration for obtainingthe solution (ĉ; d̂).4.1.6 Monte Carlo SimulationIn this section, we conduct Monte Carlo simulations to check the performance of the OneStepRGACVin term of �nding the optimal smoothing parameters in the case of Bernoulli data. The Compara-tive Kullback-Leibler distance (CKL) will be used to measure the performance. The sampling CKLbetween two probabilities p1(t) and p2(t) for binary data is de�ned as follows,CKL(p1; p2) = 1n nXi=1 [�p1(xi)log(p2(xi))� (1� p1(xi))log(1 � p2(xi))];where xi; � � � ; xn are the design points.I. Single Smoothing ParameterThe following four test functions (used by Cox and Chang (1990) and Xiang (1996) ) will beused in our simulation study. �1(x) = 2sin(10x);�2(x) = 3� (5x� 2:5)2;p3(x) = (�1:6x+ :9 if x � :5+1:6x� :7 if x > :5;p4(x) = (3:5x=3 if x � :6:7 if x > :6;where �i indicates that the function is for the true logit while pi stands for the probability. We plotthe above four functions (in probability scale) in Figure 3.
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Figure 3: The true p(x): (a) �1, (b) �2, (c) p3 and (d) p4.



30First, we use �(x) = �1(x) = 2sin(10x) as a true function and generate the data yi = 1 or 0according to p(xi) = e�(xi)1+e�(xi) with the design point chosen at xi = (i � 0:5)=500; i = 1; � � � ; 500.Figure 4(a) gives a plot of CKL(�) and ten replicates of OneStepRGACV (�). In each replicates,R was taken as 1, and � was generated anew as a Gaussian random vector with �� = 0:001. Theminimizer of the CKL is at the �ll-in square and the 10 minimizers of the 10 replicates of ranGACVare the open circle. From the plot, we can see that any one of these 10 provides a rather goodestimate of the � that goes with the �ll-in circle. Figure 4(b) gives the same experiment exceptthat this time the number of replicates R was taken as 5. It can be seen that the minimizers ofOneStepRGACV (�) become `even more reliable estimates of the minimizer of CKL, and the CKLat all of the OneStepGACV estimates are actually quite close to its minimum value.
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32Next, we use a simulation to check how sensitive the one-step randomized GACV is with respectto the change of perturbed size and the number of replicates. Two di�erent logistic functions areused. They are �1(x) = 2sin(10x);�2(x) = 3� (5x� 2:5)2:The results are shown in Figure 5 and Figure 6. We can see that the result is not too sensitive tothe change of the perturbed size except that when the size is very small. This might be due to therounding error.
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Figure 5: For �1: performance of OneStepRGACV for di�erent size of perturbation (the number'sin grey title bars) and number of replicates as measured by the CKL.
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Figure 6: For �2: performance of OneStepRGACV for di�erent size of perturbation (the number'sin grey title bars) and number of replicates as measured by the CKL.



34Next, we use a simulation to check the performance of the OneStepRGACV function as com-pared with the RGACV function. We use � = 0:001, R = 5 to calculate the OneStepRGACV andRGACV functions. All the four test functions will be used in this comparison. For each function,we generate 500 observations at design points xi = (i� :5)=500; i = 1; � � � ; 500. According to p(xi),we generate Bernoulli data and �t the data with �'s chosen from OneStepRGACV and RGACVrespectively. Then we calculate the CKL distance for OneStepRGACV �t and RGACV �t. The ex-periment is repeated 200 times. We plot CKLRGACV versus CKLOneStepRGACV from the 200 runsin Figure 7. For any given data set, the smaller CKL value indicate that the corresponding methodproduces better �t. From �gure 7 we �nd that OneStepRGACV performs as well as RGACVdoes. Hence, we recommend using the OneStepRGACV instead of RGACV to approximate theGACV since the calculation of OneStepRGACV is faster. Simulation in Xiang (1996) shows thatthe RGACV method outperforms the UBR method using the same four testing functions above.Hence, we can expect that the OneStepRGACV will outperform the UBR method.

OneStepRGACV

R
G

A
C

V

0.520 0.530 0.540 0.550

0.
52

0
0.

53
0

0.
54

0
0.

55
0

(a)
OneStepRGACV

R
G

A
C

V

0.400 0.405 0.410 0.415

0.
40

0
0.

40
5

0.
41

0
0.

41
5

(b)

OneStepRGACV

R
G

A
C

V

0.580 0.585 0.590 0.595 0.600

0.
58

0
0.

59
0

0.
60

0

(c)
OneStepRGACV

R
G

A
C

V

0.575 0.585 0.595

0.
57

5
0.

58
5

0.
59

5

(d)Figure 7: CKL Comparison of OneStepRGACV with RGACV for (a)�1, (b)�2, (c)p3 and p4.



35II. Multiple Smoothing ParametersExample 1 In this simulation example, the bivariate additive functionf(x1; x2) = 5sin(2�x1)� 3sin(2�x2)is used as true logit function for generating data. The test function in probability scale is plottedin Figure 8. We generate 500 design points (x1i; x2i) uniformly from the square (0; 1) � (0; 1) andthe response yi = 1 or 0 according to p(xi1; xi2) = exp(f(xi1; xi2))=(1+ exp(f(xi1; xi2))). We �t anadditive model f�1;�2(x1; x2) = f�1(x1) + f�2(x2)to this set of data.
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Figure 8: True test function for Example 1.We use � = 1 and 5 replicates in the calculation of OneStepRGACV function. Besides, 50representative points are used in getting the approximate smoothing spline. For each pair of(�1; �2), we can evaluate the OneStepRGACV (�1; �2) function. Using a 20� 20 grid, we can drawa OneStepRGACV (�1; �2) surface. In addition, for the �t at each pair of (�1; �2), the CKL(�1; �2)based on the true function and f�1;�2(x1; x2) can also be calculated. We plot the CKL surface andOneStepRGACV surface as well as their contour plots in �gure 9. From this plot, we can seethat the OneStepRGACV function is a good proxy for CKL. To examine the possibility of usingcomputer design method to search for the minimizer of OneStepRGACV function, we use Latinhypercube design to sample 20 design points over the smoothing parameter space and evaluate theOneStepRGACV function over the design points. Then a thin plate spline is used to interpolatethe OneStepRGACV function over the design points. The contour plot of the interpolated surfaceis shown in Figure 10. By comparing the Figure 9 with Figure 10, we can see that the minimizerof the interpolated surface is close to the minimizer of the OneStepRGACV function.
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38Next, we do the simulations to check the performance of the OneStepRGACV method as com-pared with the iterated UBR method. Again, we use � = 1 and 5 replicates to calculate theOneStepRGACV function. We randomly generate 200 runs and plot the results in �gure 11. Thedownhill simplex method is used to search for the minimizer of the OneStepRGACV function.From the plot we can see that one step randomized GACV method outperforms the iterated UBRmethod.
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Figure 11: CKL Comparison of OneStepRGACV with iterative UBR based on 200 runs.



39Example 2 The second Monte Carlo Simulation is done as follows. The India Pima data set(see Wang, 1994) is used here. The concerned response of this data set is whether a person testedpositive for diabetes. The following two covariates are used:X1| Plasma glucose concentration a 2 hours in an oral glucose tolerance testX2| Body Mass Index (bmi).The Smoothing spline ANOVA Modellogit(p(x1; x2)) = const+ f1(x1) + f2(x2) + f12(x1; x2)is �tted using the GRKPACK (i.e, the iterated UBR is used to choose the smoothing parameters).Then we use the �tted logistic function as the true function to generate the data set. Figure12 shows the scatter plot of the covariates and the �tted probability surface (i.e the true testfunction). Denote observations of the covariates as (x1i; x2i); i = 1; � � � ; 500, the �tted logit valuefor each observed subject as f(x1i; x2i), then the response yi is generated to be 0 or 1 accordingto the probability exp(f(x1i; x2i))=(1:0 + exp(f(x1i; x2i))). To compare the performance of theOneStepRGACV with the iterated UBR method, 200 sets of data are generated and the CKL's arecalculated for both methods. There are �ve smoothing parameters in this example. Figure 13(a)shows the pairwise comparison of OneStepRGACV and iterated UBR methods, where CKLUBRis plotted against CKLOneStepRGACV . A point on the diagonal line means the two methods tie eachother whereas a point above the diagonal line means CKLOneStepRGACV is smaller then CKLUBR,which suggests OneStepRGACV performs better than UBR on that set of data. From this �gure,we can see that most of the case the CKLOneStepRGACV are almost the same as or less thanCKLUBR. We also use two-stage design (21 points in each stage) to search for the minimizer andplot the comparison of design search with the downhill simplex method in Figure 13(b)-(d). We usequadratic polynomial to interpolate the OneStepRGACV function over the design points. Fromthe plot we can see that by using the design search, we can locate a point not far away from theoptimal point.
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Figure 13: Pima Example|(a) CKL comparison: UBR vs OneStepRGACV , 200 runs. (b)|(d)Comparisons among several searching algorithms for �nding the minimizer of the OneStepRGACVfunction: downhill simplex with a initial guess, downhill simplex with initial value chosen by designmethod, two-stage design.



41Example 3 This example is similar to the Example 2 except that we take the WESDR (WisconsinEpidemiology Study of Diabetes Retinopathy) data. Three covariates dur, gly and bmi are used,and the progression of retinopathy is treated as response. First, the following ANOVA model is�tted by iterated UBR method (GRKPACK),logit(p(dur; gly; bmi)) = c+ f1(dur) + f2(gly) + f3(bmi) + f13(dur; bmi):The �tted logit function is used as true test function for our simulation. 100 sets of data aregenerated. The ANOVA model above is �tted for each simulated data set. Iterated UBR andOneStepRGACV are used to choose the smoothing parameters and their performances are comparedin form of the CKL distance between the �tted function and the test function. For OneStepRGACVmethod, we use � = 1 and R = 5 in the calculation of OneStepRGACV. In the meantime, we use50 basis functions to get the approximate smoothing spline when we use the OneStepRGACVmethod. Figure 14(a) shows the comparison results. Also di�erent search algorithms for �ndingthe minimizer of OneStepRGACV are compared. Three di�erent search methods: (1) DownhillSimplex method with a good starting guess, (2) Downhill simplex with the initial guess decided bydesign method and (3) two-stage computer design method. Again, we use quadratic interpolationin the design method. Figure 14(b){(d) plot the comparisons of OneStepRGACV for these threesearch algorithms. From Figure 14(a), we can see that OneStepRGACV outperforms the iteratedUBR method. From the comparisons of OneStepRGACV value in Figure 14(b){(d), we can seethat in term of the object function OneStepRGACV the design method can gives us smoothingparameters which OneStepRGACV value is close to the minimum value.In the OneStepRGACV approach, we use the OneStepRGACV function as a criteria to selectthe smoothing parameters and few basis functions to get the approximate solution. Next, wecompare the �ts from these two methods in some of the data sets in which the OneStepRGACVand the iterated UBR have similar performance, i.e. the CKLs are close. We plot the �tted surfaceof one such data set from both methods in Figures 15 to 24. From the plots, we can see that the�tted surface are almost identical. This phenomenon remains the same in all the other data sets weexamined. Notice that the iterated UBR uses all the data points to form the basis functions whilethe OneStepRGACV only uses 50 representative points to form the basis functions. From this, wecan roughly conclude the approximate solution by using 50 basis function is almost identical tothe exact smoothing spline using all the basis functions. Hence, we conclude that the di�erencebetween these two methods are due to the way we choose the smoothing parameters.
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Figure 14: Wesdr Example| (a) CKL comparison: UBR vs OneStepRGACV, 100 runs; (b)-(d)Comparisons of di�erent search algorithms.
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Figure 15: Wesdr Example|Left: data and contours of constant posterior standard deviation atthe median glycosylated hemoglobin as a function of duration of duration and bmi. A solidpoint indicates a progression and a circle indicates a non-progression. Right: estimated probabilityin the de�ned region, as a function of duration and bmi at the median value of glycosylatedhemoglobin. Sample Size{669. Method: OneStepRGACV, nrep=5, � = 1, 50 bases.
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Figure 16: Wesdr Example|Cross sections of estimated probability of progression as a function ofduration with their 90% Bayesian con�dence intervals, at three levels of gly and three levels ofbmi. Low, median and high denote .25, .5 and .75 percentiles. Method: OneStepRGACV.
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Figure 17: Wesdr Example|Cross sections of estimated probability of progression as a functionof bmi with their 90% Bayesian con�dence intervals, at three levels of gly and three levels ofduration. Low, median and high denote .25, .5 and .75 percentiles. Method: OneStepRGACV.
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Figure 18: Wesdr Example|Cross sections of estimated probability of progression as a functionof duration, at four levels of gly and four levels of bmi. q1, q2, q3 and q4 are the quantiles at0:125; 0:375; 0:625 and 0:875. Method: OneStepRGACV.
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Figure 19: Wesdr Example|Cross sections of estimated probability of progression as a functionof bmi, at four levels of gly and four levels of duration. q1, q2, q3 and q4 are the quantiles at0:125; 0:375; 0:625 and 0:875. Method: OneStepRGACV.
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Figure 20: Wesdr Example|Left: data and contours of constant posterior standard deviation atthe median glycosylated hemoglobin as a function of duration of duration and bmi. A solidpoint indicates a progression and a circle indicates a non-progression. Right: estimated probabilityin the de�ned region, as a function of duration and bmi at the median value of glycosylatedhemoglobin. Method: GRKPACK.
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Figure 21: Wesdr Example|Cross sections of estimated probability of progression as a function ofduration with their 90% Bayesian con�dence intervals, at three levels of gly and three levels ofbmi. Low, median and high denote .25, .5 and .75 percentiles. Method: GRKPACK.For this simulated data set, we also examine the performance of the Bayesian Con�dence In-terval. The posterior variance and covariance derived in this Chapter is used to calculate theposterior standard deviation of the �tted surface when we use the OneStepRGACV method. Forthe iterative UBR method, the posterior standard deviation is calculated by using the formuladerived in Wang (1994). Wang's formula is derived by following the approach in Wahba (1983).For OneStepRGACV, the coverage rate of 95% C.I is 94% and the coverage of 90% C.I. is 87%. Foriterative UBR method, the coverage of 95% C.I is 96% and the coverage of 90% C.I. is 88%. Thisindicates the performance of the Bayesian Con�dence for the OneStepRGACV method is close tothat of the Bayesian Con�dence Interval for the iterative UBR method. Also the coverage rates ofboth methods are close to the nominal levels.Finally, we use the OneStepRGACV and approximate smoothing spline method to re�t themodel and data which appeared in Wahba et al. (1995). The number of representative points is 50.� = 1 and 5 replicates are used in the calculation of OneStepRGACV. The results are presented in
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Figure 22: Wesdr Example|Cross sections of estimated probability of progression as a functionof bmi with their 90% Bayesian con�dence intervals, at three levels of gly and three levels ofduration. Low, median and high denote .25, .5 and .75 percentiles. Method: GRKPACK.
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Figure 23: Wesdr Example|Cross sections of estimated probability of progression as a functionof duration, at four levels of gly and four levels of bmi. q1, q2, q3 and q4 are the quantiles at0:125; 0:375; 0:625 and 0:875. Method: GRKPACK.
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Figure 24: Wesdr Example|Cross sections of estimated probability of progression as a functionof bmi, at four levels of gly and four levels of duration. q1, q2, q3 and q4 are the quantiles at0:125; 0:375; 0:625 and 0:875. Method: GRKPACK.



53Figures 25 to 29. These �gures looks almost the same as those appeared in Wahba et al. (1995).Again, We might conclude that by using the OnestepRGACV and fewer basis functions, we canobtain the estimate much faster than and get similar �t as the iterate UBR method when theiterated method gives us a good �t.
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Figure 25: Wesdr Original Data|Left: data and contours of constant posterior standard deviationat the median glycosylated hemoglobin as a function of duration of duration and bmi. A solidpoint indicates a progression and a circle indicates a non-progression. Right: estimated probabilityin the de�ned region, as a function of duration and bmi at the median value of glycosylatedhemoglobin. Method: OneStepRGACV.4.2 Polychotomous Case4.2.1 Fitting Polychotomous Response Data by Individual FittingWe will discuss how we can use the fast algorithm developed for binary data to model the poly-chotomous response data.Given X = t, the conditional class probabilities satisfyp0(t) + p1(t) + � � � + pk(t) = 1: (4.2.1)Let qi = Pl 6=i pl(t), then we will have pi(t) + qi(t) = 1. Notice that pi(t) corresponding to theconditional probability of a subject in the ith class given the covariate information X = t whileqi(t) denotes the probability that a subject is not in the ith class. As a result, we can use thealgorithm developed for binary data to estimate the conditional probability pi(t). DenoteZi = (1 if Y = i;0 otherwise; i = 0; 1; � � � ; k: (4.2.2)By doing this, we have the random vector (X;Z0; � � �Zk) which is equivalent to the random pair(X;Y ). Hence, we have pi(t) = P (Zi = 1jX = t). The random variables Z0; � � � ; Zk have thefollowing constraint, Z0 + � � �+ Zk = 1 (4.2.3)
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Figure 26: Wesdr Original Data|Cross sections of estimated probability of progression as a func-tion of duration with their 90% Bayesian con�dence intervals, at three levels of gly and threelevels of bmi. Low, median and high denote .25, .5 and .75 percentiles. Method: OneStepRGACV.
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Figure 27: Wesdr Original Data|Cross sections of estimated probability of progression as a func-tion of bmi with their 90% Bayesian con�dence intervals, at three levels of gly and three levels ofduration. Low, median and high denote .25, .5 and .75 percentiles. Method: OneStepRGACV.
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Figure 28: Wesdr Original Data|Cross sections of estimated probability of progression as a func-tion of duration, at four levels of gly and four levels of bmi. q1, q2, q3 and q4 are the quantilesat 0:125; 0:375; 0:625 and 0:875. Method: OneStepRGACV.
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Figure 29: Wesdr Original Data|Cross sections of estimated probability of progression as a func-tion of bmi, at four levels of gly and four levels of duration. q1, q2, q3 and q4 are the quantilesat 0:125; 0:375; 0:625 and 0:875. Method: OneStepRGACV.
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n=500Figure 30: CKL Comparison based on 200 runs.Similarly for the observations, we denotezij = (1 if yj = 1;0 otherwise i = 0; � � � ; k and j = 1; � � � ; n: (4.2.4)Note that f(Xj ; Zij); j = 1; � � � ; ng is su�cient for fpi(xj); j = 1; � � � ; ng, so the conditional classprobability can be estimated from the observed data set f(xj ; zij); j = 1; � � � ; ng. Letting fi(t) =log(pi(t)=(1 � pi(t)), we can estimate fi(t) by minimizing the following penalized problem,nXj=1[�zijfi(xj) + log(1 + efi(xj))] + n2 J�i(fi):This can be done by using the OneStepRGACV method developed earlier in this chapter. Denotethe estimates obtained through this way be p̂0(t); � � � ; p̂k(t). In order for the estimates to satisfythe constraint ( 4.2.1), we set the �nal estimates as follows,~pi(t) = p̂i(t)p̂0(t) + � � � + p̂k ; i = 1; � � � ; k: (4.2.5)We conduct Monte Carlo simulations to see how the individual �tting by binary data algorithmcompared with the penalized polychotomous regression. We apply this approach to the two simula-tion examples in chapter 3. The comparison is presented in term of Comparative Kullback-LeiblerDistance. Figure 30 is for the univariate case, and Figure 31 is for the multivariate case. We use`multiple' to stand for the penalized polychotomous method proposed in chapter 3 and `binary' forthe individual �tting. From the plots, the penalized polychotomous method seems to perform alittle bit better. However, the performances are very close when we have reasonable large samplesize. We can expect the performance will get closer as the sample size gets larger.
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604.2.2 Randomized GACV for Penalized Polychotomous RegressionAnother possibility to apply the penalized Polychotomous Regression to large data set is to useapproximate smoothing spline and select the smoothing parameters by some criteria similar to theOneStepRGACV.We will �rst extend the derivation of GACV in Xiang and Wahba (1996) to the PenalizedPolychotomous Regression.Our object is the Kullback-Leibler distance or the Comparative Kullback-Leibler distance betweenthe estimate and the true functions.CKL(�) = 1n nXj=1f�p0(xj)f�(xj) + b(f�(xj))g: (4.2.6)The CKL depends on the true functions which are unknown, so an estimate of the CKL is needed.De�ne the ordinary, or leaving-out-one cross validation function CV (�),CV (�) = 1nPnj=1[�y0jf�j� (xj) + b(f�(xj))]= 1nPnj=1[�y0jf�(xj) + b(f�(xj))] + 1nPnj=1 y0j(f�(xj)� f�j� (xj)) ; (4.2.7)where yj = (y1j ; � � � ; ykj)T , f�(t) = f1�; � � � ; fk�)T and f�j� is the minimizer of penalized polychoto-mous likelihood (2.2.1) with the jth data point omitted. CV (�) can be expected to be at leastroughly unbiased for the CKL(�). For any �xed �, in order to evaluate CV (�), we have to get nleaving-out-one estimates f�j� (xj); j = 1; � � � ; n. In general, it will be very expensive to computef�j� . Hence, using CV (�) is almost infeasible. We will introduce an approximate for CV (�) viaseveral �rst order Taylor series expansions.Notice that Pnj=1 y0j(f�(xj)� f�j� (xj))=Pki=1Pnj=1 yij(fi�(xj)� f�ji� (xj))Pki Pnj yij fi�(xj)�f�ji� (xj)yij�p�ji� (xj) yij�pi�(xj)1� pi�(xj)�p�ji� (xj)yij�pi�(xj) ;and pi�(xj)� p�ji� (xj)yij � p�ji� (xj) � b00ii(f(xj))fi�(xj)� f�ji� (xj)yij � p�ji� (xj) :Hence we haveCV (�) � 1n nXj=1[�y0jf�j� (xj) + b(f�(xj))] + 1n kXi=1 nXj=1 yij(yij � pi�(xj))yij�p�ji� (xj)fi�(xj)�fi�(xj) � b00ii(f�(xj)) : (4.2.8)We can see from the right side of ( 4.2.8) that the calculation of CV (�) will focus on the calculationof yij � pi�(xj)fi�(xj)� f�ji� (xj) : (4.2.9)To avoid the calculation of ( 4.2.9), we will develop an approximation for it. Before obtainingan approximation for this ratio, we need to generalize the leaving-out-one lemma of Graven andWahba (1979).



61Lemma 4.10 (leaving-out-one lemma) LetI�(f; y) = �l(yj; f(xj))�Xl 6=j l(yl; f(xl)) + n2J�(f):Suppose h�(j; z; �) is the minimizer in H of I�(f; z) wherez = (y1; � � � ; yj�1; z; yj+1; � � � ; yn)T :Then h�(j; p�j(xj); �) = f�j(�) where f�j(�) is the minimizer of�Xl 6=j l(yl; f(xl)) + n2J�(f)and p�j(�) is the probability function corresponding to f�j(�).Proof First de�ne y�j = (y1; � � � ; yj�1; p�j(xj); yj+1; � � � ; yn)Tand �l(p�j(xj); �) = �[p�j(xj)]0� + b(�):We will show that �l(p�j(xj ; f�j(xj) � �l(p�j(xj); f(xj)): (4.2.10)@l(p�j(xj); �)@� = �p�j(xj) + @b(�)@�and using the fact @2b(�)@�T@� > 0implies that �l(p�j(xj ; �) achieves its minimum for @b(�)@� = p�j(xj). So ( 4.2.10) holds since@b(�)@� j�=f�j(xj) = p�j(xj):Then, for any f I�(f; y�j) = �l(p�j(xj); f(xj))�Pl 6=j l(yl; f(xl)) + n2J�(f)� �l(p�j(xj); f�j(xj))�Pl 6=j l(yl; f(xj)) + n2J�(f)� �l(p�j(xj ; f�j(xj))�Pl 6=j l(yl; f�l(xl)) + n2J�(f�j):So h�(j; p�j(xj); �) = f�j(�). Q.E.D.From this lemma, we can see that replacing yj = (y1j ; � � � ; ykj)T by p�j� (xj), the minimizerof I� with respect to f(�) will be f�j� (�). From Chapter 2, we know that if (f1�; � � � ; fk�)T is aminimizer of I�, fi� is in a certain linear space of dimension at most n, and then Ji(fi�) can bewritten as a quadratic form in its values at xj . With some abuse of notation we will write belowJi(fi) = fTi �ifi = cTi Qici where in this context we are letting fi = (fi(x1); � � � ; fi(xn))T . Hence,I� can be written as follows,I�(f; y) = � nXj=1f kXi=1 yijfi(xj) + log(1 + kXi=1 efi(xj))g+ n2 kXi=1 �ifTi �ifi: (4.2.11)



62Let Yi = (yi1; � � � ; yin)T , Y �ji = (yi1; � � � ; yi(j�1); p�ji (xj); yi(j�1); � � � ; yin)T and Y �j = ((Y �j1 )T ; � � � ; (Y �jk )T )T .Because (f�; Y ) and (f�j� ; Y �j) are two local minimizers of I�(f; y), we have@I�(f; y)@fi jf=f�;y=Y = 0;and @I�(f; y)@fi jf=f�j� ;y=Y �j = 0;hence @I�(f; y)@fi jfi=fi�;fl=f�jl� ;yi=Yi;yl=Y �jl � @I�(f; y)@fi jf=f�;y=Y = 0:Also, we have @2I�@fTi @fi =Wi + n�i�i;@2I�@yTi @yi = 0;and @2I�@yi@fTi = �In�n:Hence, using a Taylor expansion we have0 � (Wi + n�i�i)(fi� � f�ji� )� (Yi � Y �ji );thus fi� � f ji� � (Wi + n�i�i)�1(Yi � Y �ji );so 0BBBBBB@fi�(x1)� f�ji� (x1)...fi�(xj)� f�ji� (xj)...fi�(xn)� f�ji� (xn)
1CCCCCCA � (Wi + n�i�i)�10BBBBBBBBBB@

0...0yij � pji�(xj)0...0
1CCCCCCCCCCA : (4.2.12)

De�ning Hi = (Wi + n�i�i)�1, and hjji be the diagonal element of Hi, we will havefi�(xj)� f�ji� (xj)yij � p�ji� (xj) � hjji : (4.2.13)Using (4.2.13) to calculate the CV (�) we will have an approximate formula for the cross validation,ACV (�) = 1nL+ 1n kXi nXj=1 yij(yij � pi�(xj))(hjji )�1 � wij : (4.2.14)



63If we replace hjji by 1n tr(Hi) and replace hjji wij by 1ntr(W 1=2i HiW 1=2i ), we have the generalized formof the approximate cross-validation as follows,GACV (�) = 1nPnj=1f�Pki=1 yijfi�(xj) + log(1 +Pki=1 efi�(xj))g+ 1nPki=1Pnj=1 tr(Hi)yij (yij�pi�(xj))n�tr(W 1=2i HiW 1=2i ) : (4.2.15)We can see that the GACV formula will reduce to the formula for binary case when k = 1. Asmentioned earlier, the computation of Hi will be numerical unstable when the sample size is large.Numerical method should be sought to overcome this di�culty if we want to use this approachin practice. Considering the disturbance � � N(0; �2Ink) and letting � = (�T1 ; � � � ; �Tk )T , wewill have E(�Ti Hi�i) = �2Tr(Hi) and E(�Ti WiHi�i) = �2Tr(W 1=2i HiW 1=2i ). Hence, we can use�Ti Hi�i=�2 to estimate Tr(Hi) and �Ti WiHi�i=�2 to estimate Tr(W 1=2i HiW 1=2i ).Let fy+�;1i� = fi� � ( @2I�@fTi @fi (f�; y + �))�1 @I�@fi (f�; y + �):By observing that @I�@fi (f�; y + �) = ��i + @I�@fi (f�; y) = ��i;and [ @2I�@fTi @fi ]�1 = [ @2I�@fTi @fi (f�; y)]�1 = Hi;we have fy+�;1i� � fi� = Hi�i: (4.2.16)Thus Tr(Hi) can be estimated by �Ti (fy+�;1i� � fi�)=�2, and Tr(W 1=2i HiW 1=2i ) can be estimated by�Ti Wi(fy+�;1i� � fi�)=�2:By replacing Tr(Hi) and Tr(W 1=2i HiW 1=2i ) with their randomized estimates and use �T �=nkto estimate �2, we have a randomized version of GACV function for the penalized polychotomousregression,ranGACV (�) = 1nPnj=1f�Pki=1 yijfi�(xj) + log(1 +Pki=1 efi�(xj))g+ 1nPki=1Pnj=1 �Ti (fy+�;1i� �fi�)yij(yij�pi�(xj))�Ti �i=k��Ti Wi(fy+�;1i� �fi�) (4.2.17)This will reduce to the OneStepRGACV formula for binary data when k = 1. To reduce thevariance of the ranGACV , we may draw R independent replicates �(r); r = 1; � � � ; R and obtain anR-replicate version randomized GACV,ranGACVR(�) = 1nPnj=1f�Pki=1 yijfi�(xj) + log(1 +Pki=1 efi�(xj))g+ 1nRPRr=1Pki=1Pnj=1 (�(r)i )T (fy+�(r);1i� �fi�)yij(yij�pi�(xj))(�(r))T �(r)=k�(�(r)i )TWi(fy+�;1i� �fi�) : (4.2.18)For �xed �, we can iterate the block one step SOR-newton until it converges to get a solutionf�, and evaluate ranGACV (�). Then we can �nd the minimizer �̂ of ranGACV (�), and use f�̂ asour estimate. In order to apply this to large data set, the approximate smoothing spline methodshould also be used. Besides, for the polychotomous problem we have more smoothing parametersthan the binary case. Before we can apply this in practice, we should put some e�ort in reducingthe number of smoothing parameters or investigating some e�cient way to �nd the minimizer ofthe ranGACV function.



64Chapter 5Application to WisconsinEpidemiological Study of DiabeticRetinopathy5.1 IntroductionIn this chapter, we use data from the Wisconsin Epidemiology Study of Diabetic Retinopathy(WESDR) to demonstrate the penalized polychotomous regression method.The study area is composed of 11 counties in southern Wisconsin. Diabetic persons wereidenti�ed by a review of the records of 452 of the 457 physicians providing primary care to diabeticpersons in the period July 1, 1979, through June 30, 1980. A two part sample of 2990 diabeticpatients was selected on July 1, 1980, for the examination phase of study. The �rst part consistedof all persons whose conditions were diagnosed before 30 years of age and who were taking insulin,referred to as younger-onset persons (N = 1210). The second part consisted of a probability samplestrati�ed by duration of diabetes of persons diagnosed by a physician as having diabetes at or afterage 30 years and con�rmed by a random or postprandial serum glucose level of at least 11.1 mmol/L(200 mg/dL) or a fasting serum glucose level of at least 7.8 mmol/L (140 mg/dL) on at least twooccasions, referred to as older-onset persons (N = 1780). Of the older-onset group, 824 were takinginsulin and 956 were not taking insulin. The sampled persons were invited to participate in theexamination phase of the study from 1980 to 1982. Baseline examinations were obtained for 996(82:3%) younger-onset and 1370(77:0%) older-onset persons.One of the original aims of the Wisconsin Epidemiologic Study of Diabetic Retinopathy was toexamine mortality in the population. Thus, all sampled persons are contacted annually by telephoneto determine vital status. In addition, designated contact persons, relatives, and physicians arecontacted, and newspaper obituaries are reviewed daily. In all cases, an attempt is made to obtainedan exact or approximate date of death. Annually, a request is made to Wisconsin Center for HealthStatistics, Section of Vital Statistics, for death certi�cate information of these persons. In addition,persons who are not known to be dead but have been unavailable for follow-up are submitted formatching against the death records. Wisconsin death records through March 1995 have beensearched. Information on persons who have moved out of Wisconsin and are suspected of beingdead and persons who are unavailable for follow-up is submitted to the National Death Index formatching against national death data. When a match is made, a copy of the death certi�cate isobtained from the appropriate state.All medical conditions on the Wisconsin death certi�cate were coded by trained nosologists inthe Wisconsin Division of Health using the International Classi�cation of Diseases, Ninth Revision(ICD-9). The underlying cause of death was selected by the Automated Classi�cation of MedicalEntities computer program. Out-of-state certi�cates were coded and processed in the same manner.The cause-speci�c mortality analysis of the present investigation is based on the underlying causeof death.



65For this study population, diabetes and heart disease are among the several major causes formortality. As an example, we will employ the penalized polychotomous regression method toinvestigate the associate between the risk factors and the cause-speci�c mortality such as dying ofdiabetes and dying of heart disease.5.2 Estimate the Risks of Cause-speci�c Mortality by PenalizedPolychotomous RegressionWe are going to investigate the how the risk factors. We only consider older onset without takinginsulin group in this analysis. Based on the previous investigation by other researchers and somepreliminary analysis using multiple logistic regression, we decide to include the following variablesin our analyses:1. Age: age in years at the time of baseline examination;2. Glycosylated hemoglobin: a measure of hyperglycemia;3. Systolic blood pressure in mmHg;We are concerned about the cause-speci�c mortality. Speci�cally, the participants will belong toone of the following categories:1. Die of diabetes;2. Die of heart disease;3. Die of other cause other than diabetes and heart disease;4. Still aliveThree kinds of mortality will be considered:1. 5 years mortality: only those patients who died within 5 years from baseline examinationare considered to be death while those patients died after 5 years or still alive are consideredto be alive;2. 10 years mortality: only those patients who died within 10 years from the baseline exami-nation are considered to be death;3. 12 years mortality: only those patients who died within 12 years from the baseline exami-nation are considered to be death.By deleting the incomplete observations, we summarize the data in Table 1, 2 and 3. Table 1 is for5 years mortality, Table 2 is for 10 years mortality and Table 3 is for 12 years mortality.The values in the columns under the `gly', `sp' and `age' are the corresponding means for eachgroup.The polychotomous response for the data set is de�ned as follows. The patients who diedof diabetes as category 1, those died of heart disease as category 2 (these two causes are mostcommonly fond in diabetes patients), those died of other causes as category 3 and the rest ascategory 0. The penalized polychotomous regression method is used to build the models for the5 years mortality, 10 years mortality and 12 years mortality respectively. The covariatesconsidered are:



66Table 1: 5 years mortality summarycause N gly sp agediabetes 12 11.23 157 73.17heart disease 99 11.01 157.78 73.85other causes 83 10.30 150.14 75.43alive 452 10.12 145.96 65.24Table 2: 10 years mortality summarycause N gly sp agediabetes 23 10.95 159.30 70.43heart disease 155 10.65 155.23 73.06other causes 164 10.31 152.12 73.25alive 304 10.07 142.33 62.431. gly1: glycosylated hemoglobin level at the baseline examination;2. sp1: systolic blood pressure measured at the baseline examination;3. age: age at the baseline examination.Let f1(age; gly1; sp1) = log(p1(age; gly1; sp1)=p4(age; gly1; sp1));f2(age; gly1; sp1) = log(p2(age; gly1; sp1)=p4(age; gly1; sp1));f3(age; gly1; sp1) = log(p3(age; gly1; sp1)=p4(age; gly1; sp1)):The functional ANOVA decomposition for f1 is as follows,f1(age; gly1; sp1) = �1 + h1(age) + g1(gly1) + g2(sp2) + g12(gly1; sp1)and decomposition for f2 and f3 are similar. We �t these functions by the penalized polychotomousmethod proposed in chapter 3. The estimates are plotted in Figure 32 to Figure 37. From the plots,we can see that1. For those patients with age less than 55, the diabetes is the leading cause of death;2. For those patients with very high systolic blood pressure (> 200mmHg) at baseline exami-nation, heart disease seems to be the leading cause of death within 5 years from baseline.Table 3: 12 years mortality summarycause N gly sp agediabetes 25 10.96 158.92 69.75heart disease 172 10.64 154.23 72.54other causes 188 10.31 151.22 72.85alive 260 10.00 141.89 61.44



67Also, the e�ect of glycosylated hemoglobin level always turns out to be linear which is consistentwith other analysis on the WESDR data.
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Figure 32: Cross-section plot of probability surfaces. In each plot, the di�erences between adjacentcurves (from bottom to top) are probabilities for: alive, diabetes, heart attack, other cause respec-tively. The points imposed are in the same order. Older onset without taking insulin, those whodied after 5yrs from baseline are considered to be alive. n = 646.
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(c)Figure 33: Main-e�ect plots in logit scale (y-axis corresponding to the value of logit function).Older onset without taking insulin group. Those who died after 5yrs from baseline are consideredto be alive. n = 646.
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Figure 34: Cross-section plot of probability surfaces. In each plot, the di�erences between adja-cent curves (from bottom to top) are probabilities for : alive, diabetes, heart attack, other causerespectively. The points imposed are in the same order. Older onset without taking insulin, thosewho died after 10yrs from baseline are considered to be alive. n = 646.
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(c)Figure 35: Main-e�ect plots in logit scale (y-axis corresponding to the value of logit function).Older onset without taking insulin group. Those who died after 10yrs from baseline are consideredto be alive. n = 646.
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Figure 36: Cross-section plot of probability surfaces. In each plot, the di�erences between adjacentcurves (from bottom to top) are probabilities for: alive, diabetes, heart attack, other cause respec-tively. The points imposed are in the same order. Older onset without taking insulin, those whodied after 12yrs from baseline are considered to be alive. n = 646.
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(c)Figure 37: Main-e�ect plots in logit scale (y-axis corresponding to the value of logit function).Older onset without taking insulin group. Those who died after 12yrs from baseline are consideredto be alive. n = 646.



74Chapter 6Concluding Remarks6.1 SummaryWe have proposed nonparametric models using smoothing spline ANOVA for modeling data withpolychotomous response. We obtained the estimates by solving a minimization problem involvingthe penalized likelihood. A block one step SOR-Newton-Raphson method is used to solve thisminimization problem. We use GCV and the unbiased risk method to choose smoothing parametersat each update. Our simulations indicate that the method will give us a good estimate most ofthe time for moderate data sets. We successfully applied this method to a medical data set. Thedisadvantage is that we can not apply this method to large data sets. Also, the convergence of thismethod is not guaranteed due to the way we choose the smoothing parameters although we did notexperience any fail of convergence in our simulations and example.We also proposed a fast algorithm to model the data with binary response (special case ofpolychotomous response). The randomized GACV we derived is shown to be a good proxy ofthe true CKL from the simulations. An approximate scheme is also proposed to speed up thecomputation in case of large data set. Simulations show that this method outperforms the iteratedUBR method proposed by Gu.To overcome the computational di�culties for large data sets with polychotomous responses,we proposed two methods. By transforming the polychotomous response data into several binarydata sets, we can use the fast algorithm for binary data and obtain the �nal estimate by combiningthe estimate from each binary data sets. The disadvantage of this methods is that we don't havefunctional ANOVA decomposition for the �nal estimates. Simulations show that the performanceof this method is close to the penalized polychotomous regression and the results are expected toget closer when the sample size gets larger. Alternatively, by following the derivation of randomizedGACV for binary data we derived a randomized GACV for the penalized polychotomous regressionproblem. Combining with the approximate smoothing spline, this approach is expected to producethe solution much faster.6.2 Future ResearchHypothesis testing and model selection are important for data analysis. The approximate posteriorvariance or covariance can be used to construct the con�dence interval for the smoothing splineestimates. The performance and the interpretation of these con�dence interval remain to be inves-tigated.Theoretical results can provide insight into and justi�cation for the proposed methods. Largesample properties like asymptotic consistency, convergence rate, strong or weak consistency for therandomized GACV are desirable.
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