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Abstract

We consider the penalized likelihood method with smoothing spline ANOVA for estimating non-
parametric functions to data involving a polychotomous response. The fitting procedure involves
minimizing the penalized likelihood in a Reproducing Kernel Hilbert Space. One Step Block
SOR-Newton-Raphson Algorithm is used to solve the minimization problem. Generalized Cross-
Validation or unbiased risk estimation is used to empirically assess the amount of smoothing (which
controls the bias and variance trade-off) at each one-step Block SOR-Newton-Raphson iteration.
Under some regular smoothness conditions, the one-step Block SOR-Newton-Raphson will produce
a sequence which converges to the minimizer of the penalized likelihood for the fixed smoothing
parameters. Monte Carlo simulations are conducted to examine the performance of the algorithm.
The method is applied to polychotomous data from the Wisconsin Epidemiological Study of Di-
abetic Retinopathy to estimate the risks of cause-specific mortality given several potential risk
factors at the start of the study. Strategies to obtain smoothing spline estimates for large data sets
with polychotomous response are also proposed in this thesis. Simulation studies are conducted to
check the performance of the proposed method.
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Chapter 1

Introduction

1.1 Motivation

In many demographic medical studies, records of attribute vectors as well as records of the outcome
for each example (patient) for n examples are available as training data. Usually, the outcome is
a categorical random variable that takes on a finite number of values (nominal) which we refer to
as classes. This is a multiple classification problem in statistics if we want to predict the outcome
based on the attribute vectors. In some other situation, we might be interested in the estimation
of the class probability given the attribute vectors.

Many methods have been proposed for the multiple classification problems. One of the pop-
ular modern multiple classification techniques is CART (Breiman, Friedman, Olshen and Stone,
1984), which approaches the multiple classification problem using recursive partitioning techniques.
Hastie, Tibshirani and Buja (1994) introduce flexible discriminant analysis, which combines non-
parametric regression techniques with discriminant analysis. Villalobos and Wahba (1983) proposed
classification using an approach of estimating the posterior class probability based on maximum
penalized log likelihood estimation using multivariate thin plate splines. Bose (1994) proposes
classification using splines which employs least squares regression and additive cubic splines. In
Computer Sciences, neural networks is one of the popular techniques for classification. See Ripley
(1994) for details.

It can be shown that the optimal classification rule predicts Y to be
argmaxP(Y = k|X). Most of the popular classification methods try to find argmazpP(Y = k|X)
without precise estimation of the conditional class probability. For multiple classification problems,
it is assumed that any two examples with the same attribute vector will always be in same class,
whereas in some studies this is not necessarily the case. For example, in medical studies two pa-
tients with the same attribute vector will not necessarily have the same medical outcome. Clearly,
multiple classification methods are not useful in such applications. Instead, we are more interested
in estimating the probability of a particular outcome given the attribute vector.

A popular technique used to obtain an estimate of all the conditional class probabilities is mul-
tiple logistic regression (polychotomous regression). Traditionally, we assume linear (parametric)
forms for all the logit functions to be estimated. The details of the linear polychotomous regression
techniques can be found in Hosmer and Lemeshow (1989). However, the linear assumption or even
quadratic or cubic models may not be adequate in some applications , and the results obtained by
assuming linear forms might be misleading.

A variety of approaches have been proposed to allow more flexibility than is inherent in simple
parametric models. We will not review the general literature, other than to note that regression
splines have been used for this purpose by, for example Kooperberg, Bose and Stone (1997). In their
paper, they combine MARS with polychotomous regression to provide estimates for conditional class
probabilities. On the other hand, the smoothing spline analysis of variance, as a nonparametric
method, has been successfully used in many area as a tool for data analysis. Wahba, Wang, Gu,
Klein and Klein (1995, referred as WWGKK) provide a general setting for applying smoothing



spline ANOVA to data from exponential families. Their method is successfully applied to analyze
medical data with Bernoulli outcomes. This is a motivation to use smoothing spline ANOVA to
model data with polychotomous response.

In this thesis, we will investigate various approaches using smoothing spline ANOVA technique
to obtain an estimate of the class probabilities for data with polychotomous responses. For mod-
erate data sets, an iterative method based on penalized likelihood is proposed. For large data sets,
two methods are proposed to overcome the computational difficulties. In one method, we propose
a fast algorithm for a large data set with Bernoulli responses and model the polychotomous data
based on the binary data algorithm. Alternatively, we can use the techniques employed in devel-
oping the fast algorithm for binary data to speed up the iterative method based on the penalized
likelihood for polychotomous data.

1.2 Outline of the Thesis

In Chapter 2 of this thesis, we discuss the penalized polychotomous regression using Smoothing
Splines Analysis of Variance. The penalized likelihood for the polychotomous response is estab-
lished and the existence of the solution is investigated. We also review smoothing spline analysis
of variance and apply it to the polychotomous regression.

In Chapter 3, we propose a numerical method called ‘Block one-step SOR-Newton-Raphson’
to solve the penalized polychotomous regression problem. A connection between the smoothing
estimate and a Bayesian problem is also discussed in this chapter.

In Chapter 4, we first introduce a fast algorithm to get the smoothing spline estimate for binary
data. A randomized version of generalized cross-validation is derived to choose the smoothing pa-
rameters. An approximate solution is proposed to speed up the computation. Bayesian confidence
intervals are constructed for the approximate solution. To obtain smoothing spline estimate for
large data sets with polychotomous response, we will discuss two possible strategies: (1) using the
fast algorithm for binary data; (2) deriving a randomized GACV formula similar to that for binary
data.

To illustrate the penalized polychotomous regression method, we apply it to investigate the as-
sociation between some risk factors and the cause-specific mortality in a data set collected form the
Wisconsin Epidemiologic Study of Retinopathy. This is done in Chapter 5. Finally, a concluding
remark is made in Chapter 6.



Chapter 2

Penalized Polychotomous Regression
using smoothing spline ANOVA

2.1 Polychotomous Logistic Regression

Assume that the categories of the outcome variable, Y, are coded 0,1,--- , k. Suppose the distri-
bution of Y depends on the predictors x1,- - , x4, where x = (x1,...,z4) ranges over the subset X
of R%. Now let x be distributed as a random vector, i.e. consider a random pair (X,Y). Suppose
P(Y =i|X =z) > 0 and let

PY=iX =z
PY =0X =1)

fi(z) =log i=1,---,k, (2.1.1)

then

P(Y =i|X =) = exp(fi(z)) i=1,,k (2.1.2)

~ L+exp(fi(x)) + ... +exp(fr(x))’

1

1+ exp(fi(z)) + ... + exp(fr(z)) (2.1.3)

PY =0/X =1) =

We refer to ( 2.1.1) as the polychotomous regression model; when & = 1 it is referred to as the
logistic regression model.

Denoting p;(t) = P(Y =i|X =t), we can write down the conditional likelihood of observing y
given covariate X=t as follows,

k k k
[1pi0"¥=" = exp{> " Ily = il fi(t) — log(1 + > ei)},
i=0 i=1 i=1
so the negative log-likelihood is
k k
= Iy =ilfit) +log(1+ ) i),
i=1 i=1

Suppose we have observations (¢1,y1),..., (tn,yn), then the negative log-likelihood based on the
observations is

n k k

Ly, fr o fi) = =Y AD Ilyj = ilfilty) —log(1+ ) /)y, (2.1.4)

7j=1 =1 =1



If we denote y;; = I[y; = i], the negative log likelihood can be written as follows,
k
Ly, f1, - fr) Z{ Zyz]fz ) + log(1 + Zefi(tf))}. (2.1.5)
i=1

The usual parametric approach to the polychotomous regression problem is to use linear model

fi(z) = Bio + Binx1 + -+ + Bigxa-

The parameters 3;; are obtained by the maximum likelihood method. The negative log likelihood
is convex and twice differentiable, and iterative procedure such as Newton-Raphson method can be
used to get the ML estimate of the parameters.

2.2 Penalized Polychotomous Regression

To achieve greater flexibility, many authors proposed nonparametric regression models to relax
the rigid linear assumption. In particular, the penalized likelihood smoothing spline for data from
exponential families (O’Sullivan, 1983; Wahba et al., 1995) assumes that the function is smooth
but imposes some roughness penalty on the function. Following this approach, we can assume
each logit function f; is smooth but imposes a roughness penalty J(f1,- -, fx) on the functions.
More precisely, we will assume that f; € H’, where H' is a reproducing kernel Hilbert space.
A reproducing kernel Hilbert space(RKHS) is a Hilbert space of functions on X in which the
evaluation functional is continuous (Aronszaj, 1950). The penalized polychotomous regression
estimates fi,--- , f are obtained by finding f; € #* to minimize the penalized likelihood

La(froe fe) = Zl (froo o fi) + Ifrs o fa)s (2.2.1)

where the first part is the negative log-likelihood and I; = Zle yij fi(z;) — log(1 Z L efi@)),
It measures the goodness of fit. The second part is the penalty function. For simplicity and easy
interpretation, we will assume that the penalty function is in additive form, i.e.,

k
In(froee o fe) =D N (fi)
im1

Suppose H' = H} @ H!, where H} is finite dimensional ( the “parametric” part, usually poly-
nomials), and H} (the “smooth” part) is the ortho-complement of H} in H'. Let J'(f) = ||P{f||%
where P} is the orthogonal projection operator in H* onto Hj, then the penalized likelihood will
become

n k
Jj=1 i

Denoting J, be the null space of H' x --- x H* with respect to the penalty function Jy, we have
the following theorem.

Theorem 2.1 If the minimizer of ( 2.2.2) exists in J |, it uniquely exists in H' x --- x HF



Before we prove this theorem, we will first state two lemmas.
Lemma 2.1 L(y, f1,..., fx) in (2.1.5) is a convex function of f1,..., fk.

Proof. See page 438, example 5.3 of Theory of Point Estimation(Lehmann,1983).
The following Lemma is Theorem 4.1 from Gu and Qiu (1993).

Lemma 2.2 Suppose L(g) is a continuous and strictly convex functional in a Hilbert space H =
J1 @ Hy, where Hy has a square norm J(g) and Jy is the null space of J(g) of finite dimension.
If L(g) has a minimizer in J,, then L(g) + J(g) has a unique minimizer in H.

Proof of Theorem 2.1

Let H = {g|g(x,i) = fi(x), i=1,...,k, where f; € H'}.Then H is a Hilbert space with square
semi-norm J(g) = J(f1,..., fx).- Let L*(g9) = L(y, f1,-.., fr). By Lemma 2.2, it suffices to show
that £*(g) is continuous and strictly convex in H. Continuity is obvious. Strict convexity follows
from Lemma 2.1. Q.E.D.

2.3 Smoothing Spline Analysis of Variance

Smoothing Spline Analysis (SS-ANOVA) models for Gaussian data are described in some generality
in Wahba (1990, Chapter 10) where references to the previous literature are given. Wahba et al.
(1995) and others, discussed further various aspects of these models. The code RKPACK (Gu 1989)
will fit specified SS-ANOVA models given Gaussian data. The code GRKPACK (Wang 1997) which
calls subroutines in RKPACK will fit specified SS-ANOVA models given data from one parameter
exponential families.

Given a fairly arbitrary function f(x1,--- ,2z4), a (functional) ANOVA decomposition of f may
be defined as

d
flxy,yzg) = p+ Z falza) + Z fap(®a,x8) + ... + f1,__a(z1,...,2q), (2.3.1)
a=1 af

where the f, are the main effects, f,3 are the two factor interactions, and so on. For those f
satisfying some measurability conditions, a unique ANOVA decomposition of the above form can
always be defined as follows. Let du, be a probability measure on 7(® and define the averaging
operator £, on T by

(Euf)(x) = flxr, . zq)dpe(za)- (2.3.2)

T ()

Then the identity is decomposed as

I =1l.(E) + (I - &)
= H 8 + Za (I EO&) Hﬁyéa gﬂ + Za<ﬂ(‘[ o EO&)(I o Eﬁ) H'y;éa,ﬁ E’Y (233)
+.. + [, =¢&)

The components of this decomposition generate the ANOVA decomposition of f of the form (2.3.1)
by C = (T Ea)- fo = (I = €a) Tlgp €60 Fos = (I = E)T = E5) T, a5 €3)» and s forth.
The idea behind Smoothing Spline ANOVA is to construct an RKHS #H of functions on T so
that the components of the SS-ANOVA decomposition represent an orthogonal decomposition of
fin H. Then RKHS methods can be used to explicitly impose smoothness penalties of the form



Yoo Aada(fa) + Za,a Xagdap(fap) + ..., where, however, the series will be truncated at some point.
This is done as follows. Let H(® be an RKHS of functions on 7(® with fT(a) fa(za)dpe = 0 for

fa(zq) € H®, and let [1(®)] be the one dimensional space of constant functions on 7(®). Construct
H as

d
H=][dn"pe{HI)=1ed HYe Y MYVene... (2.3.4)
Jj=1 o

a<f

where [1] denotes the constant function on 7. With some abuse of notation, factors of the form
[1°] are omitted whenever they multiply a term of a different form. Thus H(® is a shorthand for
1@ - @it g ... @ [1(4)] (which is a subspace of H). The components of the
ANOVA decomposition are now in mutually orthogonal subspaces of H. Note that the components
will depend on the measures du, and these should be chosen in specific application so that the
fitted mean, main effects, two factor interactions, etc. have reasonable interpretations.

Next, #(® is decomposed into a parametric part and a smooth part, by letting H(®) = nga) @
Hga), where H\* is finite dimensional (the ”parametric” part) and Hga) (the ”smooth” part) is
the ortho-complement of nga) in #(®. Elements of nga) are not penalized through the device of
letting J, (fa) = HPéO‘)faH2 where Péa) is the orthogonal projector onto Hga). [H() @ HB)] is now
a direct sum of four orthogonal subspaces: [H(®) @ #()] = [’nga) ® ’H;ﬁ)] ® [’nga) ® ’Hgﬁ)] ® [’Hga) ®
ngﬂ)] ® [’H(Sa) ® ’H(Sﬁ)]. By convention the elements of the finite dimensional space [7—[7(3) ® ’H;ﬁ)} will
not be penalized. Continuing this way results in an orthogonal decomposition of H into sums of
products of unpenalized finite dimensional subspaces, plus main effects ‘smooth’ subspaces, plus
two factor interaction spaces of the form parametric ® smooth, smooth ® parametric and smooth
® smooth and similarly for three and higher factor subspaces.

When a model is chosen, we can regroup and write the model space as

q
M=Hoa> M, (2.3.5)
=1
where Hj is a finite dimensional space containing functions which are not going to be penalized. The
norms on the composite H; are the tensor product norms induced by the norms on the component
subspaces, ||f||? = [|Pof||* + Y./, || P f]|?, where P, is the orthogonal projector in M onto H,;. The
smoothing spline ANOVA estimate of f is the solution to the following variational problem

n

mind > (i — £(@:)* +n 3 MRS (2.6)
=1

fem

=1

The first term in (2.3.6) is the sum of squared residuals which measures the goodness of fit while
the second part is the penalty on roughness of the estimate. The A;’s are smoothing parameters
controlling the trade-off between goodness of fit and roughness. These smoothing parameters can
be estimated from data by the generalized cross validation method or by the unbiased risk method
(see Wahba 1990).

2.4 Penalized Polychotomous Regression Using Smoothing Spline
Analysis of Variance

We assume that the data are polychotomous response data and we have chosen a model space M; =
0@ 11, Hj for each logit function f;. As a direct generalization of (2.2.2) to multivariate functions



and a direct generalization of (2.3.6) to polychotomous response data, a penalized polychotomous
regression smoothing spline analysis of variance estimate is the solution to the following variational
problem:

n

kg

. n .

min — {= Y Li(fij o fig) + 5 00> MallB il (2.4.1)
fieMi =1,k 5 2 4
7=1 =1 =1
where f;; = fi(z;). The first part in ( 2.4.1) is the negative log likelihood. It measures the goodness
of fit. In the second part, P is the orthogonal projector in M; onto H! and || P} f||? is a roughness
penalty. The )\;;’s are a set of smoothing parameters which controls the trade-off between goodness
of fit and roughness of the estimate. We will discuss how to choose the smoothing parameters and

solve the variational problem in the next chapter. If we let A; = X;/6;;, (2.4.1) becomes

n k
; N S L (1P f |2
RV CIN S SUCTRER RS D LS (24
i= i=
where P! = ;1;1 P} is the orthogonal projection in M; onto H. = ) H! and

qi
‘ i
1£116, = [1PSFI1* + D 63 (1P FI,

=1

is a modified norm of M; indexed by ©; = (0;1,- - ,0;,). We denote by Rf the reproducing kernel
for 7! under the original norm. It can be shown that 6; R} is the RK for #} under the norm ||-|e,.
Thus the RK for ¢ under || - ||, is

qi
Ro, = Y 6;R;. (2.4.3)
=1

Since the RK of the tensor product space is the product of the RK’s of the component space,

the computation of the R!’s is straightforward. For example, if R, ()(-,-) and R, u)(-,-) are the

HY) H®

RK corresponding to the Hilbert spaces Hsfj) and Hgk) respectively, the RK corresponding to the
tensor product space 7-[7(3) ® Hgk) is

Ry (w3 (31), w5 (52)) By (i (1), 2 (K2)),

where z,(v) denotes the uth coordinate of the vth design point.
Similar to Wahba (1990), we will show that the minimizer of the penalized likelihood for poly-
chotomous response data is within a finite dimensional linear space.

Theorem 2.2 The solution to ( 2.4.2) has the form
filt) = ') d + €(1)e, (2.4.4)

where {gbz,}iw:ll is a set of basis functions spanning the null space Hi, ¢'(t)" = (¢ (t),- - ,(;’)Z}V[i (1)),
gz(t)T = (R(ai(xlvt)v T 7R@i(mna t))



Proof See Wahba (1990).
Substituting ( 2.4.4) into ( 2.4.2), we can estimate ¢’ and d° by minimizing

I/\(Ca d)
= =2 L () + E ) @F ()T dF (2.4.5)
+§k(.’lﬁj)TCk) + % Zle )\Z'ClTQ@Z.Cl
where Q@, is an n x n matrix with entry Qe,(l,j) = Re,(z;,2;). Since I;’s are not quadratic,

(2.4.5) can not be solved explicitly. In the next chapter, we will discuss how to obtain the estimate
numerically.



Chapter 3

Fitting the Penalized Polychotomous
Regression

3.1 Introduction

As mentioned in Chapter 2, we need to use numerical methods to obtain the solution of the
penalized polychotomous regression since a closed form solution can not be obtained. Since we can
easily obtain the gradient and Hessian of the penalized negative log likelihood, methods without
using the gradient and Hessian will not be considered. Technically, the Newton-Raphson algorithm
can be used to obtain the solution because it is a quadratic convergent algorithm. However, the
computational complexity of the Newton-Raphson algorithm for this problem will be O((nk +
My + -+ + My)?) since we need to solve a (nk + My + --- + My,)) x (nk + My + -+ + M) linear
system in each iteration. Meanwhile this algorithm requires computer memory on the order of
O((nk + My + -+ + My,)?). Usually, My,--- , M}, are small so nk will decide the computational
complexity and the required memory in a given application. The Newton-Raphson algorithm will
definitely be desirable when nk is not large. However, nk might be large or very large in lots of
applications, and the Newton-Raphson will not be desirable in these situations.

In this chapter, an iterative method called Block one-step SOR-Newton-Raphson is proposed
to solve the problem when n is moderate and nk is large. This method is a combination of the
SOR method and the Newton-Raphson method. The computational complexity for this method is
O(n?) and the convergence for this method is superlinear. We sacrifice the convergent rate a little
bit while reducing the computational complexity dramatically in each iteration. Methods which
are designed to solve the problem when n is large will be considered in Chapter 4.

We will first review the Nonlinear SOR method in Section 3.2. In Section 3.3 we discuss the
implementation of block one-step SOR-Newton-Raphson method to the penalized polychotomous
regression problem. We discuss the method for choosing the smoothing parameters in Section
3.4. Connections between the smoothing spline estimate of the penalize polychotomous regression
problem and a Bayesian problem is investigate in section 3.5. Some Monte Carlo simulations are
conducted in section 3.6 to illustrate the performance of the smoothing spline estimates.

3.2 Block Nonlinear SOR methods

In this section, we will review some iterative methods to solve a large nonlinear system.
Assume we are concerned with the following nonlinear system

fl(xla"'axm) = 0

fm(rl;la ,.’I,'m) = 0.
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By partitioning the z as z = (z!,--- ,2P), and by grouping, the above nonlinear system will become
Fl(:rl,--- aP) = 0
Fy(zl,---,2P) = 0.

The basic step for the block nonlinear SOR is as follows. First, we solve the ith nonlinear system

Fi((ml)k+1a T (mill)k_l_lamia ('Ti_l—l)ka Tt (Tp)k) =0 (321)
for ¢ and set (z°)¥*! = (%)% +w(z’ — (2%)*). In order to obtain z*+! = ((z1)k*+!, ...  (2P)¥*+1) from
¥ = ((#")*,---, (zP)*), we successively update the block component of z by the above method

until all components are updated. The w in the updating formula is called the relaxation parameter.
The process is called block nonlinear Gauss-Seidel method if we set w equal to 1 in every update.
See Ortega and Rheinboldt (1970) for details.

Notice that in the block nonlinear SOR process described above, we still need to solve a nonlinear
system in each update. In most applications, we usually don’t have a closed form solution for the
nonlinear system (3.2.1) and the solution should be obtained by the Newton-Raphson method. In
this case, the nonlinear process is called block nonlinear SOR-Newton-Raphson.

Furthermore, if we use one step Newton-Raphson iteration (the value from previous SOR iterate
taken as the initial value) to approximate the solution of the nonlinear system (3.2.1), the nonlinear
SOR process is called the block one-step SOR Newton-Raphson method accordingly. Specifically,
the updating formula for the block one-step SOR-Newton-Raphson is

(.,L,i)k-’rl — (mi)k—H _ w[BiFi(yk’i)}LlFi(yk’i), (322)

where ‘ . .
gB = (@R @ ().

In the statistics literature, the nonlinear system usually arises from a minimization or maximiza-
tion problem in which we need to find a set of parameters to minimize (or maximize) a function.
Specifically, suppose we are going to find z € R™ to minimize a twice differentiable multivariate
function g(x), then the updating formula for the block one-step SOR-Newton-Raphson method will
become

(@) = (@), wlVig(a)]l " Vigh), (3.2.3)

where V?ig is the submatrix of the Hessian and V,g is the sub-vector of the gradient.

By putting some conditions on the nonlinear system we are going to solve or the function we are
going to minimize, we will have some convergence properties for the general block nonlinear SOR
and the block one-step SOR-Newton method. We will state the convergent results which appeared
in Ortega and Rheinboldt (1970) in the remain of this section.

Let F'(z) = D(z) — L(z) — U(z) be the decomposition of F'(z) into block diagonal, strictly
block lower-triangular and strictly block upper-triangular parts, where

% 0o - 0
0

D(z) = .
0 ... 0o %@

oxP
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For w > 0, let
H,(x) =[D(x) — wL(m)]M[(l —w)D(z) + wU(z)]. (3.2.4)

The local convergence of the block nonlinear SOR procedures is stated in the following lemma. The
proof of this lemma can be found in Ortega and Rheinboldt (1970).

Lemma 3.3 (Local Convergence and Rate of Convergence) Assume F : R™ — R™ be con-
tinuously differentiable over a compact set Sy, and z* € Sy such that F(z*) = 0. If D(z*) is
nonsingular and p(Hy (z*)) < 1, then there exists an open ball S = S(x*,0) in Sy such that for any
20 € S, both the block nonlinear SOR and the block one-step SOR-Newton sequence converge to x*,
and they share the same convergent factor Ry(z*, 2*) = p(H,(z*)).

We will state the global convergence result in term of the minimization problem.

Lemma 3.4 (Global Convergence) Assume g € C*(R™) , V%g(z) > 0 and Sy = {z|g(z) <
g(z%)} is bounded, then for suitable chosen relazation parameter w, the iterative sequence from the
block one-step SOR-Newton method converges to the unique solution x*.

The proof of the above lemma can be found in Schechter (1968). From the above lemma, we can see
that in general the block one-step SOR-Newton-Raphson method with fixed w is not guaranteed
to converge globally. In practice, we can either change the initial value or tune the relaxation
parameter to make the algorithm converge. The following lemma adapted from Varga (1962) can
be used to check the conditions for the local convergence.

Lemma 3.5 Let A =D — E — E' be a symmetric positive definite matriz, and D is also positive
definite. Denote H, = (D —wE)*'((1 ~w)D +wE). If D —wE is nonsingular for 0 < w < 2, then
p(Hy) <1 for 0 < w< 2.

By applying the above lemma, we have the following corollary.

Corollary 3.1 If A= D—E—E" is symmetric positive define and D is block diagonal matriz, E is
strictly block lower triangular matriz. If D is nonsingular, then for 0 < w < 2, we have p(H,) < 1.

According to Corollary 3.1, we note that if A is Hessian of a twice differentiable convex function,
we will always have p(H,) < 1 for 0 < w < 2. Specifically, the local convergent property holds if
we use block nonlinear Gauss-Seidal or block one step Gauss-Seidal-Newton-Raphson method to
find the minimizer of a twice differentiable convex function.

3.3 Implementation of the Algorithm

In this section, we will describe how to apply the block one step SOR-Newton-Raphson method to
get the estimate for the penalized polychotomous regression numerically. w will be taken to be 1
in our implementation.

For polychotomous response data, we have

k k

Lilfiso s fe) = — Z?JZsz(TJ) +log(1 + Zefi(mf)), (3.3.1)

=1 =1
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where yij = .I[yj = ’l] Let ui]‘ = —dlj/dfij, UZT = (uil, s ,um), ’wi]‘ = —d2ljd i2j7 Wi = diag(wil, s ,’wm),
and S; = (¢'(21), -+ , ¢'(zn)). Also, with abuse of notation, let f;; = fi(z;) and f] = (fir,--+ , fin).

Then we have

eq:‘i(z]‘)Tdi‘l—ﬁi(Ij)TCi
.. _ _ i 392
AR Sy 150 4 e )AL () e (3.3.2)
L@ ()" d' +€" ()" ! 1+ efi(@5)
‘ 2tz (3.3.3)

Wij = 14+ Zl;éi efil;) 4 o®i(z)Tdi+EN(z)Tel 1 4 Zl# efilzj) 4 @ ()" di+& (x;)"ct’

hence 81)\/aci = Q@iui + ’n)\iQ@iCi, 32 = SZ-TUZ', 821,\/8c2'8ciT — QlWlQl + n)\iQi, 821)\/8ciadi =

Q:W;S; and 0T, 0diodi” = STW;S;.
The Block one-step SOR Newton-Raphson updating formula for the coefficient (¢, d') becomes

. . J_l .
N\ _ () QiWilQi+nhiQi QiWilS; Qiuiy +nAiQic (3.3.4)
d di, SIWi Qi STW,,S; $'u, ’ .

where the subscript minus indicates the quantities evaluated at the latest update. By rearranging
(3.3.4) we will have the following linear system,

( QiWi Qi +nXiQi QiWi LS > ( ¢y ) _ ( —Qiuip —nXiQic, > _

STW; 1 Qs STW; | S; d—d' S8y, (3.3.5)

According to Theorem 1.1, f; = S;d" + Q;c',i = 1,--- , k is always unique as long as S;’s are of full
rank. If Q; is nonsingular, (3.3.5) is equivalent to the linear system

Wi Qi +nXiQi QWi N\ Wilfil —uig
(g a) (1) () e

If @); is singular, any solution to (3.3.6) is also a solution to (3.3.5). Let

Qi = Wi "PQiw; 12D = wy P12 S = wy Vs,

d=d, and §; = Wi S2(W; | fi) —ui));

( 3.3.6) can be simplified to

{ (Qo, +nA)c" + S'd' =y, (3.3.7)

STé =0

It can be shown that the solution of the linear system (3.3.7) is equivalent to the solution of the
following variational problem, find &, d’ to minimize

L A i G SINT A i
i — (Qo, + Sid | + M) Qo, . (3.3.8)
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3.4 Choosing the Smoothing Parameters

In Section 3.3, the smoothing parameters A\;; = \;/6;; are fixed. As all \;; — 0, f; follows the data
and is very wiggly. It then has small bias but large variance. As all A;; — oo, f; is forced in the null
space 7-[?, which is a parametric fit. It then has large bias but small variance. As the \;’s vary,
we have a family of models. Therefore choosing appropriate smoothing parameters is crucial for
effectively estimating the true functions from data by fitting smoothing spline models. Choosing the
Ail’s is equivalent to choosing A\; and ©; = (61, - - - ,0;4,) after imposing an identifiability constraint
on A; and ©;. We call A;’s the main smoothing parameters and ©;’s the subsidiary smoothing
parameters.

Reconsider the linear system (3.3.7), it is easy to see that the solution of (3.3.6) gives the
minimizer of

qi
=z ~ n
(gi — £i) " Wil (i — fi) + §>\z‘ E 0ul | P} ]|, (3.4.1)
=1

where y:Z = fil — Wifuu_. The one step block SOR-Newton procedure iteratively reformulates
the problem of updating each logit function to estimate the function f; from the pseudo-data by
weighted penalized least squares successively. The following lemma shows that the pseudo-data
approximately have the usual data structure if f; ,---, fx | are not far away from fy,--- | f.

Lemma 3.6 If |fij| — fij| = o(1) uniformly in j, and p;(t) bounded away from 0 and 1, then

Yij = fij + €ij + op(1)

where €;; has mean 0 and variance wél , and €1, , €y, are independent.

Proof Let p;; = pi(x;). Then E(y;;) = pij, Var(yij) = pij(1 — pij) = wij, wij = pij — yij- Hence,
we have E(u;;/wi;) = 0 and Var(u;j/wi;) = wy;'

i
Let
Pijy — Yij Dij — Yij
v = fij, —uij Jwij, — (fij —uij/wij) = fij | — fij — ( = - 4,27)
Wig | Wij
Then
Pij | — Dij
E(W)=fij, —fij———
Wij |

Since there exists 0 < ¢; < ¢z < 1 such that ¢; < p;(t) < c9, we have ¢; < pij < cz. From
|fij | — fijl = o(1) uniformly in j, we have |p;; | — p;j| = o(1) uniformly in j. Hence, for large n,
there exists 0 < ¢ < ¢5 < 1 (does not depend on n) such that ¢j < p;; | < ¢3. Then, for large n,
there exists 0 < dy < dp < 1 (does not depend on n) such that d; < w;;, < dy. Hence, E(y) = o(1).
Meanwhile

Var(y) = (w'l' - %)qu)ij = (wjj | — wij)zwijfwi#l =o(1).
ij 1 ij
So
Yij = fij | — wij | Jwij | = fij — wij/wij +v = fij + €ij + 0p(1),
where €;; = —u;j/w;; has mean 0 and variance w#. The independence of ¢;1, - - - , €, follows from

the independence of y;1, -, ¥in. Q.E.D.
From the above discussion, we can use well known methods to select smoothing parameters at
each update of the block one step Newton-Raphson procedure. Two of the commonly recognized
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data driven methods for choosing smoothing parameters are the generalized cross validation (GCV)
and the unbiased risk methods (Wahba 1990). The GCV method estimates smoothing parameter
by minimizing the GCV score

_1/n||[(I = AN, ;)W Py |?
V%, 0:) = [(1/n)trace(I — A(N;, ©;))]2

and the UBR score
1 ~ 2
U(Xi, ©;) = EH(I — AN, )W 212 + EUQtTA(Ai, 0;).
where A()\;, ©;) satisfies

(wir L 2 fi(tr), - owin i)Y = AL 09) (win L P win )
fi(t;)’s are computed from the above linear system, gi = (y?l, . ,y?n)T, and yij = fij | —uij | [wij -
When using the UBR method, we use 02 = 1. A generic code RKPACK (Gu, 1989) can be used
to solve the linear system in each update and estimate A and © via GCV or the UBR method at
the same time. The whole iterative process will stop when the relative weighted mean square error
is less than a threshold. However, since changing A and © at each update means modifying the

problem successively, convergence is not guaranteed.

3.5 Bayesian Inference

We will first extend Gaussian posterior calculations to the case where the responses are vector. Let

' 1/2
Fi(n) = moacni(a) + 0,2 \/05.:25(x)
v=1 B=1

where T = (711, ..oy Ty s ooy T k)T ~ N(0,€I), Zg,; are ii.d, zero mean Gaussian stochastic
processes, independent of 7, with E[Z3;(s)Z3,(t)] = Rg.i(s,t)
Let o

Z(x) = Y \/95.25.(x),

p=1

then

E[Z'(s)Z'(t)] = Ri(s,t)
where R;(s,t) = Z%izl 8s,iR3.i(s,t). Suppose observations have the form

yij:Fg(mj)—I—eij, 1=1,---,kand j=1,--- ,n

where € = (e11,...,€m) ~ N(0,0°W1), with W positive definite and known. Let n)\; = o2/b;,
@) = (FL@),.. , fE@)T and Fe(s) = (F(a),... . Fi(z))T, we have

falz) = glii?o E(Fe(z)ly),

where f) is the minimizer of the penalized weighted least square problem

k qi
(y—H"Wy—F+nd N> 05t Pef' I (3.5.1)
i=1  pB=1
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Denote
Q1 0 0 Sy 0 0
o=|" Q2 : 5|0 Sy 7
0 Qk 0 Sk
and
M lpxn 0 0
M=Q+n 0 Aol sen ' Wil
0 Al

where (Qi)uy = Ri(%u,zy) and (Si)uy = ¢v,i(zy). Similar to Wang (1994), We have the following
theorem.

Theorem 3.3 Let gé’v(x) = Ty,it,i(z) and gﬁ = b, 1/2 V93,i78i(x). Then
E(gh,,(2)]y) = dypy,i(z)
E(g l( )Ny) . = >i1¢08.iRsi(z, 7))
1/2 172 Cm)(g ,v( 5), g(]),u(t)b’) = ¢, i(s )d)u i(t)e vTi(STMlls)Ll
b1/2b1/2 U(Q%(S) ng(t)b’) = ,,6 z( )¢v]( )
COU(Qﬂ( ), g5t )y) = O5,Rp,i(s,t) — 225 ¢jp.i(s)0s,:Rp,i(t, 7))
1/2 1/2 Cm)(gfy(q) ( )‘}’) = Z] 1(’]’71( )eﬁ ZRﬁ Z(t TJ)

where e, is the ((i — 1)n) + v)th unit vector, dg;(s)” = (d1,5,(s), - ,dum, p.i(s)) and cg,(s)” =
(c1,8i(8), -+ ,cnp,i(s)) are given by

0
. 5
; 0
x 05,iRp,i(s, 1)
dg,i(s) | = (STMH1S)H ST M 5 ,
* 05.iRp.i(s; xn)
; 0
- 5
0
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0

* :

: 0
* O5,iRp,i(s,71)

coals) | = (MY = MUIS(STMMS) ST M 5
* 05,i R, (S, Tn)

0

* :

0

Next, we can use Laplace method to approximate the posterior distribution based on polychoto-
mous data (k 4 1 categories). With abuse of notation we will denote

Y= (Y11, Yins " 5 Y1, aykn)T'

Suppose the priors for the logit functions are fi(z) ~ Fg(fr), s fr(x) ~ ng(fr) Let ¢, n be any
one of 7, ;¢yi (), Tujbu;j(2), \/05,i25i(x) or \/Oa jZa ;(2z) for arbitrary points 2 and z. Denoting

fT = (fl(xl)v"' 7f1(xn)7"' ,fk(fﬂl),"' 7fk(xn))7

the sampling distribution of y given f is proportional to exp{—L,(f)}. Letting £ — oo, we have
the posterior distribution

T (C.m)ly) / p(Fl)a(F)r(C.nl)df,

where p(fly) oc exp{—Ly(f)},
a(f) o ean{— 5 17(@" - QUS(5TQ18) 5Q ) )

and r(¢,n|f) is Gaussian with mean and variance given in Theorem 3.3 with 02 = 0 and y = f.
Denoting p(f|y) be the approximation using Taylor expansion centered at the mode f, of

p(fly)q(f), and approximating 7(¢,7nly) by

F(Cm)ly) / AN a(F)r(Cnl ),

we have the following theorem. The proof of this theorem is the same as in Gu (1992).

Theorem 3.4 The approzimate posterior density 7(¢,n|y) is Gaussian with mean and covariance
given in Theorem 3.3.

Based on the above result, we can construct approximate Bayesian confidence interval for each
component, each logit function and the difference of logit f; — f;.

To apply the results derived above, it is necessary to compute the quantities involved. From
Theorem 3.3, we can see that the computation focuses on the computing of (ST ML1S)+L, ¢4,(s)
and dg;(s). We will discuss the calculation of these quantities in the following.

It can be shown that the solution of the variational problem ( 3.5.1) has the expression as
those in Theorem 1.2, where ¢’ = (¢, ;e = MY (1 — S(STMH'S)MSTM )y and dT =



17

(df, - d = (STMA1S) ST M1y, ¢ and d can be calculated by backfitting algorithm. By
replacing y with

(Hﬁ,lRﬁyl(Sa -7/'1), T 79ﬁ,1Rﬁ,1(37 mn)a T ,Hﬁ,kRﬁ,k(S, -7/'1), T ,Hﬁ,kRﬁ,k(S, mn))Ta

we can use backfitting to get cgi(s) and dg;(s).

To calculate (ST M*'S), we will first compute M*'a for a given vector a. Denoting z = M1'a,
we can obtain z by solving the linear system Mz = a. Again, we can use Gauss-Seidal (linear SOR
with w = 1) method to solve this linear system.

3.6 Monte Carlo Examples

In this section, we conduct several simulations to evaluate the performance of the proposed method.
The comparative Kullback-Leibler distance (CKL) will be used to measure the performance. The
sampling CKL between the estimate and the true probabilities for polychotomous response data is

CKL(p.p) *—ZZPZ x;)logpi(;)
j=11i=1
where p(z) = (po(z),- - ,pk(z))” and z;’s are design points.

The first example is for univariate case. The domain and range are taken as X = [0, 1] and
Y = {0,1,2}. The conditional class probabilities are taken as p;(z) = e/1(®) /(1 4+ e1(®) 1 ef2(2)),
pa(z) = e /(14 1) e l2(®)) and py(x) = 1 —pi(z) —p2(z), where fi(z) = 0.3¢*” +0.4cos(2.7z)
and fa(z) = 2°+2co0s(3z). Two different sample sizes are used: n = 200 and n = 500. We generated
the design points z; from an uniform distribution on [0, 1] and generated the polychotomous
responses using the underlying functions. Designs and responses are generated for 200 replicates
for each simulation. The penalized likelihood for this example is

SO i fily) + log(1 + €10 4 ef2(ey) 4 1 / (] (1) dt+”—A2 KADE

j=1 =1

The algorithm proposed in this chapter is used to get the smoothing spline estimate for each
simulated data set. We select the 5th, 50th and 95th percentile best estimates ordered by CKL.
Their probability estimates are plotted in Figure 1.

The second example is for the multivariate case. Here we present an example which has three-
category response and two predictors. The domain and range are taken as X = [0,1] x [0,1] and
Y ={0,1,2}. The sample size in this experiment is 500. The covariates are generated uniformly
from [0, 1] x [0,1]. The logit functions are taken as

fi(z1, 20) = 3‘56L(2.U(IJ_0.5)2+8.0(yJ_0.8)2) + 1‘56L((z+yl0.4)2+15.0*(zly)2) 15

and
fa(z1,29) = 2.0(x — y)2 —0.4(x + y)2.

The polychotomous responses are generated using the above logit functions. Responses are gener-
ated for 100 replicates. The following functional ANOVA decomposition is used,

fi(z1,z2) = const + hi(x1) + ho(z2) + hio(x1, x9).
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Figure 1: Estimates of P(Y = 1|X = t) (Probability I) and P(Y = 2|X = t) (Probability II). Solid
lines are the true functions. Three dashed lines in each graph are the 5th, 50th and 95th percentile
best estimates ordered by comparative Kullback-Leibler distance among the 200 simulations.

The form of decomposition for fo is the same. We select the 5th, 50th, and 95th percentile best
estimates ordered by CKL. Their probability estimates are plotted in Figure 2.

From Figure 1 and Figure 2, we can see that the penalized polychotomous regression can capture
the shape of an underlying model and produce a good estimate most of the time. We experience
similar conclusions for all the other examples we did.
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Chapter 4

Strategies for Large Data Sets

As mentioned in Chapter 3, the algorithm proposed there is not desirable when n (number of
observations) is very large. In this chapter, we will discuss some strategies on how to apply the
smoothing spline to model large data sets with polychotomous responses.

4.1 Binary Case

When k=1, the polychotomous response data reduces to binary data. In this case, the algorithm
proposed in Chapter 3 will reduce to the iterated UBR method proposed in Wahba et al. (1995).
Although it has been successfully applied in practice, it can not be used to deal with large data sets
due to its computational capacity. For large data sets, we will first propose a randomized version of
generalized approximate cross validation to choose the smoothing parameters for binary data. At
the same time, strategies to obtain an approximate smoothing spline are also discussed. Combining
these two schemes, we can apply the smoothing spline ANOVA to a very large data set with binary
responses. We also construct a Bayesian Confidence Interval for the approximate smoothing spline.
The performance of the proposed method compared with the Iterated UBR method will be studied
through Monte Carlo Simulations.

4.1.1 Generalized Approximate Cross Validation

Although it appears that the algorithms based on UBR generally converges, it is not guaranteed to
do so, since changing A along the iteration also changes the optimization problem. Based on this
consideration, Xiang and Wahba (1996) began with a leaving-out-one or ordinary cross validation
(OCV) estimate of CK L()), namely

n

OCV()\) = %Z[_yi V(@) + b(fa(@i)]
i=1

where f)\“ is the fit of f) based on leaving out the ith data point. Computing f/\u repeatedly
for large n is out of the question, they have obtained a generalized approximate cross validation
(GACV) by a series of approximations, including one similar to that used in obtaining GCV (wahba
1990). The result is

n n
GACV(N) = 2 S L yifalos) + b(fa(aa)] + A 5~ il () (4.11)
ne ' no - Tr(W/2AW1/2)
where A is the n x n inverse Hessian of the penalized likelihood I, with respect to the component
of f = (falzr,---, falzn))s palzs) = V' (fa(z;) and W is diagonal matrix with diagonal entries
w; = V' (fr(zn)),i = 1,--- ,n. It can be shown that A = [W(f\) + nX,]*!, where ) satisfies
fI8yf = c'Qye. Tt can be seen that Xy is not of full rank, and in general its direct computation

will be a numerically unstable.
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4.1.2 RGACYV and One-Step-RGACV

Let A be a symmetric, non-negative definite matrix, and € = (e1, - ,€,)’, where the € are inde-
pendent, identically distributed normal variables with common variance o2. It is easy to see that
the expected value of #E'AE is Tr(A). U%e’Ae is called a randomized trace estimate of T'r(A). In
the Gaussian case, Girard (1991) has shown that using a randomized trace estimate as part of the
evaluation of the GCV function gives a negligibly different estimate of smoothing parameters from
an exact calculation of the GCV function, for large n. See also Wahba, Johnson, Gao, and Gong
(1995).

In the calculation of the GACV function, we need to compute Tr(A) and Tr(W'/2AW1/?).
The direct computation would involve the inverse of a large matrix which requires computational
complexity of O(n?®). Meanwhile, as indicated in the last section, in general the direct computation
of A will be numerically unstable for large n. Based on these considerations,a method which does
not require the direct computation is highly desired. Similar to the randomized trace estimate in
Gaussian case, we can use randomized trace estimate of Tr(A) and Tr(W/2AW/2) as part of the
evaluation of the GACV function.

Considering the disturbance e ~ N(0,0%1,), we have E(el Ae) = o?Tr(A), E(c'W Ae) =
o*Tr(W A) = o?Tr(WY2AW1/2). Hence, we can use ¢! Ae/o? to estimate Tr(A) and e/ W Ae/o?
to estimate Tr(W'/2AW1/?),

Notice that the penalized log likelihood can be rewritten as follows,

DY) = =Y by f@) + 5 5 (4.1.2)
=1

where 1;(y;, f(z;)) = yjf(x;) —b(f(x;)) is the log likelihood, f = (f1, -, fn)" and f; = f(z;). For
a fixed A, let f;/ be the minimizer of (4.1.2) with respect to data Y. If we put a small disturbance

on Y to get a new pseudo data set, Y + ¢, we expect f;q'e and f}/ to be very close according to

the following lemma.
Lemma 4.7 For a fized A\, the minimizer f';( of (4.1.2) is continuous in Y.
Proof Let Y — Y{ and denote f and fy to be their corresponding solutions. Hence,
~Y + b (f) +nXyf =0 and — Y+ b (fo) +nEyfo =0.
Subtract the second equation from the first one we get,
b'(f) — b'(fo) + nX\(f —fo) = Y — Yj.

For fixed Yy, if Y is within a small neighborhood of Yy, then f is bounded. For any sequence of
Y — Yy within a small neighborhood of Y, denote f* to be one attraction point of the corresponding
sequence of f. Then we have,

b (F) — b (fo) + n3\(F* — £5) = 0.

The solution to the above nonlinear system is unique by observing that the derivative of the
left side with respect to f* is a positive definite matrix. As a result, we have f* = f3. So the
bounded sequence of f converges to fg since it has one unique attraction point fy. Hence f — fg as
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Y = Y,.Q.E.D.
Since f;\”’e and f{ are minimizers of (4.1.2), we have

oIy

fyte
W(;‘J ,Y+€):0 and

f(f)\u )_0

Using a Taylor expansion to expand EHA( ey + €) at (f)\, Y) we have the following equation,

GL(FT Y 4o = ZR(LY) + S (YT - )

+£%ﬂﬁlﬂw+6*ﬂ

(4.1.3)

where (f*,Y™*) is some point between (f}f, ) and (fy FUTEY +e).
Notice that
9?1
afrof

Therefore, from (4.1.3) we get

0?1
= _Inxn-
aYTof

=W(f)+nXy and

R = W) + st

When € is very small, (f{*, ¥ +¢) is very close to (f},Y). Hence (f*,Y*) is very close to (f},Y).
W(f*) can be appr0x1mated by W(ff{) and we will have

- = (W(fY) +nEy) e = Ae (4.1.4)
This gives us the following lemma.
Lemma 4.8 f/* — f¥ = Ae + o(]e]).

When o is small hence ¢ will be small, we can use fy+E f;{ to approximate Ae by lemma 4.8.
Thus, we have
e"Ae = €"(Ae) ~ T (FIH — fU).

Thus,
Tr(A) =~ ' (fI7 = f}) /o

and

Tr(W'2AW?) = Tr(W A) ~ "W (fy fute f)‘)/a

By replacing Tr(A) and Tr(W/2AW1/2) in (4.1.1) with their estimates and use e’'¢/n to estimate

o2, we have a randomized version of the GACV function,

n Fyte n (o), — Ts
RGACV(\) = % Z[*yif/\(mi)”' b(fa(z4))] 1 <A o 1) %iﬂ y;ﬂ{(/{y;(fyix(- })y)) '
€E— € A —J

i=1

(4.1.5)

Thus, we replace the computation of a large matrix inverse problem with a iterative procedure
similar to that used to get the estimate fij Suppose we just use one replicate of perturbation, we
need about twice the time needed to get the ff\’ to evaluate the RGACV. If the time to get one
estimate is expensive, it still requires a lot of computing time. Besides, we need to choose the o
very carefully so that Ae can be well approximated by Y™ — f/. This motivates us to look for an
alternative way to calculate Ae.
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Consider the Newton Raphson procedure when we solving the nonlinear system for the per-
turbed data Y +e€. If we take the solution f}\/ to the nonlinear system for the original data Y as the

initial value for a Newton-Raphson calculation of fy+6 things become even simpler. Letting fere !
be the result of one step in a Newton-Raphson iteration gives
- Iy oI,
+e,1 A 11
y © _f)\ (8fT8f(f§\J7Y+€)) 8f (f)\uy+€) (416)
Notice that a7
A
8f(f)\ay+‘:):7e+—f(f)\a )_76
and 5 .
I (s 1 I ; 11
- - Y - — [ A Yy Y
Thus,
; %I
y+e,l _ fy A
A - /\+[8fTaf(f)\’ )]
Hence we have
Lemma 4.9
frrel — i = Ae. (4.1.7)

Hence we have the following one step randomized generalized approximate cross-validation formula

OneStepRGACV (A) = 3 300 [=yifa(ai) + b(fa(z:))]
LERIULRD S il L (2:) (4.1.8)
n eTeleTW(f§+E’1lf§\’)'

To reduce the variance in the term after the second ‘+’ sign in ( 4.1.8), we may draw R independent
replicate vectors €7, -, €g, and replace the term after the ‘+’ in ( 4.1.8) by

_Z el — 1) iz Yilyi — (i)
e, — W = f)
to obtain a R-replicate version of OneStepRGACV.
We summarize the One-Step Randomized Generalized Cross Validation in the following algo-

rithm:
Algorithm: One-Step Randomized GACV algorithm

1. F
e ﬁéaseé on the original data set Y, we iterate the Newton-Raphson algorithm till it con-
verges to get f)\

e Generate perturbation € ~ N(0,021,), add it to the data set Y to get the pseudo data
set Y +e.

e Take fere — f/\ as initial values, calculate the first Newton-Raphson step based on the
nonlinear system —(f, Y +€) =0, call it fy+€ !

o Take f{*° = ™ ! and apply formula (4.1.8) to evaluate OneStepRGACV value.
2. Find A to minimize OneStepRGACV (X), call it .

3. f= fi’ is our final estimate for f.

The performance of using this new criteria to choose the smoothing parameters compared with the
iterated UBR method will be studied through Monte Carlo simulations later in this chapter.
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4.1.3 Approximate Smoothing Spline

For large n, and the ‘true’ function f not too ‘complex’, it can be seen that f) of (2.4.4) should
be well approximated in the span of a much smaller subset of the &. See Wahba (1980) and
Xiang (1996). Suppose the number of basis function used is k, and denote the basis functions
as &,,&,, -+, &, which is a subset chosen from &;,&s,---,&,. Typically for medical risk data, k
may be at most a few hundred even with n very large. In order to get a good approximation,
we need the chosen k basis functions to have the least possible correlation. The closer the design
points, the closer the corresponding basis functions. As a result, if we choose the design points
having maximum separation, their corresponding basis functions should be expected to have least
correlation. Considering this problem from another point of view, what we want is to group points
into k groups with those groups spaced as far as possible from each other. Thus, the classical cluster
analysis can be used to choose the representative design points, i.e, we cluster the n data points into
k groups, take one representative point from each group to form the £ basis functions. For clustering
the data, we will use the FASTCLUS procedure in SAS, which is designed for the disjoint clustering
of very large data sets in minimal time. With each cluster, we select the design point closest to the
cluster center as the representative point to be included in our subset. Assume z;,7 =1,---,k
are the selected points, then their corresponding basis functions will be &, (z) = Qx(zi;, 7). We
approximate f) as

M k
fale) =D dogy(@) + i (). (4.1.9)
v=1 7=1

Denote X¥ to be the n x k matrix with ijth entry Qx (i, 7;;) and Q% to be the k x k matrix
with ijth entry Qx(zi;,z;;), and let RZ be the k x k matrix with ijth entry Rg(z;;, ;). It is easy
to see that for f, of the form (4.1.9) we have || P% f,||? = c’Rgc. Then the Newton-Raphson update

for finding the minimizer ¢ = (¢1, -+ ,¢x)" and d is equivalent to solving the following linear system
(XHYW_ XE+nQk (XHYW.S c—ci \ [ —(XH)ur—nQc, (4.1.10)
S'W XY S'W, S d—d, ) —S"u; ’ o

It is highly possible that the coefficient matrix of the linear system (4.1.10) would be com-
putationally singular even if it is nonsingular in theory. In order to get a stable solution, QR
factorization with pivoting is used. Also, when we solve the linear system using the QR decom-
position, we select a cutoff parameter 7 (such as the machine precision times the largest absolute
diagonal element of the R matrix). Whenever |r;;| < 7 (where r; denotes the diagonal element of
the R matrix in the QR decomposition), the corresponding solution is set to be zero.

In practice, the following procedure can be used to get an approximate solution for large data
sets.

Guideline to decide the number of bases:

(I) Decide the number of basis functions to start with.

(IT) For a fixed number k, use Cluster method to cluster the data into k groups. A representative
point is chosen from each group to form the basis functions. Solve the variation problem in
the approximating space.

(ITT) Increase the number of basis functions by some factor (e.g, 2), repeat step (II)
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(IV) Stop this procedure if the difference between solutions based on two consecutive steps is
smaller than a given tolerance, as judged by
Hfj\(zk)lfj\(k)“ S 10L4‘
Hfi(k)H

4.1.4 Minimizing the OneStepRGACYV function

In this section, we will discuss some efficient ways to search for the minimizer A of the On-
eStepRGACV function. The OneStepRGACV function involves the solution of some nonlinear
system so it cannot be explicitly expressed in terms of the smoothing parameters. Thus, we don’t
have the first or second derivative of the OneStepRGACYV. Hence, optimization method which does
not require the derivative information is highly desired. For one smoothing parameter case, golden
section method should be a good method in finding the minimizer A. Our major concern is in the
situation that there are more than one smoothing parameter, say 4 or 5 smoothing parameters.

Standard optimization methods, such as Newton method or conjugate gradients are not suitable
for our problem here since they require first and possibly second derivatives. Powell method and
down hill simplex method might be possible ways to use since they don’t require any derivative.

For all iterative procedure for solving a nonlinear optimization problem, a starting guess usually
should be provided. A good starting guess might make the search faster. Although the issue of
how to set a good initial guess is somewhat problem dependent, we believe that when the shape
of the function is not too ‘complicated’ some automatic way to decide the starting point which is
not too far away from the minimum (or local minimum) should be possible. In this thesis, we will
investigate using computer experiment design technique to set a possible good starting guess.

The basic idea of computer experiment design is as follows. First we generate some design points
at the possible region and evaluate the function value over the design points. Then a smooth surface
(e.g., thin-plate spline, quadratic polynomial, etc.) can be interpolated over the design points and
the minimum is found for the interpolating surface. In the case of using low degree polynomial, the
least square solution can be used. We can use the minimizer of the interpolating (or least square)
surface as the starting guess for the down hill simplex search (or Powell search). Since this is just
a pre-screen procedure, a small number of design point should be enough for our purpose if a good
design method is employed. With a small number of design points and high dimension, we decide
to use Latin hypercube design to generate the design points.

For a very large data set, we may encounter the situation that one step randomized GACV
function is still expensive to evaluate, i.e., in the case that it is exceedingly expensive to get a
smoothing spline fit for a fixed A. Fortunately we will see that the surface of the OneStepRGACV
is generally in a very good shape so that the minimizer of the interpolating surface would be good
enough. In this case, we can use the computer experiment design to locate the minimum roughly.
To be conservative, we can use multi-stage computer design to look for the minima.

4.1.5 Bayesian Confidence Intervals for the Approximate Solution

The basis for our approach is a finite-dimensional Bayesian formulation of the smoothing spline
estimation problem similar to the approach used by Silverman (1985). For the exact smoothing
spline estimation, the conclusions of Silverman’s approach parallel closely those of Wahba (1978,
1983). Due to the setup of the variational problem for the approximate smoothing spline estimate,
the argument used by Wahba (1978, 1983) is difficult to be extended to our setting but the argument
used by Silverman can be easily extended.

Firstly let’s look at the Bayesian formulation of the approximate smoothing spline estimate.
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Suppose on domain 7 one observes y; = f(t;) +€j, j =1,--- ,n, where t; € T, and (e1, - ,€,) ~
N(0,0?W*!) with W (positive definite) known. By section 4.1.3, the approximate smoothing
spline estimate of f(t) is in the finite-dimensional space span{¢1,--- , ém, &, -+ &, }. Hence f can
be written as f(t) = Y0, dipi(t) + 25:1 cu&i,. Define b = Z—é Using the notation = to mean
“equals up to a constant”, take the prior log likelihood to be

1
Lyrior (¢, d) = —gbcTEHc, (4.1.11)

where (¥11); =< &;,&; >, and &;,,---,§;, are the selected basis from &;,---,§,. Following
standard Bayesian manipulation, we have the posterior log likelihood as follows,

1 1
Lpost(c, d) = —ibcTEHc - p(Y — Y~ Sd)TW(Y — Se — Sd), (4.1.12)

where (X);; =< §,&; > and (S)i, = ¢u(w;). This leads to the following theorem.

Theorem 4.5 The posterior distribution of (c,d) is multivariate normal with mean (¢,d) and co-
variance matriz o>M"", where

T T

STwx STwS

and

(;) =M (?;) Y. (4.1.14)

Defining y = (y1,-- ,yn)” and f = (f(t1),---, f(tn))" with abuse of notation, the connections
with the approximate spline smoothing becomes clear by noting that

202

2l ) £ = W= 1)) [ e

c
n

i.e., the approximate smoothing spline estimate f is the posterior mean in the Bayesian formulation
described above.

Further, from the posterior variance/covariance of (¢, d) obtained above we obtain the posterior
variance of f(s) which is given in the following theorem.

Theorem 4.6
Varposi(f(s)) = ou” M, (4.1.15)

where u = (&, (s), -+, &, (8), ¢1(5), -+, b (s)) "
Defining the influence matrix A(\) satisfying g = A(\)y, it is easy to verify that

AN = (2 )M (?;) W,

On applying Theorem 4.6, we obtain Corollary 4.2.

Corollary 4.2 Varyes(f) = c?ANWLL
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Now let to turn to the Bayesian formulation of approximate smoothing spline estimate in Non-
Gaussian case (binary data especially). it is assumed that the sampling likelihood of y is pro-
portional to e:vp{—%L(y\f)} = e:vp{—%Ly(c, d)}, where L(y|f) = Ly(c,d) is the negative log
likelihood which is convex and f(s) = Y%, di¢i(s) + Z?Zl ci&i;(s). For binary data sets, o is equal
to 1. The approximate smoothing spline is the solution of the penalized likelihood problem

min{Ly (f) + 52 (£)}, (4.1.16)
where f € span{¢1, -, dm,&,, -, & r}- By substituting, we solve for (¢, d) by the solution of the
following variational problem

min{Ly(c,d) + gcTZUc}. (4.1.17)

Under the same prior specified for the Gaussian case and following standard Bayesian manipu-
lation, we have the posterior log likelihood as follows,

c 1
lpost(c, d) = —;Ly(c, d) — gbCTzth. (4118)

Letting f/y(c, d) be such an approximation of Ly(c, d) with the Taylor expansion centered at the
mode (¢, d,) of the posterior distribution ezp{l,,s:(c,d)}, one gets

Ly(c,d) = (5 — Wty — e — Sd)T'W (5 — Zc — Sd), (4.1.19)

where § = Sc, + Sd. — Whlu, u = (OL/Of)|;., W = (9*°L/ofofT)|;
approximate the posterior likelihood [, (c, d) via

and f, = Yc¢, + Sd,. We

~ ¢ 1 N
lpost(c, d) = —;Ly(c, d) — gbCTzth. (4120)

Theorem 4.7 The approzimate posterior distribution exp{lyost(c,d)} is Gaussian with mean (¢, d)
and covariance given in Theorem 4.5, where (¢,d) is the solution of ( 4.1.17) and the matriz W is
the Hesstan matriz defined above.

Proof. It is easy to see that e:vp{lpost(c d)} is identical to a Gaussian sampling likelihood with
covariance oW1 and observations ¢; hence, the mean and covariance of ezp{lyos(c,d)} can be
calculated via Theorem 4.5. Hence, it is left to show that

&\ (STWE+nAsy, STWS\ (%7
d) STwy STws ST

We have (¢, d.) = (¢,d) by noting that

S

7O-lp05t(cﬂ d) = Ly((j, d) + gACTZHC.

By definition of (c4,d,), it is easy to show that (c,,d,) satisfies

YTWE +nAS BTWS () (2TWy
STws STws)\d.,)  \S"wyg)"
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This completes the proof.

Similar to Theorem 4.6 and Corollary 4.2, it is easy to see that Varpos:(f(s)) ~ o?u” My and
Varpsi(f) = o2 AN)WLL

For the computation of the approximate variance and covariance, we can take advantage of the
intermediate results when we solve for the estimate. When we solve for the the estimate (¢, cZ), we
need to solve a linear system of the form Mz = z. This is done through QR decomposition. Hence,
when we calculate posterior variance and covariance, the major computation M1y can be done
using the existing QR decomposition in the last step of Newton-Raphson iteration for obtaining
the solution (¢, d).

4.1.6 Monte Carlo Simulation

In this section, we conduct Monte Carlo simulations to check the performance of the OneStepRGACV
in term of finding the optimal smoothing parameters in the case of Bernoulli data. The Compara-

tive Kullback-Leibler distance (CKL) will be used to measure the performance. The sampling CKL

between two probabilities p;(t) and py(t) for binary data is defined as follows,

n

CKL(p1,p2) = - malogpa(e)) — (1 pi(a)log(1 — pa(a)]

i=1

where z;, - - - ,z, are the design points.
I. Single Smoothing Parameter

The following four test functions (used by Cox and Chang (1990) and Xiang (1996) ) will be
used in our simulation study.

m(z) = 2sin(10z),
ne(z) = 3— (bx —2.5)2,
() —16zx+.9 ifz<.b
T =
bs 1.6z .7 ifx> .5,
3.5z/3 if ©<.6
pa(z) = :
7 if x> .6,

where 7; indicates that the function is for the true logit while p; stands for the probability. We plot
the above four functions (in probability scale) in Figure 3.
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Figure 3: The true p(z): (a) n1, (b) 72, (¢) p3 and (d) pa.
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First, we use n(z) = n1(z) = 2sin(10x) as a true function and generate the data y; = 1 or 0
according to p(z;) = % with the design point chosen at z; = (i — 0.5)/500, i = 1,---,500.
Figure 4(a) gives a plot of CK L(\) and ten replicates of OneStepRGACV (A). In each replicates,
R was taken as 1, and d was generated anew as a Gaussian random vector with o5 = 0.001. The
minimizer of the CKL is at the fill-in square and the 10 minimizers of the 10 replicates of ranGACV
are the open circle. From the plot, we can see that any one of these 10 provides a rather good
estimate of the A that goes with the fill-in circle. Figure 4(b) gives the same experiment except
that this time the number of replicates R was taken as 5. It can be seen that the minimizers of
OneStepRGACV (X) become ‘even more reliable estimates of the minimizer of CKL, and the CKL

at all of the OneStepGACYV estimates are actually quite close to its minimum value.
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Figure 4: 10 replicates of OneStepRGACV compared with CKL (a) one replicate for each curve.

(b) Five replicates for each curve.
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Next, we use a simulation to check how sensitive the one-step randomized GACV is with respect
to the change of perturbed size and the number of replicates. Two different logistic functions are
used. They are

2sin(10x),
ne(z) = 3— (bz —2.5)%

3

—
8

~—
|

The results are shown in Figure 5 and Figure 6. We can see that the result is not too sensitive to
the change of the perturbed size except that when the size is very small. This might be due to the
rounding error.
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Figure 5: For 7;: performance of OneStepRGACYV for different size of perturbation (the number’s
in grey title bars) and number of replicates as measured by the CKL.
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Next, we use a simulation to check the performance of the OneStepRGACV function as com-
pared with the RGACV function. We use 6 = 0.001, R = 5 to calculate the OneStepRGACV and
RGACYV functions. All the four test functions will be used in this comparison. For each function,
we generate 500 observations at design points z; = (i —.5)/500, i = 1,--- ,500. According to p(z;),
we generate Bernoulli data and fit the data with \’s chosen from OneStepRGACV and RGACV
respectively. Then we calculate the CKL distance for OneStepRGACYV fit and RGACYV fit. The ex-
periment is repeated 200 times. We plot CK Lrgacy versus CK Lopestepraacy from the 200 runs
in Figure 7. For any given data set, the smaller CKL value indicate that the corresponding method
produces better fit. From figure 7 we find that OneStepRGACV performs as well as RGACV
does. Hence, we recommend using the OneStepRGACYV instead of RGACV to approximate the
GACYV since the calculation of OneStepRGACYV is faster. Simulation in Xiang (1996) shows that
the RGACV method outperforms the UBR method using the same four testing functions above.
Hence, we can expect that the OneStepRGACYV will outperform the UBR method.
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Figure 7: CKL Comparison of OneStepRGACV with RGACV for (a)n;, (b)na, (¢)ps and py.
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I1. Multiple Smoothing Parameters
Ezample 1 In this simulation example, the bivariate additive function

f(z1,29) = bsin(2wz1) — 3sin(2nxs)

is used as true logit function for generating data. The test function in probability scale is plotted
in Figure 8. We generate 500 design points (z1;, 2;) uniformly from the square (0,1) x (0,1) and

the response y; = 1 or 0 according to p(zi1, zi2) = exp(f(xi1, zi2)) /(1 + exp(f (i1, x52))). We fit an
additive model

Iaase (T, 22) = foa, (z1) + fr,(22)

to this set of data.

porbability
00.20.40608 1

Figure 8: True test function for Ezample 1.

We use 0 = 1 and 5 replicates in the calculation of OneStepRGACV function. Besides, 50
representative points are used in getting the approximate smoothing spline. For each pair of
(A1, A2), we can evaluate the OneStepRG ACV (A1, A2) function. Using a 20 x 20 grid, we can draw
a OneStepRGACV (A, A9) surface. In addition, for the fit at each pair of (A1, A2), the CK L(A1, \2)
based on the true function and fy, ,(z1,22) can also be calculated. We plot the CKL surface and
OneStepRGACYV surface as well as their contour plots in figure 9. From this plot, we can see
that the OneStepRGACYV function is a good proxy for CKL. To examine the possibility of using
computer design method to search for the minimizer of OneStepRGACV function, we use Latin
hypercube design to sample 20 design points over the smoothing parameter space and evaluate the
OneStepRGACYV function over the design points. Then a thin plate spline is used to interpolate
the OneStepRGACYV function over the design points. The contour plot of the interpolated surface
is shown in Figure 10. By comparing the Figure 9 with Figure 10, we can see that the minimizer
of the interpolated surface is close to the minimizer of the OneStepRGACV function.
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Figure 10: Left: Latin Hypercube Design. Right: contour plot of thin plate spline interpolation
over the design points.
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Next, we do the simulations to check the performance of the OneStepRGACV method as com-
pared with the iterated UBR method. Again, we use ¢ = 1 and 5 replicates to calculate the
OneStepRGACV function. We randomly generate 200 runs and plot the results in figure 11. The
downhill simplex method is used to search for the minimizer of the OneStepRGACV function.
From the plot we can see that one step randomized GACV method outperforms the iterated UBR
method.

CKL Comparision
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OneStepRGACV
Figure 11: CKL Comparison of OneStepRGACV with iterative UBR, based on 200 runs.
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Ezample 2 The second Monte Carlo Simulation is done as follows. The India Pima data set
(see Wang, 1994) is used here. The concerned response of this data set is whether a person tested
positive for diabetes. The following two covariates are used:

X1 Plasma glucose concentration a 2 hours in an oral glucose tolerance test
X9— Body Mass Index (bmi).

The Smoothing spline ANOVA Model

logit(p(z1,22)) = const + fi(z1) + fo(22) + fiz2(z1, 22)

is fitted using the GRKPACK (i.e, the iterated UBR is used to choose the smoothing parameters).
Then we use the fitted logistic function as the true function to generate the data set. Figure
12 shows the scatter plot of the covariates and the fitted probability surface (i.e the true test
function). Denote observations of the covariates as (z1;,z9;),7 = 1,---,500, the fitted logit value
for each observed subject as f(z1;,22;), then the response y; is generated to be 0 or 1 according
to the probability exp(f(z1i,2z2))/(1.0 + exp(f(x14,22;))). To compare the performance of the
OneStepRGACYV with the iterated UBR method, 200 sets of data are generated and the CKL’s are
calculated for both methods. There are five smoothing parameters in this example. Figure 13(a)
shows the pairwise comparison of OneStepRGACYV and iterated U BR methods, where CK Lygg
is plotted against C K LopestepraAcy- A point on the diagonal line means the two methods tie each
other whereas a point above the diagonal line means CK Lopesiepraacy is smaller then CK Ly gg,
which suggests OneStepRG AC'V performs better than UBR on that set of data. From this figure,
we can see that most of the case the CK Loyesiepraacy are almost the same as or less than
CKLypr. We also use two-stage design (21 points in each stage) to search for the minimizer and
plot the comparison of design search with the downhill simplex method in Figure 13(b)-(d). We use
quadratic polynomial to interpolate the OneStepRGACYV function over the design points. From

the plot we can see that by using the design search, we can locate a point not far away from the
optimal point.

(a) Scatter plot (b) Test Prob. function
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Figure 12: Scatter plots of the covariates and the probability surface of the test function.
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Figure 13: Pima Example—(a) CKL comparison: UBR vs OneStepRGACV , 200 runs. (b)—(d)
Comparisons among several searching algorithms for finding the minimizer of the OneStepRGACV
function: downhill simplex with a initial guess, downhill simplex with initial value chosen by design

method, two-stage design.
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Example 3 This example is similar to the Ezample 2 except that we take the WESDR, (Wisconsin
Epidemiology Study of Diabetes Retinopathy) data. Three covariates dur, gly and bmi are used,
and the progression of retinopathy is treated as response. First, the following ANOVA model is
fitted by iterated UBR method (GRKPACK),

logit(p(dur, gly, bmi)) = ¢ + f1(dur) + fa(gly) + f3(bmi) + fi3(dur,bmsi).

The fitted logit function is used as true test function for our simulation. 100 sets of data are
generated. The ANOVA model above is fitted for each simulated data set. Iterated UBR and
OneStepRGACYV are used to choose the smoothing parameters and their performances are compared
in form of the CKL distance between the fitted function and the test function. For OneStepRGACV
method, we use 0 = 1 and R = 5 in the calculation of OneStepRGACV. In the meantime, we use
50 basis functions to get the approximate smoothing spline when we use the OneStepRGACV
method. Figure 14(a) shows the comparison results. Also different search algorithms for finding
the minimizer of OneStepRGACV are compared. Three different search methods: (1) Downhill
Simplex method with a good starting guess, (2) Downhill simplex with the initial guess decided by
design method and (3) two-stage computer design method. Again, we use quadratic interpolation
in the design method. Figure 14(b) (d) plot the comparisons of OneStepRGACV for these three
search algorithms. From Figure 14(a), we can see that OneStepRGACYV outperforms the iterated
UBR method. From the comparisons of OneStepRGACV value in Figure 14(b)—(d), we can see
that in term of the object function OneStepRGACV the design method can gives us smoothing
parameters which OneStepRGACYV value is close to the minimum value.

In the OneStepRGACYV approach, we use the OneStepRGACV function as a criteria to select
the smoothing parameters and few basis functions to get the approximate solution. Next, we
compare the fits from these two methods in some of the data sets in which the OneStepRGACV
and the iterated UBR have similar performance, i.e. the CKLs are close. We plot the fitted surface
of one such data set from both methods in Figures 15 to 24. From the plots, we can see that the
fitted surface are almost identical. This phenomenon remains the same in all the other data sets we
examined. Notice that the iterated UBR uses all the data points to form the basis functions while
the OneStepRGACYV only uses 50 representative points to form the basis functions. From this, we
can roughly conclude the approximate solution by using 50 basis function is almost identical to
the exact smoothing spline using all the basis functions. Hence, we conclude that the difference
between these two methods are due to the way we choose the smoothing parameters.
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Figure 14: Wesdr Example (a) CKL comparison: UBR vs OneStepRGACV, 100 runs; (b)-(d)
Comparisons of different search algorithms.
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Figure 15: Wesdr Example—Left: data and contours of constant posterior standard deviation at
the median glycosylated hemoglobin as a function of duration of duration and bmi. A solid
point indicates a progression and a circle indicates a non-progression. Right: estimated probability
in the defined region, as a function of duration and bmi at the median value of glycosylated
hemoglobin. Sample Size—669. Method: OneStepRGACV, nrep=>5, 0 = 1, 50 bases.
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Figure 16: Wesdr Example—Cross sections of estimated probability of progression as a function of
duration with their 90% Bayesian confidence intervals, at three levels of gly and three levels of
bmi. Low, median and high denote .25, .5 and .75 percentiles. Method: OneStepRGACV.
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Figure 17: Wesdr Example—Cross sections of estimated probability of progression as a function
of bmi with their 90% Bayesian confidence intervals, at three levels of gly and three levels of

duration. Low, median and high denote .25, .5 and .75 percentiles. Method: OneStepRGACV.
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Figure 18: Wesdr Example—Cross sections of estimated probability of progression as a function
of duration, at four levels of gly and four levels of bmi. ql, q2, q3 and g4 are the quantiles at
0.125,0.375,0.625 and 0.875. Method: OneStepRGACV.
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Figure 19: Wesdr Example—Cross sections of estimated probability of progression as a function
of bmi, at four levels of gly and four levels of duration. ql, q2, q3 and g4 are the quantiles at
0.125,0.375,0.625 and 0.875. Method: OneStepRGACV.
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Figure 20: Wesdr Example—Left: data and contours of constant posterior standard deviation at
the median glycosylated hemoglobin as a function of duration of duration and bmi. A solid
point indicates a progression and a circle indicates a non-progression. Right: estimated probability

in the defined region, as a function of duration and bmi at the median value of glycosylated
hemoglobin. Method: GRKPACK.
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Figure 21: Wesdr Example—Cross sections of estimated probability of progression as a function of
duration with their 90% Bayesian confidence intervals, at three levels of gly and three levels of
bmi. Low, median and high denote .25, .5 and .75 percentiles. Method: GRKPACK.

For this simulated data set, we also examine the performance of the Bayesian Confidence In-
terval. The posterior variance and covariance derived in this Chapter is used to calculate the
posterior standard deviation of the fitted surface when we use the OneStepRGACV method. For
the iterative UBR method, the posterior standard deviation is calculated by using the formula
derived in Wang (1994). Wang’s formula is derived by following the approach in Wahba (1983).
For OneStepRGACV, the coverage rate of 95% C.I is 94% and the coverage of 90% C.I. is 87%. For
iterative UBR method, the coverage of 95% C.I is 96% and the coverage of 90% C.I. is 88%. This
indicates the performance of the Bayesian Confidence for the OneStepRGACYV method is close to
that of the Bayesian Confidence Interval for the iterative UBR method. Also the coverage rates of
both methods are close to the nominal levels.

Finally, we use the OneStepRGACV and approximate smoothing spline method to refit the
model and data which appeared in Wahba et al. (1995). The number of representative points is 50.
o = 1 and 5 replicates are used in the calculation of OneStepRGACYV. The results are presented in
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Figure 22: Wesdr Example—Cross sections of estimated probability of progression as a function
of bmi with their 90% Bayesian confidence intervals, at three levels of gly and three levels of

duration. Low, median and high denote .25, .5 and .75 percentiles. Method: GRKPACK.
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Figure 23: Wesdr Example—Cross sections of estimated probability of progression as a function
of duration, at four levels of gly and four levels of bmi. ql, q2, q3 and g4 are the quantiles at
0.125,0.375,0.625 and 0.875. Method: GRKPACK.
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Figure 24: Wesdr Example—Cross sections of estimated probability of progression as a function
of bmi, at four levels of gly and four levels of duration. ql, q2, q3 and g4 are the quantiles at
0.125,0.375,0.625 and 0.875. Method: GRKPACK.
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Figures 25 to 29. These figures looks almost the same as those appeared in Wahba et al. (1995).
Again, We might conclude that by using the OnestepRGACV and fewer basis functions, we can

obtain the estimate much faster than and get similar fit as the iterate UBR method when the
iterated method gives us a good fit.
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Figure 25: Wesdr Original Data—Left: data and contours of constant posterior standard deviation
at the median glycosylated hemoglobin as a function of duration of duration and bmi. A solid
point indicates a progression and a circle indicates a non-progression. Right: estimated probability

in the defined region, as a function of duration and bmi at the median value of glycosylated
hemoglobin. Method: OneStepRGACV.

4.2 Polychotomous Case

4.2.1 Fitting Polychotomous Response Data by Individual Fitting

We will discuss how we can use the fast algorithm developed for binary data to model the poly-
chotomous response data.

Given X = t, the conditional class probabilities satisfy

po(t) +pr(t) + - +p(t) = 1. (4.2.1)

Let ¢; = >, ,;m(t), then we will have p;(¢) + ¢;(t) = 1. Notice that p;(¢) corresponding to the
conditional probability of a subject in the ith class given the covariate information X = ¢ while
gi(t) denotes the probability that a subject is not in the ith class. As a result, we can use the
algorithm developed for binary data to estimate the conditional probability p;(¢). Denote

1 if Y =i, .
Zi = . 1=0,1,--- k. (4.2.2)
0 otherwise,

By doing this, we have the random vector (X, Zy, -+ Z;) which is equivalent to the random pair

(X,Y). Hence, we have p;(t) = P(Z; = 1|X = t). The random variables Zg, -, Z); have the
following constraint,

Zo+- 42 =1 (4.2.3)
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Figure 26: Wesdr Original Data—Cross sections of estimated probability of progression as a func-
tion of duration with their 90% Bayesian confidence intervals, at three levels of gly and three
levels of bmi. Low, median and high denote .25, .5 and .75 percentiles. Method: OneStepRGACV.
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Figure 27: Wesdr Original Data—Cross sections of estimated probability of progression as a func-
tion of bmi with their 90% Bayesian confidence intervals, at three levels of gly and three levels of

duration. Low, median and high denote .25, .5 and .75 percentiles. Method: OneStepRGACV.
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Figure 28: Wesdr Original Data—Cross sections of estimated probability of progression as a func-
tion of duration, at four levels of gly and four levels of bmi. ql, q2, q3 and g4 are the quantiles
at 0.125,0.375,0.625 and 0.875. Method: OneStepRGACV.
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Figure 29: Wesdr Original Data—Cross sections of estimated probability of progression as a func-
tion of bmi, at four levels of gly and four levels of duration. ql, q2, q3 and g4 are the quantiles
at 0.125,0.375,0.625 and 0.875. Method: OneStepRGACV.
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Figure 30: CKL Comparison based on 200 runs.
Similarly for the observations, we denote

1 if y;=1

i = BT 0k and j=1,--- .. (4.2.4)

] .
0 otherwise

Note that {(X;,Z;;),j = 1,--- ,n} is sufficient for {p;(z;),j = 1,--- ,n}, so the conditional class
probability can be estimated from the observed data set {(z;,z;;),j = 1,--- ,n}. Letting f;(t) =
log(pi(t)/(1 — pi(t)), we can estimate f;(¢) by minimizing the following penalized problem,

n

- =zifilag) + log(L+ )] + 25, (£).
j=1

This can be done by using the OneStepRGACV method developed earlier in this chapter. Denote
the estimates obtained through this way be po(t), - ,pr(t). In order for the estimates to satisfy
the constraint ( 4.2.1), we set the final estimates as follows,
. pi(t) ,
pi(t) = = =1, F 425
it po(t) + -+ Pr ( )

We conduct Monte Carlo simulations to see how the individual fitting by binary data algorithm
compared with the penalized polychotomous regression. We apply this approach to the two simula-
tion examples in chapter 3. The comparison is presented in term of Comparative Kullback-Leibler
Distance. Figure 30 is for the univariate case, and Figure 31 is for the multivariate case. We use
‘multiple’ to stand for the penalized polychotomous method proposed in chapter 3 and ‘binary’ for
the individual fitting. From the plots, the penalized polychotomous method seems to perform a
little bit better. However, the performances are very close when we have reasonable large sample
size. We can expect the performance will get closer as the sample size gets larger.
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4.2.2 Randomized GACYV for Penalized Polychotomous Regression

Another possibility to apply the penalized Polychotomous Regression to large data set is to use
approximate smoothing spline and select the smoothing parameters by some criteria similar to the
OneStepRGACV.

We will first extend the derivation of GACV in Xiang and Wahba (1996) to the Penalized
Polychotomous Regression.
Our object is the Kullback-Leibler distance or the Comparative Kullback-Leibler distance between
the estimate and the true functions.

CKL(A Z{ =P () falzs) + b(fal2;))} (4.2.6)

The CKL depends on the true functions which are unknown, so an estimate of the CKL is needed.
Define the ordinary, or leaving-out-one cross validation function C'V (),

! 19

= %Z;’l:l[_yjf)\(xj) + b(f)\(xy))] + % Z]n':1 yj(f)\(x]) f)\ (x]))
where y; = (y15,--- ,ykj)T, ) = fix, -5 fra)! and f)\u is the minimizer of penalized polychoto-
mous likelihood (2.2.1) with the jth data point omitted. CV(X) can be expected to be at least
roughly unbiased for the C K L()). For any fixed A, in order to evaluate CV()), we have to get n
leaving-out-one estimates f)\l] (%), 7 =1,---,n. In general, it will be very expensive to compute
f/\L]. Hence, using CV'(\) is almost infeasible. We will introduce an approximate for CV () via
several first order Taylor series expansions.

Notice that . L
2?21 yg(f)\(TJ) -/ ()
= Zf 1 Z;L 1y2](fz/\(Tj) fZJ)_\ (TJ))

Z Z sz () lfﬁ\ (z;) yz]lpzk(ij_)
Yij lp“\ (z5) IL:DM(EJ')*P;A] (z5) ’

Yij—Pix(z;j)

and L

pin(wj) — pi (25) " W fia(@s) — fM (z;)

5 ~ z'z'(f(f"’J)) .
J
Yij — Pix (T]) Yij *pi)\ (T])
Hence we have
1 ¢ 1 en Yij(yis — pir(x))
"l i \Yij — Pix(T;
CVN) ~ = Syl (o) + ba(a)] + o SO — SO PRI (4
=1 i=1j=1 T Gy ) b (fa(z;))

We can see from the right side of ( 4.2.8) that the calculation of CV () will focus on the calculation
of

Yij pz)\(xj) .
fi)\(xj) fz)\ (%)

To avoid the calculation of ( 4.2.9), we will develop an approximation for it. Before obtaining
an approximation for this ratio, we need to generalize the leaving-out-one lemma of Graven and

Wahba (1979).

(4.2.9)
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Lemma 4.10 (leaving-out-one lemma) Let
(f7 ) yju Zl yla LU[ + = ])\(f)
I#£]
Suppose hy(j, z,) is the minimizer in H of I\(f,z) where

z = (y17 YL, %Y, 7yn)T'
Then hy(j,p (24),-) = f(-) where fI(-) is the minimizer of
n
> Uy f(m) + §JA(f)
1]
and pI(-) is the probability function corresponding to f13(-).
Proof First define
ylj = (y17 o 7yjllapl](x]‘)7 Yj+1," 7yn)T

and . ‘
—l(p(z),7) = —[p™ (w;)] T + b(7).
We will show that

U (g, [ (5) < U (), [ (25))- (4.2.10)
olp (w5),7) _ 4 0b()
— 5 P (z5) + “or
and using the fact
02b(7)
or’'or
implies that —I(p*7(z, 7) achieves its minimum for 82(:) = pti(z;). So ( 4.2.10) holds since
8b( ) ;
7= fi(zy) = p“(%‘)

Then, for any f

L(f.y ™) = —Up (x5), f(25)) — Doy Uy, (@) + FIA(F)
> —l(p™ (), [ (w5) = Doy U f ( i) + 5 Ia(f)
> —Up (g, £ (5)) = Xy L £ (20) + 5N ().

So (4, p™ (z5),-) = fH(-). QE.D.

From this lemma, we can see that replacing y; = (y15,--- ,yk;)" by p)‘ ( ;), the minimizer
of Iy with respect to f(-) will be fj‘]() From Chapter 2, we know that if (fix, -+, frr)? is a
minimizer of Iy, f;\ is in a certain linear space of dimension at most n, and then J;(f;») can be
written as a quadratic form in its values at z;. With some abuse of notation we will write below
Ji(fi) = fFSifi = cF'Qic; where in this context we are letting f; = (fi(z1),- -, fi(zn))?. Hence,
I, can be written as follows,

Z{Zyz]fz ;) + log(1 Z fitwiyy 4 2 ZA SIS (4.2.11)
i=1

7j=1 =1
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Let}/l = (yilu'" 7yln) er = (yllu"' 7yi(jl_l)7pi](xj)uyi(jll)u"' 7yin)T and YL] = ((Yl ])Tu"' 7(Yk ])T)T'
Because (fy,Y) and (f;”, Y1) are two local minimizers of I,(f,y), we have
aI/\(fay)‘ _ v =0
8]02 ==Y ’
and
—of, Ufiwmy =0
hence

of; fi=fino =10 wi=Yiu=y, 7 ™ ofi f=fy=Yy = Y

Also, we have

%I,
= Wi+ nAiXi,
o17o7; !
0’1
Ti)‘ =0,
ayi y;
and
S

Hence, using a Taylor expansion we have

0= (W; +nNS) (fr — i) — (Vi = Y7,

thus , .
fix — fh = (Wi + nNZ) P (v - v,
SO
0
N
fix(z1) — [ (1) :
fin(ws) — £ (x5) | = Wi+ oS0 |y — pl(x5) |- (4.2.12)
: 0
fz/\(Tn) - fi\](’l‘n) :
0

Defining H; = (W; + n\;3;) !, and h{j be the diagonal element of H;, we will have

fia(zj) — fli () ~ B
Yij —102-,\ (ﬂﬂj)

(4.2.13)

Using (4.2.13) to calculate the CV (\) we will have an approximate formula for the cross validation,

ACV () = —L+ ZZ Yis y” — (25)). (4.2.14)

]] ..
i j=1 h — Wij
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If we replace hgj by %tr(Hi) and replace hgjwij by %tr(Wil/QHiWil/Q), we have the generalized form
of the approximate cross-validation as follows,

GACV(A) =1 Z] 1{ Z’L 1 yl] fz)\(T]) + log(l + Z E’fM z;) )}
+ Z 1 Z 1 tr yz] (yz]lpzk(l’])) (4215)
i= Jj=

(W1/2H W1/2) :

We can see that the GACV formula will reduce to the formula for binary case when k = 1. As
mentioned earlier, the computation of H; will be numerical unstable when the sample size is large.
Numerical method should be sought to overcome this difficulty if we want to use this approach

in practice. Considering the disturbance € ~ N(0,0%1,;) and letting € = (e] -+, ;)7 we
will have E(e! Hie;) = o*Tr(H;) and E(e} W;H;e;) = O'2TT(Wi1/2H'W1/2). Hence, we can use
e/ H;ei/o? to estimate Tr(H;) and € W;H;e;/o? to estimate Tr(Wil/QH Wl/Q)
Let )
0°1 1 01,
y+e,1 A 11
= fir — Y+ +
PR = o G oy + DGRy o)
By observing that
oI, (9[)\
and ) )
8 I)\ 11 8 I)\ 11
= f/\ay = H'a
we have
R = fix = Hies. (4.2.16)

Thus Tr(H;) can be estimated by e (f} '~ fin)/o?, and Tr (W, / H,W, 1/2 ) can be estimated by
e Willh! — fi) o,

By replacing Tr(H;) and Tr(Wil/QHiWil/Q) with their randomized estimates and use €’ ¢/nk
to estimate o2, we have a randomized version of GACV function for the penalized polychotomous
regression,

ranGACV(\) = 3 Z] {->r 1ymfz/\(”’y)+log( + 3o el @)y

fy+E szk)yz](yzjlpzk(xj)) (4217)
+-= Zz 1 Z] 1 e € /kJ_eTW (fy+e,1LfiA)

This will reduce to the OneStepRGACV formula for binary data when k = 1. To reduce the
variance of the ranGACYV , we may draw R independent replicates €"), 7 = 1,--- , R and obtain an
R-replicate version randomized GACYV,

ranGACVr(A) = 3 Z] - Zz 1 yZ]fM(:v]) + log(1 + Z efir(®i))}

SR sk yn, @ il ufmyza(ymlm(:c])) (4.2.18)
TLR r=1 =1 ] 1 E(T G(T)/kL( (T))TW (fy+e 1LfA)

For fixed )\, we can iterate the block one step SOR-newton until it converges to get a solution
fx, and evaluate ranGACV (X). Then we can find the minimizer A of ranGACV ()), and use f5 as
our estimate. In order to apply this to large data set, the approximate smoothing spline method
should also be used. Besides, for the polychotomous problem we have more smoothing parameters
than the binary case. Before we can apply this in practice, we should put some effort in reducing
the number of smoothing parameters or investigating some efficient way to find the minimizer of
the ranGACYV function.
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Chapter 5

Application to Wisconsin
Epidemiological Study of Diabetic
Retinopathy

5.1 Introduction

In this chapter, we use data from the Wisconsin Epidemiology Study of Diabetic Retinopathy
(WESDR) to demonstrate the penalized polychotomous regression method.

The study area is composed of 11 counties in southern Wisconsin. Diabetic persons were
identified by a review of the records of 452 of the 457 physicians providing primary care to diabetic
persons in the period July 1, 1979, through June 30, 1980. A two part sample of 2990 diabetic
patients was selected on July 1, 1980, for the examination phase of study. The first part consisted
of all persons whose conditions were diagnosed before 30 years of age and who were taking insulin,
referred to as younger-onset persons (N = 1210). The second part consisted of a probability sample
stratified by duration of diabetes of persons diagnosed by a physician as having diabetes at or after
age 30 years and confirmed by a random or postprandial serum glucose level of at least 11.1 mmol/L
(200 mg/dL) or a fasting serum glucose level of at least 7.8 mmol/L (140 mg/dL) on at least two
occasions, referred to as older-onset persons (N = 1780). Of the older-onset group, 824 were taking
insulin and 956 were not taking insulin. The sampled persons were invited to participate in the
examination phase of the study from 1980 to 1982. Baseline examinations were obtained for 996
(82.3%) younger-onset and 1370(77.0%) older-onset persons.

One of the original aims of the Wisconsin Epidemiologic Study of Diabetic Retinopathy was to
examine mortality in the population. Thus, all sampled persons are contacted annually by telephone
to determine vital status. In addition, designated contact persons, relatives, and physicians are
contacted, and newspaper obituaries are reviewed daily. In all cases, an attempt is made to obtained
an exact or approximate date of death. Annually, a request is made to Wisconsin Center for Health
Statistics, Section of Vital Statistics, for death certificate information of these persons. In addition,
persons who are not known to be dead but have been unavailable for follow-up are submitted for
matching against the death records. Wisconsin death records through March 1995 have been
searched. Information on persons who have moved out of Wisconsin and are suspected of being
dead and persons who are unavailable for follow-up is submitted to the National Death Index for
matching against national death data. When a match is made, a copy of the death certificate is
obtained from the appropriate state.

All medical conditions on the Wisconsin death certificate were coded by trained nosologists in
the Wisconsin Division of Health using the International Classification of Diseases, Ninth Revision
(ICD-9). The underlying cause of death was selected by the Automated Classification of Medical
Entities computer program. Out-of-state certificates were coded and processed in the same manner.
The cause-specific mortality analysis of the present investigation is based on the underlying cause
of death.
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For this study population, diabetes and heart disease are among the several major causes for
mortality. As an example, we will employ the penalized polychotomous regression method to
investigate the associate between the risk factors and the cause-specific mortality such as dying of
diabetes and dying of heart disease.

5.2 Estimate the Risks of Cause-specific Mortality by Penalized
Polychotomous Regression

We are going to investigate the how the risk factors. We only consider older onset without taking
insulin group in this analysis. Based on the previous investigation by other researchers and some
preliminary analysis using multiple logistic regression, we decide to include the following variables
in our analyses:

1. Age: age in years at the time of baseline examination;
2. Glycosylated hemoglobin: a measure of hyperglycemia;
3. Systolic blood pressure in mmHg;

We are concerned about the cause-specific mortality. Specifically, the participants will belong to
one of the following categories:

1. Die of diabetes;
2. Die of heart disease;
3. Die of other cause other than diabetes and heart disease;
4. Still alive
Three kinds of mortality will be considered:

1. 5 years mortality: only those patients who died within 5 years from baseline examination
are considered to be death while those patients died after 5 years or still alive are considered
to be alive;

2. 10 years mortality: only those patients who died within 10 years from the baseline exami-
nation are considered to be death;

3. 12 years mortality: only those patients who died within 12 years from the baseline exami-
nation are considered to be death.

By deleting the incomplete observations, we summarize the data in Table 1, 2 and 3. Table 1 is for
5 years mortality, Table 2 is for 10 years mortality and Table 3 is for 12 years mortality.
The values in the columns under the ‘gly’, ‘sp’ and ‘age’ are the corresponding means for each
group.

The polychotomous response for the data set is defined as follows. The patients who died
of diabetes as category 1, those died of heart disease as category 2 (these two causes are most
commonly fond in diabetes patients), those died of other causes as category 3 and the rest as
category 0. The penalized polychotomous regression method is used to build the models for the
5 years mortality, 10 years mortality and 12 years mortality respectively. The covariates
considered are:
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Table 1: 5 years mortality summary
cause N gly sp age
diabetes 12 | 11.23 157 73.17
heart disease | 99 | 11.01 | 157.78 | 73.85
other causes | 83 | 10.30 | 150.14 | 75.43
alive 452 | 10.12 | 145.96 | 65.24

Table 2: 10 years mortality summary
cause N gly sp age
diabetes 23 | 10.95 | 159.30 | 70.43
heart disease | 155 | 10.65 | 155.23 | 73.06
other causes | 164 | 10.31 | 152.12 | 73.25
alive 304 | 10.07 | 142.33 | 62.43

1. glyl: glycosylated hemoglobin level at the baseline examination;
2. spl: systolic blood pressure measured at the baseline examination;
3. age: age at the baseline examination.

Let
fi(age, glyl, spl) = log(p1(age, glyl, spl)/ps(age, glyl, spl)),
fa(age, glyl, spl) = log(p2(age, glyl, spl) /ps(age, glyl, spl)),
f3(age, glyl, spl) = log(ps(age, glyl, spl)/ps(age, glyl, spl)).

The functional ANOVA decomposition for f; is as follows,

filage, glyl, spl) = py + hi(age) + gi1(glyl) + g2(sp2) + g12(glyl, spl)

and decomposition for fo and f3 are similar. We fit these functions by the penalized polychotomous
method proposed in chapter 3. The estimates are plotted in Figure 32 to Figure 37. From the plots,
we can see that

1. For those patients with age less than 55, the diabetes is the leading cause of death;

2. For those patients with very high systolic blood pressure (> 200mmHg) at baseline exami-
nation, heart disease seems to be the leading cause of death within 5 years from baseline.

Table 3: 12 years mortality summary
cause N gly sp age
diabetes 25 | 10.96 | 158.92 | 69.75
heart disease | 172 | 10.64 | 154.23 | 72.54
other causes | 188 | 10.31 | 151.22 | 72.85
alive 260 | 10.00 | 141.89 | 61.44
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Also, the effect of glycosylated hemoglobin level always turns out to be linear which is consistent
with other analysis on the WESDR data.
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Figure 32: Cross-section plot of probability surfaces. In each plot, the differences between adjacent
curves (from bottom to top) are probabilities for: alive, diabetes, heart attack, other cause respec-
tively. The points imposed are in the same order. Older onset without taking insulin, those who
died after byrs from baseline are considered to be alive. n = 646.
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Figure 33: Main-effect plots in logit scale (y-axis corresponding to the value of logit function).
Older onset without taking insulin group. Those who died after 5yrs from baseline are considered
to be alive. n = 646.
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Figure 34: Cross-section plot of probability surfaces. In each plot, the differences between adja-
cent curves (from bottom to top) are probabilities for : alive, diabetes, heart attack, other cause
respectively. The points imposed are in the same order. Older onset without taking insulin, those
who died after 10yrs from baseline are considered to be alive. n = 646.
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Figure 35: Main-effect plots in logit scale (y-axis corresponding to the value of logit function).
Older onset without taking insulin group. Those who died after 10yrs from baseline are considered
to be alive. n = 646.
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Figure 36: Cross-section plot of probability surfaces. In each plot, the differences between adjacent
curves (from bottom to top) are probabilities for: alive, diabetes, heart attack, other cause respec-
tively. The points imposed are in the same order. Older onset without taking insulin, those who
died after 12yrs from baseline are considered to be alive. n = 646.



diabetes
heart
other

10 15 20
glyl
()
s
— diabetes A
****** heart //

N - -~ other #

age

©

diabetes
heart

100

120 140 160 180 200 220

spl
(b)

73

Figure 37: Main-effect plots in logit scale (y-axis corresponding to the value of logit function).
Older onset without taking insulin group. Those who died after 12yrs from baseline are considered

to be alive. n = 646.
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Chapter 6

Concluding Remarks

6.1 Summary

We have proposed nonparametric models using smoothing spline ANOVA for modeling data with
polychotomous response. We obtained the estimates by solving a minimization problem involving
the penalized likelihood. A block one step SOR-Newton-Raphson method is used to solve this
minimization problem. We use GCV and the unbiased risk method to choose smoothing parameters
at each update. Our simulations indicate that the method will give us a good estimate most of
the time for moderate data sets. We successfully applied this method to a medical data set. The
disadvantage is that we can not apply this method to large data sets. Also, the convergence of this
method is not guaranteed due to the way we choose the smoothing parameters although we did not
experience any fail of convergence in our simulations and example.

We also proposed a fast algorithm to model the data with binary response (special case of
polychotomous response). The randomized GACV we derived is shown to be a good proxy of
the true CKL from the simulations. An approximate scheme is also proposed to speed up the
computation in case of large data set. Simulations show that this method outperforms the iterated
UBR method proposed by Gu.

To overcome the computational difficulties for large data sets with polychotomous responses,
we proposed two methods. By transforming the polychotomous response data into several binary
data sets, we can use the fast algorithm for binary data and obtain the final estimate by combining
the estimate from each binary data sets. The disadvantage of this methods is that we don’t have
functional ANOVA decomposition for the final estimates. Simulations show that the performance
of this method is close to the penalized polychotomous regression and the results are expected to
get closer when the sample size gets larger. Alternatively, by following the derivation of randomized
GACYV for binary data we derived a randomized GACYV for the penalized polychotomous regression
problem. Combining with the approximate smoothing spline, this approach is expected to produce
the solution much faster.

6.2 Future Research

Hypothesis testing and model selection are important for data analysis. The approximate posterior
variance or covariance can be used to construct the confidence interval for the smoothing spline
estimates. The performance and the interpretation of these confidence interval remain to be inves-
tigated.

Theoretical results can provide insight into and justification for the proposed methods. Large
sample properties like asymptotic consistency, convergence rate, strong or weak consistency for the
randomized GACV are desirable.
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