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ON THE “DEGREES OF FREEDOM” OF THE LASSO

BY HUI ZOU, TREVOR HASTIE AND ROBERT TIBSHIRANI

University of Minnesota, Stanford University and Stanford University

We study the effective degrees of freedom of the lasso in the framework
of Stein’s unbiased risk estimation (SURE). We show that the number of
nonzero coefficients is an unbiased estimate for the degrees of freedom of
the lasso—a conclusion that requires no special assumption on the predic-
tors. In addition, the unbiased estimator is shown to be asymptotically consis-
tent. With these results on hand, various model selection criteria—Cp , AIC
and BIC—are available, which, along with the LARS algorithm, provide a
principled and efficient approach to obtaining the optimal lasso fit with the
computational effort of a single ordinary least-squares fit.

1. Introduction. The lasso is a popular model building technique that simul-
taneously produces accurate and parsimonious models (Tibshirani [22]). Suppose
y = (y1, . . . , yn)

T is the response vector and xj = (x1j , . . . , xnj )
T , j = 1, . . . , p,

are the linearly independent predictors. Let X = [x1, . . . ,xp] be the predictor ma-
trix. Assume the data are standardized. The lasso estimates for the coefficients of
a linear model are obtained by

β̂ = arg min
β

∥∥∥∥∥y−
p∑

j=1

xjβj

∥∥∥∥∥

2

+ λ

p∑

j=1

|βj |,(1.1)

where λ is called the lasso regularization parameter. What we show in this paper is
that the number of nonzero components of β̂ is an exact unbiased estimate of the
degrees of freedom of the lasso, and this result can be used to construct adaptive
model selection criteria for efficiently selecting the optimal lasso fit.

Degrees of freedom is a familiar phrase for many statisticians. In linear regres-
sion the degrees of freedom is the number of estimated predictors. Degrees of
freedom is often used to quantify the model complexity of a statistical modeling
procedure (Hastie and Tibshirani [10]). However, generally speaking, there is no
exact correspondence between the degrees of freedom and the number of para-
meters in the model (Ye [24]). For example, suppose we first find xj∗ such that
| cor(xj∗, y)| is the largest among all xj , j = 1,2, . . . , p. We then use xj∗ to fit a
simple linear regression model to predict y. There is one parameter in the fitted
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model, but the degrees of freedom is greater than one, because we have to take
into account the stochastic search of xj∗ .

Stein’s unbiased risk estimation (SURE) theory (Stein [21]) gives a rigorous
definition of the degrees of freedom for any fitting procedure. Given a model fitting
method δ, let µ̂ = δ(y) represent its fit. We assume that given the x’s, y is generated
according to y∼ (µ,σ 2I), where µ is the true mean vector and σ 2 is the common
variance. It is shown (Efron [4]) that the degrees of freedom of δ is

df (µ̂) =
n∑

i=1

cov(µ̂i, yi)/σ
2.(1.2)

For example, if δ is a linear smoother, that is, µ̂ = Sy for some matrix S indepen-
dent of y, then we have cov(µ̂,y) = σ 2S, df (µ̂) = tr(S). SURE theory also reveals
the statistical importance of the degrees of freedom. With df defined in (1.2), we
can employ the covariance penalty method to construct a Cp-type statistic as

Cp(µ̂) = ‖y− µ̂‖2

n
+ 2df (µ̂)

n
σ 2.(1.3)

Efron [4] showed that Cp is an unbiased estimator of the true prediction error, and
in some settings it offers substantially better accuracy than cross-validation and re-
lated nonparametric methods. Thus degrees of freedom plays an important role in
model assessment and selection. Donoho and Johnstone [3] used the SURE theory
to derive the degrees of freedom of soft thresholding and showed that it leads to
an adaptive wavelet shrinkage procedure called SureShrink. Ye [24] and Shen and
Ye [20] showed that the degrees of freedom can capture the inherent uncertainty
in modeling and frequentist model selection. Shen and Ye [20] and Shen, Huang
and Ye [19] further proved that the degrees of freedom provides an adaptive model
selection criterion that performs better than the fixed-penalty model selection cri-
teria.

The lasso is a regularization method which does automatic variable selection. As
shown in Figure 1 (the left panel), the lasso continuously shrinks the coefficients
toward zero as λ increases; and some coefficients are shrunk to exactly zero if λ is
sufficiently large. Continuous shrinkage also often improves the prediction accu-
racy due to the bias–variance trade-off. Detailed discussions on variable selection
via penalization are given in Fan and Li [6], Fan and Peng [8] and Fan and Li [7].
In recent years the lasso has attracted a lot of attention in both the statistics and
machine learning communities. It is of great interest to know the degrees of free-
dom of the lasso for any given regularization parameter λ for selecting the optimal
lasso model. However, it is difficult to derive the analytical expression of the de-
grees of freedom of many nonlinear modeling procedures, including the lasso. To
overcome the analytical difficulty, Ye [24] and Shen and Ye [20] proposed using a
data-perturbation technique to numerically compute an (approximately) unbiased
estimate for df (µ̂) when the analytical form of µ̂ is unavailable. The bootstrap
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FIG. 1. Diabetes data with ten predictors. The left panel shows the lasso coefficient estimates
β̂j , j = 1,2, . . . ,10, for the diabetes study. The lasso coefficient estimates are piece-wise linear
functions of λ (Osborne, Presnell and Turlach [15] and Efron, Hastie, Johnstone and Tibshirani [5]),
hence they are piece-wise nonlinear as functions of log(1 + λ). The right panel shows the curve of
the proposed unbiased estimate for the degrees of freedom of the lasso.

(Efron [4]) can also be used to obtain an (approximately) unbiased estimator of
the degrees of freedom. This kind of approach, however, can be computationally
expensive. It is an interesting problem of both theoretical and practical importance
to derive rigorous analytical results on the degrees of freedom of the lasso.

In this work we study the degrees of freedom of the lasso in the framework
of SURE. We show that for any given λ the number of nonzero predictors in the
model is an unbiased estimate for the degrees of freedom. This is a finite-sample
exact result and the result holds as long as the predictor matrix is a full rank matrix.
The importance of the exact finite-sample unbiasedness is emphasized in Efron [4],
Shen and Ye [20] and Shen and Huang [18]. We show that the unbiased estimator is
also consistent. As an illustration, the right panel in Figure 1 displays the unbiased
estimate for the degrees of freedom as a function of λ for the diabetes data (with
ten predictors).

The unbiased estimate of the degrees of freedom can be used to construct Cp

and BIC type model selection criteria. The Cp (or BIC) curve is easily obtained
once the lasso solution paths are computed by the LARS algorithm (Efron, Hastie,
Johnstone and Tibshirani [5]). Therefore, with the computational effort of a single
OLS fit, we are able to find the optimal lasso fit using our theoretical results. Note
that Cp is a finite-sample result and relies on its unbiasedness for prediction error
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FIG. 2. The diabetes data: Cp and BIC curves with ten (top) and 64 (bottom) predictors. In the top
panel Cp and BIC select the same model with seven nonzero coefficients. In the bottom panel, Cp

selects a model with 15 nonzero coefficients and BIC selects a model with 11 nonzero coefficients.

as a basis for model selection (Shen and Ye [20], Efron [4]). For this purpose,
an unbiased estimate of the degrees of freedom is sufficient. We illustrate the use
of Cp and BIC on the diabetes data in Figure 2, where the selected models are
indicated by the broken vertical lines.
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The rest of the paper is organized as follows. We present the main results in
Section 2. We construct model selection criteria—Cp or BIC—using the degrees
of freedom. In Section 3 we discuss the conjecture raised in [5]. Section 4 contains
some technical proofs. Discussion is in Section 5.

2. Main results. We first define some notation. Let µ̂λ be the lasso fit using
the representation (1.1). µ̂i is the ith component of µ̂. For convenience, we let
df (λ) stand for df (µ̂λ), the degrees of freedom of the lasso. Suppose M is a matrix
with p columns. Let S be a subset of the indices {1,2, . . . , p}. Denote by MS the
submatrix MS = [· · ·Mj · · ·]j∈S , where Mj is the j th column of M. Similarly,
define βS = (· · ·βj · · ·)j∈S for any vector β of length p. Let Sgn(·) be the sign
function: Sgn(x) = 1 if x > 0; Sgn(x) = 0 if x = 0; Sgn(x) =−1 if x =−1. Let
B = {j : Sgn(β)j &= 0} be the active set of β , where Sgn(β) is the sign vector of β
given by Sgn(β)j = Sgn(βj ). We denote the active set of β̂(λ) as B(λ) and the
corresponding sign vector Sgn(β̂(λ)) as Sgn(λ). We do not distinguish between
the index of a predictor and the predictor itself.

2.1. The unbiased estimator of df (λ). Before delving into the technical de-
tails, let us review some characteristics of the lasso solution (Efron et al. [5]). For
a given response vector y, there is a finite sequence of λ’s,

λ0 > λ1 > λ2 > · · · > λK = 0,(2.1)

such that:

• For all λ> λ0, β̂(λ) = 0.
• In the interior of the interval (λm+1,λm), the active set B(λ) and the sign vector

Sgn(λ)B(λ) are constant with respect to λ. Thus we write them as Bm and Sgnm

for convenience.

The active set changes at each λm. When λ decreases from λ = λm − 0, some
predictors with zero coefficients at λm are about to have nonzero coefficients; thus
they join the active set Bm. However, as λ approaches λm+1 + 0 there are possibly
some predictors in Bm whose coefficients reach zero. Hence we call {λm} the
transition points. Any λ ∈ [0,∞) \ {λm} is called a nontransition point.

THEOREM 1. ∀λ the lasso fit µ̂λ(y) is a uniformly Lipschitz function on y. The
degrees of freedom of µ̂λ(y) equal the expectation of the effective set Bλ, that is,

df (λ) = E|Bλ|.(2.2)

The identity (2.2) holds as long as X is full rank, that is, rank(X) = p.

Theorem 1 shows that d̂f (λ) = |Bλ| is an unbiased estimate for df (λ). Thus
d̂f (λ) suffices to provide an exact unbiased estimate to the true prediction risk of
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the lasso. The importance of the exact finite-sample unbiasedness is emphasized
in Efron [4], Shen and Ye [20] and Shen and Huang [18]. Our result is also com-
putationally friendly. Given any data set, the entire solution paths of the lasso are
computed by the LARS algorithm (Efron et al. [5]); then the unbiased estimator
d̂f (λ) = |Bλ| is easily obtained without any extra effort.

To prove Theorem 1 we shall proceed by proving a series of lemmas whose
proofs are relegated to Section 4 for the sake of presentation.

LEMMA 1. Suppose λ ∈ (λm+1,λm). β̂(λ) are the lasso coefficient estimates.
Then we have

β̂(λ)Bm = (XT
Bm

XBm)−1
(

XT
Bm

y− λ

2
Sgnm

)
.(2.3)

LEMMA 2. Consider the transition points λm and λm+1, λm+1 ≥ 0. Bm is the
active set in (λm+1,λm). Suppose iadd is an index added into Bm at λm and its
index in Bm is i∗, that is, iadd = (Bm)i∗ . Denote by (a)k the kth element of the
vector a. We can express the transition point λm as

λm =
2((XT

Bm
XBm)−1XT

Bm
y)i∗

((XT
Bm

XBm)−1 Sgnm)i∗
.(2.4)

Moreover, if jdrop is a dropped (if there is any) index at λm+1 and jdrop = (Bm)j∗ ,
then λm+1 can be written as

λm+1 =
2((XT

Bm
XBm)−1XT

Bm
y)j∗

((XT
Bm

XBm)−1 Sgnm)j∗
.(2.5)

LEMMA 3. ∀λ> 0, ∃ a null set Nλ which is a finite collection of hyperplanes
in Rn. Let Gλ = Rn \ Nλ. Then ∀y ∈ Gλ, λ is not any of the transition points, that
is, λ /∈ {λ(y)m}.

LEMMA 4. ∀λ, β̂λ(y) is a continuous function of y.

LEMMA 5. Fix any λ > 0 and consider y ∈ Gλ as defined in Lemma 3. The
active set B(λ) and the sign vector Sgn(λ) are locally constant with respect to y.

LEMMA 6. Let G0 = Rn. Fix an arbitrary λ≥ 0. On the set Gλ with full mea-
sure as defined in Lemma 3, the lasso fit µ̂λ(y) is uniformly Lipschitz. Precisely,

‖µ̂λ(y +%y)− µ̂λ(y)‖ ≤ ‖%y‖ for sufficiently small %y.(2.6)

Moreover, we have the divergence formula

∇ · µ̂λ(y) = |Bλ|.(2.7)
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PROOF OF THEOREM 1. Theorem 1 is obviously true for λ= 0. We only need
to consider λ > 0. By Lemma 6 µ̂λ(y) is uniformly Lipschitz on Gλ. Moreover,
µ̂λ(y) is a continuous function of y, and thus µ̂λ(y) is uniformly Lipschitz on Rn.
Hence µ̂λ(y) is almost differentiable; see Meyer and Woodroofe [14] and Efron
et al. [5]. Then (2.2) is obtained by invoking Stein’s lemma (Stein [21]) and the
divergence formula (2.7). !

2.2. Consistency of the unbiased estimator d̂f (λ). In this section we show
that the obtained unbiased estimator d̂f (λ) is also consistent. We adopt the similar
setup in Knight and Fu [12] for the asymptotic analysis. Assume the following two
conditions:

1. yi = xiβ
∗ + εi , where ε1, . . . , εn are i.i.d. normal random variables with mean

0 and variance σ 2, and β∗ denotes the fixed unknown regression coefficients.
2. 1

nXT X→C, where C is a positive definite matrix.

We consider minimizing an objective function Zλ(β) defined as

Zλ(β) = (β − β∗)T C(β − β∗) + λ

p∑

j=1

|βj |.(2.8)

Optimizing (2.8) is a lasso type problem: minimizing a quadratic objective func-
tion with an '1 penalty. There are also a finite sequence of transition points {λ∗m}
associated with optimizing (2.8).

THEOREM 2. If λ∗n
n → λ∗ > 0, where λ∗ is a nontransition point such that

λ∗ &= λ∗m for all m, then d̂f (λ∗n)− df (λ∗n)→ 0 in probability.

PROOF OF THEOREM 2. Consider β̂∗ = arg minβ Zλ∗(β) and let β̂(n) be the
lasso solution given in (1.1) with λ = λ∗n. Denote B(n) = {j : β̂(n)

j &= 0,1 ≤ j ≤
p} and B∗ = {j : β̂∗j &= 0,1 ≤ j ≤ p}. We want to show P(B(n) = B∗)→ 1.
First, let us consider any j ∈ B∗. By Theorem 1 in Knight and Fu [12] we
know that β̂(n) →p β̂∗. Then the continuous mapping theorem implies that
Sgn(β̂

(n)
j )→p Sgn(β̂∗j ) &= 0, since Sgn(x) is continuous at all x but zero. Thus

P(B(n) ⊇B∗)→ 1. Second, consider any j ′ /∈B∗. Then β̂∗j ′ = 0. Since β̂∗ is the
minimizer of Zλ∗(β) and λ∗ is not a transition point, by the Karush–Kuhn–Tucker
(KKT) optimality condition (Efron et al. [5], Osborne, Presnell and Turlach [15]),
we must have

λ∗ > 2|Cj ′(β
∗ − β̂∗)|,(2.9)

where Cj ′ is the j ′th row vector of C. Let r∗ = λ∗ − 2|Cj ′(β
∗ − β̂∗)| > 0. Now

let us consider rn = λ∗n − 2|xT
j ′(y−Xβ̂∗n)|. Note that

xT
j ′(y−Xβ̂∗n) = xT

j ′X(β∗ − β̂∗n) + xT
j ′ε.(2.10)
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Thus r∗n
n = λ∗n

n − 2| 1
nxT

j ′X(β∗ − β̂∗n) + xT
j ′ε/n|. Because β̂(n) →p β̂∗ and

xT
j ′ε/n →p 0, we conclude r∗n

n →p r∗ > 0. By the KKT optimality condition,

r∗n > 0 implies β̂(n)
j ′ = 0. Thus P(B∗ ⊇Bn)→ 1. Therefore P(B(n) = B∗)→ 1.

Immediately we see d̂f (λ∗n)→p |B∗|. Then invoking the dominated convergence
theorem we have

df (λ∗n) = E[d̂f (λ∗n)]→ |B∗|.(2.11)

So d̂f (λ∗n)− df (λ∗n)→p 0. !

2.3. Numerical experiments. In this section we check the validity of our ar-
guments by a simulation study. Here is the outline of the simulation. We take the
64 predictors in the diabetes data set, which include the quadratic terms and inter-
actions of the original ten predictors. The positive cone condition is violated on the
64 predictors (Efron et al. [5]). The response vector y is used to fit an OLS model.
We compute the OLS estimates β̂ols and σ̂ 2

ols. Then we consider a synthetic model,

y∗ = Xβ + N(0,1)σ,(2.12)

where β = β̂ols and σ = σ̂ols.
Given the synthetic model, the degrees of freedom of the lasso can be numer-

ically evaluated by Monte Carlo methods. For b = 1,2, . . . ,B , we independently
simulate y∗(b) from (2.12). For a given λ, by the definition of df , we need to evalu-
ate covi = cov(µ̂i, y

∗
i ). Then df = ∑n

i=1 covi /σ
2. Since E[y∗i ] = (Xβ)i and note

that covi = E[(µ̂i − ai)(y
∗
i − (Xβ)i)] for any fixed known constant ai . Then we

compute

ĉovi =
∑B

b=1(µ̂i(b)− ai)(y
∗
i (b)− (Xβ)i)

B
(2.13)

and df = ∑n
i=1 ĉovi/σ

2. Typically ai = 0 is used in Monte Carlo calculation. In
this work we use ai = (Xβ)i , for it gives a Monte Carlo estimate for df with
smaller variance than that given by ai = 0. On the other hand, we evaluate E|Bλ|
by

∑B
b=1 d̂f (λ)b/B . We are interested in E|Bλ|− df (λ). Standard errors are cal-

culated based on the B replications. Figure 3 shows very convincing pictures to
support the identity (2.2).

2.4. Adaptive model selection criteria. The exact value of df (λ) depends on
the underlying model according to Theorem 1. It remains unknown to us unless
we know the underlying model. Our theory provides a convenient unbiased and
consistent estimate of the unknown df (λ). In the spirit of SURE theory, the good
unbiased estimate for df (λ) suffices to provide an unbiased estimate for the pre-
diction error of µ̂λ as

Cp(µ̂) = ‖y− µ̂‖2

n
+ 2

n
d̂f (µ̂)σ 2.(2.14)
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FIG. 3. The synthetic model with the 64 predictors in the diabetes data. In the top panel we com-
pare E|Bλ| with the true degrees of freedom df (λ) based on B = 20000 Monte Carlo simulations.
The solid line is the 45◦ line (the perfect match). The bottom panel shows the estimation bias and
its point-wise 95% confidence intervals are indicated by the thin dashed lines. Note that the zero
horizontal line is well inside the confidence intervals.

Consider the Cp curve as a function of the regularization parameter λ. We find the
optimal λ that minimizes Cp . As shown in Shen and Ye [20], this model selec-
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tion approach leads to an adaptively optimal model which essentially achieves the
optimal prediction risk as if the ideal tuning parameter were given in advance.

By the connection between Mallows’ Cp (Mallows [13]) and AIC (Akaike [1]),
we use the (generalized ) Cp formula (2.14) to equivalently define AIC for the
lasso,

AIC(µ̂) = ‖y− µ̂‖2

nσ 2 + 2
n

d̂f (µ̂).(2.15)

The model selection results are identical by Cp and AIC. Following the usual
definition of BIC [16], we propose BIC for the lasso as

BIC(µ̂) = ‖y− µ̂‖2

nσ 2 + log(n)

n
d̂f (µ̂).(2.16)

AIC and BIC possess different asymptotic optimality. It is well known that AIC
tends to select the model with the optimal prediction performance, while BIC tends
to identify the true sparse model if the true model is in the candidate list; see
Shao [17], Yang [23] and references therein. We suggest using BIC as the model
selection criterion when the sparsity of the model is our primary concern.

Using either AIC or BIC to find the optimal lasso model, we are facing an
optimization problem,

λ(optimal) = arg min
λ

‖y− µ̂λ‖2

nσ 2 + wn

n
d̂f (λ),(2.17)

where wn = 2 for AIC and wn = log(n) for BIC. Since the LARS algorithm effi-
ciently solves the lasso solution for all λ, finding λ(optimal) is attainable in princi-
ple. In fact, we show that λ(optimal) is one of the transition points, which further
facilitates the searching procedure.

THEOREM 3. To find λ(optimal), we only need to solve

m∗ = arg min
m

‖y− µ̂λm
‖2

nσ 2 + wn

n
d̂f (λm);(2.18)

then λ(optimal) = λm∗ .

PROOF. Let us consider λ ∈ (λm+1,λm). By (2.3) we have

‖y− µ̂λ‖2 = yT (I−HBm)y + λ2

4
SgnT

m(XT
Bm

XBm)−1 Sgnm,(2.19)

where HBm = XBm(XT
Bm

XBm)−1XT
Bm

. Thus we can conclude that ‖y − µ̂λ‖2 is
strictly increasing in the interval (λm+1,λm). Moreover, the lasso estimates are
continuous on λ, hence ‖y− µ̂λm

‖2 > ‖y− µ̂λ‖2 > ‖y− µ̂λm+1‖2. On the other
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hand, note that d̂f (λ) = |Bm| ∀λ ∈ (λm+1,λm) and |Bm|≥ |B(λm+1)|. Therefore
the optimal choice of λ in [λm+1,λm) is λm+1, which means λ(optimal) ∈ {λm}.

!

According to Theorem 3, the optimal lasso model is immediately selected once
we compute the entire lasso solution paths by the LARS algorithm. We can finish
the whole fitting and tuning process with the computational cost of a single least
squares fit.

3. Efron’s conjecture. Efron et al. [5] first considered deriving the analytical
form of the degrees of freedom of the lasso. They proposed a stage-wise algorithm
called LARS to compute the entire lasso solution paths. They also presented the
following conjecture on the degrees of freedom of the lasso:

CONJECTURE 1. Starting at step 0, let mlast
k be the index of the last

LARS-lasso sequence containing exactly k nonzero predictors. Then df (µ̂mlast
k

) = k.

Note that Efron et al. [5] viewed the lasso as a forward stage-wise modeling
algorithm and used the number of steps as the tuning parameter in the lasso: the
lasso is regularized by early stopping. In the previous sections we regarded the
lasso as a continuous penalization method with λ as its regularization parameter.
There is a subtle but important difference between the two views. The λ value
associated with mlast

k is a random quantity. In the forward stage-wise modeling
view of the lasso, the conjecture cannot be used for the degrees of freedom of the
lasso at a general step k for a prefixed k. This is simply because the number of
LARS-lasso steps can exceed the number of all predictors (Efron et al. [5]). In
contrast, the unbiasedness property of d̂f (λ) holds for all λ.

In this section we provide some justifications for the conjecture:

• We give a much more simplified proof than that in Efron et al. [5] to show that
the conjecture is true under the positive cone condition.

• Our analysis also indicates that without the positive cone condition the conjec-
ture can be wrong, although k is a good approximation of df (µ̂mlast

k
).

• We show that the conjecture works appropriately from the model selection per-
spective. If we use the conjecture to construct AIC (or BIC) to select the lasso
fit, then the selected model is identical to that selected by AIC (or BIC) using
the exact degrees of freedom results in Section 2.4.

First, we need to show that with probability one we can well define the last
LARS-lasso sequence containing exactly k nonzero predictors. Since the conjec-
ture becomes a simple fact for the two trivial cases k = 0 and k = p, we only need
to consider k = 1, . . . , p − 1. Let (k = {m : |Bλm | = k}, k ∈ {1,2, . . . , (p − 1)}.
Then mlast

k = sup((k). However, it may happen that for some k there is no such
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m with |Bλm | = k. For example, if y is an equiangular vector of all {Xj }, then
the lasso estimates become the OLS estimates after just one step. So (k = ∅ for
k = 2, . . . , p− 1. The next lemma shows that the “one at a time” condition (Efron
et al. [5]) holds almost everywhere; therefore mlast

k is well defined almost surely.

LEMMA 7. Let Wm(y) denote the set of predictors that are to be included in
the active set at λm and let Vm(y) be the set of predictors that are deleted from the
active set at λm+1. Then ∃ a set Ñ0 which is a collection of finite many hyperplanes
in Rn. ∀y ∈Rn \ Ñ0,

|Wm(y)|≤ 1 and |Vm(y)|≤ 1 ∀m = 0,1, . . . ,K(y).(3.1)

y ∈Rn \ Ñ0 is said to be a locally stable point for (k , if ∀y′ such that ‖y′ −y‖ ≤
ε(y) for a small enough ε(y), the effective set B(λmlast

k
)(y′) = B(λmlast

k
)(y). Let

LS(k) be the set of all locally stable points.
The next lemma helps us evaluate df (µ̂mlast

k
).

LEMMA 8. Let µ̂m(y) be the lasso fit at the transition point λm, λm > 0. Then
for any i ∈Wm, we can write µ̂(m) as

µ̂m(y) =
{

HB(λm)

(3.2)

−
XT

B(λm)(X
T
B(λm)XB(λm))Sgn(λm)xT

i (I−HB(λm))

Sgni−xT
i XT

B(λm)(X
T
B(λm)XB(λm))Sgn(λm)

}
y

=: Sm(y)y,(3.3)

where HB(λm) is the projection matrix on the subspace of XB(λm). Moreover

tr(Sm(y)) = |B(λm)|.(3.4)

Note that |B(λmlast
k

)| = k. Therefore, if y ∈ LS(k), then

∇ · µ̂mlast
k

(y) = tr(Smlast
k

(y)) = k.(3.5)

If the positive cone condition holds then the lasso solution paths are monotone
(Efron et al. [5]), hence Lemma 7 implies that LS(k) is a set of full measure. Then
by Lemma 8 we know that df (mlast

k ) = k. However, it should be pointed out that
k − df (mlast

k ) can be nonzero for some k when the positive cone condition is vi-
olated. Here we present an explicit example to show this point. We consider the
synthetic model in Section 2.3. Note that the positive cone condition is violated on
the 64 predictors [5]. As done in Section 2.3, the exact value of df (mlast

k ) can be
computed by Monte Carlo and then we evaluate the bias k− df (mlast

k ). In the syn-

thetic model (2.12) the signal/noise ratio Var(Xβ̂ols)

σ̂ 2
ols

is about 1.25. We repeated the
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FIG. 4. B = 20000 replications were used to assess the bias of d̂f (mlast
k ) = k. The 95% point-wise

confidence intervals are indicated by the thin dashed lines. This simulation suggests that when the
positive cone condition is violated, df (mlast

k ) &= k for some k. However, the bias is small (the maxi-
mum absolute bias is about 0.8), regardless of the size of the signal/noise ratio.

same simulation procedure with (β = β̂ols,σ = σ̂ols
10 ) in the synthetic model and

the corresponding signal/noise ratio became 125. As shown clearly in Figure 4,
the bias k − df (mlast

k ) is not zero for some k. However, even if the bias exists, its
maximum magnitude is less than one, regardless of the size of the signal/noise
ratio, which suggests that k is a good estimate of df (mlast

k ).
Let us pretend the conjecture is true in all situations and then define the model

selection criteria as

‖y− µ̂mlast
k
‖2

nσ 2 + wn

n
k.(3.6)

wn = 2 for AIC and wn = log(n) for BIC. Treat k as the tuning parameter of the
lasso. We need to find k(optimal) such that

k(optimal) = arg min
k

‖y− µ̂mlast
k
‖2

nσ 2 + wn

n
k.(3.7)

Suppose λ∗ = λ(optimal) and k∗ = k(optimal). Theorem 3 implies that the models
selected by (2.17) and (3.7) coincide, that is, µ̂λ∗ = µ̂mlast

k∗
. This observation sug-

gests that although the conjecture is not always true, it actually works appropriately
for the purpose of model selection.
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4. Proofs of the lemmas. First, let us introduce the following matrix repre-
sentation of the divergence. Let ∂µ̂

∂y be a n× n matrix whose elements are
(
∂µ̂

∂y

)

i,j
= ∂µ̂i

∂yj
, i, j = 1,2, . . . , n.(4.1)

Then we can write

∇ · µ̂ = tr
(
∂µ̂

∂y

)
.(4.2)

The above trace expression will be used repeatedly.

PROOF OF LEMMA 1. Let

'(β,y) =
∥∥∥∥∥y−

p∑

j=1

xjβj

∥∥∥∥∥

2

+ λ

p∑

j=1

|βj |.(4.3)

Given y, β̂(λ) is the minimizer of '(β,y). For those j ∈ Bm we must have
∂'(β,y)
∂βj

= 0, that is,

−2xT
j

(

y−
p∑

j=1

xj β̂(λ)j

)

+ λSgn(β̂(λ)j ) = 0, for j ∈Bm.(4.4)

Since β̂(λ)i = 0 for all i /∈Bm, then
∑p

j=1 xj β̂(λ)j = ∑
j∈Bλ

xj β̂(λ)j . Thus the
equations in (4.4) become

−2XT
Bm

(
y−XBm β̂(λ)Bm

) + λSgnm = 0,(4.5)

which gives (2.3). !

PROOF OF LEMMA 2. We adopt the matrix notation used in SPLUS: M[i, ·]
means the ith row of M. iadd joins Bm at λm; then β̂(λm)iadd = 0. Consider β̂(λ)
for λ ∈ (λm+1,λm). Lemma 1 gives

β̂(λ)Bm = (XT
Bm

XBm)−1
(

XT
Bm

y− λ

2
Sgnm

)
.(4.6)

By the continuity of β̂(λ)iadd , taking the limit of the i∗th element of (4.6) as
λ→ λm − 0, we have

2{(XT
Bm

XBm)−1[i∗, ·]XT
Bm

}y = λm{(XT
Bm

XBm)−1[i∗, ·]Sgnm}.(4.7)

The second {·} is a nonzero scalar, otherwise β̂(λ)iadd = 0 for all λ ∈ (λm+1,λm),
which contradicts the assumption that iadd becomes a member of the active set Bm.
Thus we have

λm =
{

2
(XT

Bm
XBm)−1[i∗, ·]

(XT
Bm

XBm)−1[i∗, ·]Sgnm

}
XT

Bm
y =: v(Bm, i∗)XT

Bm
y,(4.8)
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where v(Bm, i∗) = {2((XT
Bm

XBm)−1[i∗, ·])/((XT
Bm

XBm)−1[i∗, ·]Sgnm)}. Rear-
ranging (4.8), we get (2.4).

Similarly, if jdrop is a dropped index at λm+1, we take the limit of the j∗th
element of (4.6) as λ→ λm+1 + 0 to conclude that

λm+1 =
{

2
(XT

Bm
XBm)−1[j∗, ·]

(XT
Bm

XBm)−1[j∗, ·]Sgnm

}
XT

Bm
y =: v(Bm, j∗)XT

Bm
y,(4.9)

where v(Bm, j∗) = {2((XT
Bm

XBm)−1[j∗, ·])/((XT
Bm

XBm)−1[j∗, ·]Sgnm)}. Rear-
ranging (4.9), we get (2.5). !

PROOF OF LEMMA 3. Suppose for some y and m, λ= λ(y)m. λ> 0 means m

is not the last lasso step. By Lemma 2 we have

λ= λm = {v(Bm, i∗)XT
Bm

}y =: α(Bm, i∗)y.(4.10)

Obviously α(Bm, i∗) = v(Bm, i∗)XT
Bm

is a nonzero vector. Now let αλ be the to-
tality of α(Bm, i∗) by considering all the possible combinations of Bm, i∗ and
the sign vector Sgnm. αλ depends only on X and is a finite set, since at most p

predictors are available. Thus ∀α ∈ αλ, αy = λ defines a hyperplane in Rn. We
define

Nλ = {y : αy = λ for some α ∈ αλ} and Gλ = Rn \ Nλ.

Then on Gλ (4.10) is impossible. !

PROOF OF LEMMA 4. For writing convenience we omit the subscript λ. Let
β̂(y)ols = (XT X)−1XT y be the OLS estimates. Note that we always have the in-
equality

|β̂(y)|1 ≤ |β̂(y)ols|1.(4.11)

Fix an arbitrary y0 and consider a sequence of {yn} (n = 1,2, . . .) such
that yn → y0. Since yn → y0, we can find a Y such that ‖yn‖ ≤ Y for all
n = 0,1,2, . . . . Consequently ‖β̂(yn)ols‖ ≤ B for some upper bound B (B is deter-
mined by X and Y ). By Cauchy’s inequality and (4.11), we have |β̂(yn)|1 ≤

√
pB

for all n = 0,1,2, . . . . Thus to show β̂(yn)→ β̂(y0), it is equivalent to show that
for every converging subsequence of {β̂(yn)}, say {β̂(ynk )}, the subsequence con-
verges to β̂(y). Now suppose β̂(ynk ) converges to β̂∞ as nk →∞. We show
β̂∞ = β̂(y0). The lasso criterion '(β,y) is written in (4.3). Let %'(β,y,y′) =
'(β,y)− '(β,y′). By the definition of β̂nk , we must have

'(β̂(y0),ynk )≥ '(β̂(ynk ),ynk ).(4.12)
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Then (4.12) gives

'(β̂(y0),y0) = '(β̂(y0),ynk ) +%'(β̂(y0),y0,ynk )

≥ '(β̂(ynk ),ynk ) +%'(β̂(y0),y0,ynk )
(4.13)

= '(β̂(ynk ),y0) +%'(β̂(ynk ),ynk ,y0)

+%'(β̂(y0),y0,ynk ).

We observe

%'(β̂(ynk ),ynk ,y0) +%'(β̂(y0),y0,ynk )
(4.14)

= 2(y0 − ynk )X
T (
β̂(ynk )− β̂(y0)

)
.

Let nk →∞; the right-hand side of (4.14) goes to zero. Moreover, '(β̂(ynk ),y0)→
'(β̂∞,y0). Therefore (4.13) reduces to

'(β̂(y0),y0)≥ '(β̂∞,y0).

However, β̂(y0) is the unique minimizer of '(β,y0), and thus β̂∞ = β̂(y0). !

PROOF OF LEMMA 5. Fix an arbitrary y0 ∈ Gλ. Denote by Ball(y, r) the
n-dimensional ball with center y and radius r . Note that Gλ is an open set, so we
can choose a small enough ε such that Ball(y0, ε)⊂ Gλ. Fix ε. Suppose yn→ y as
n→∞. Then without loss of generality we can assume yn ∈ Ball(y0, ε) for all n.
So λ is not a transition point for any yn.

By definition β̂(y0)j &= 0 for all j ∈B(y0). Then Lemma 4 says that ∃ an N1,
and as long as n > N1, we have β̂(yn)j &= 0 and Sgn(β̂(yn)) = Sgn(β̂(yn)), for all
j ∈B(y0). Thus B(y0)⊆B(yn) ∀n > N1.

On the other hand, we have the equiangular conditions (Efron et al. [5])

λ = 2
∣∣xT

j

(
y0 −Xβ̂(y0)

)∣∣ ∀j ∈B(y0),(4.15)

λ > 2
∣∣xT

j

(
y0 −Xβ̂(y0)

)∣∣ ∀j /∈B(y0).(4.16)

Using Lemma 4 again, we conclude that ∃ an N > N1 such that ∀j /∈ B(y0)
the strict inequalities (4.16) hold for yn provided n > N . Thus Bc(y0)⊆Bc(yn)
∀n > N . Therefore we have B(yn) = B(y0) ∀n > N . Then the local constancy of
the sign vector follows the continuity of β̂(y). !

PROOF OF LEMMA 6. If λ = 0, then the lasso fit is just the OLS fit. The
conclusions are easy to verify. So we focus on λ > 0. Fix an y. Choose a small
enough ε such that Ball(y, ε)⊂ Gλ.

Since λ is not any transition point, using (2.3) we observe

µ̂λ(y) = Xβ̂(y) = Hλ(y)y− λωλ(y),(4.17)
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where Hλ(y) = XBλ(X
T
Bλ

XBλ)
−1XT

Bλ
is the projection matrix on the space XBλ

and ωλ(y) = 1
2XBλ(X

T
Bλ

XBλ)
−1 SgnBλ

. Consider ‖%y‖< ε. Similarly, we get

µ̂λ(y +%y) = Hλ(y +%y)(y +%y)− λωλ(y +%y).(4.18)

Lemma 5 says that we can further let ε be sufficiently small such that both the
effective set Bλ and the sign vector Sgnλ stay constant in Ball(y, ε). Now fix ε.
Hence if ‖%y‖< ε, then

Hλ(y +%y) = Hλ(y) and ωλ(y +%y) = ωλ(y).(4.19)

Then (4.17) and (4.18) give

µ̂λ(y +%y)− µ̂λ(y) = Hλ(y)%y.(4.20)

But since ‖Hλ(y)%y‖ ≤ ‖%y‖, (2.6) is proved.
By the local constancy of H(y) and ω(y), we have

∂µ̂λ(y)

∂y
= Hλ(y).(4.21)

Then the trace formula (4.2) implies that

∇ · µ̂λ(y) = tr(Hλ(y)) = |Bλ|.(4.22) !

PROOF OF LEMMA 7. Suppose at step m, |Wm(y)| ≥ 2. Let iadd and jadd be
two of the predictors in Wm(y), and let i∗add and j∗add be their indices in the current
active set A. Note the current active set A is Bm in Lemma 2. Hence we have

λm = v[A, i∗]XT
Ay and λm = v[A, j∗]XT

Ay.(4.23)

Therefore

0 = {[v(A, i∗add)− v(A, j∗add)]XT
A}y =: αaddy.(4.24)

We claim αadd = [v(A, i∗add)−v(A, j∗add)]XT
A is not a zero vector. Otherwise, since

{Xj } are linearly independent, αadd = 0 forces v(A, i∗add)− v(A, j∗add) = 0. Then
we have

(XT
AXA)−1[i∗, ·]

(XT
AXA)−1[i∗, ·]SgnA

= (XT
AXA)−1[j∗, ·]

(XT
AXA)−1[i∗, ·]SgnA

,(4.25)

which contradicts the fact (XT
AXA)−1 is a full rank matrix.

Similarly, if idrop and jdrop are dropped predictors, then

0 = {[v(A, i∗drop)− v(A, j∗drop)]XT
A}y =: αdropy,(4.26)

and αdrop = [v(A, i∗drop)− v(A, j∗drop)]XT
A is a nonzero vector.
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Let M0 be the totality of αadd and αdrop by considering all the possible com-
binations of A, (iadd, jadd), (idrop, jdrop) and SgnA. Clearly M0 is a finite set and
depends only on X. Let

Ñ0 = {y :αy = 0 for some α ∈M0}.(4.27)

Then on Rn \ Ñ0 the conclusion holds. !

PROOF OF LEMMA 8. Note that β̂(λ) is continuous on λ. Using (4.4) in
Lemma 1 and taking the limit of λ→ λm, we have

−2xT
j

(

y−
p∑

j=1

xj β̂(λm)j

)

+ λm Sgn(β̂(λm)j ) = 0, for j ∈B(λm).(4.28)

However,
∑p

j=1 xj β̂(λm)j = ∑
j∈B(λm) xj β̂(λm)j . Thus we have

β̂(λm) = (
XT

B(λm)XB(λm)
)−1

(
XT

B(λm)y−
λm

2
Sgn(λm)

)
.(4.29)

Hence

µ̂m(y) = XB(λm)
(
XT

B(λm)XB(λm)
)−1

(
XT

B(λm)y−
λm

2
Sgn(λm)

)

(4.30)
= HB(λm)y−XB(λm)

(
XT

B(λm)XB(λm)
)−1 Sgn(λm)

λm

2
.

Since i ∈Wm, we must have the equiangular condition

Sgni xT
i

(
y− µ̂(m)

) = λm

2
.(4.31)

Substituting (4.30) into (4.31), we solve λm/2 and obtain

λm

2
= xT

i (I−HB(λm))y
Sgni−xT

i XT
B(λm)(X

T
B(λm)XB(λm))Sgn(λm)

.(4.32)

Then putting (4.32) back to (4.30) yields (3.2).
Using the identity tr(AB) = tr(BA), we observe

tr
(
Sm(y)−HB(λm)

) = tr
((XT

B(λm)XB(λm))Sgn(λm)xT
i (I−HB(λm))XT

B(λm)

Sgni−xT
i XT

B(λm)(X
T
B(λm)XB(λm))Sgn(λm)

)

= tr(0) = 0.

So tr(Sm(y)) = tr(HB(λm)) = |B(λm)|. !
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5. Discussion. In this article we have proven that the number of nonzero co-
efficients is an unbiased estimate of the degrees of freedom of the lasso. The un-
biased estimator is also consistent. We think it is a neat yet surprising result. Even
in other sparse modeling methods, there is no such clean relationship between the
number of nonzero coefficients and the degrees of freedom. For example, the num-
ber of nonzero coefficients is not an unbiased estimate of the degrees of freedom
of the elastic net (Zou [26]). Another possible counterexample is the SCAD (Fan
and Li [6]) whose solution is even more complex than the lasso. Note that with
orthogonal predictors, the SCAD estimates can be obtained by the SCAD shrink-
age formula (Fan and Li [6]). Then it is not hard to check that with orthogonal
predictors the number of nonzero coefficients in the SCAD estimates cannot be an
unbiased estimate of its degrees of freedom.

The techniques developed in this article can be applied to derive the degrees of
freedom of other nonlinear estimating procedures, especially when the estimates
have piece-wise linear solution paths. Gunter and Zhu [9] used our arguments to
derive an unbiased estimate of the degrees of freedom of support vector regression.
Zhao, Rocha and Yu [25] derived an unbiased estimate of the degrees of freedom
of the regularized estimates using the CAP penalties.

Bühlmann and Yu [2] defined the degrees of freedom of L2 boosting as the trace
of the product of a series of linear smoothers. Their approach takes advantage of
the closed-form expression for the L2 fit at each boosting stage. It is now well
known that ε-L2 boosting is (almost) identical to the lasso (Hastie, Tibshirani and
Friedman [11], Efron et al. [5]). Their work provides another look at the degrees of
freedom of the lasso. However, it is not clear whether their definition agrees with
the SURE definition. This could be another interesting topic for future research.
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