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whence it follows that
1@z Ifl
Thus the theorem of F. Riesz is proved.

We consider now a linear functional ¥ with domain Dy closed in H.
Then D, is a subspace of H and the theorem of F. Riesz asserts the existence
of a unique element g € Dy such that

(3) ¥(h)=(h,g) (heDy)
and

|¥lpe = lgl.

By means of (3), the linear functional ¥ may be extended to the whole
space H without increasing the norm.* Any other extension of the linear
functional ¥ to the whole space H increases the norm of the functional.
In fact, if @ is any extension of ¥ to the whole space, then

@ (h) =(h,f)
and
@ =IfI
For heDy,
(h,g) = (h,f)

so that f—g | D,. Because geDy,
IfIR=lglt+If—gl*

where there is strict inequality if / + g.

which implies that

17. A Criterion for the Closure in H of a Given System of Vectors

According to the definition in Section 8, a system M of vectors is
closed in H if it is possible to approximate each s e H to any degree of
accuracy by means of a linear combination of vectors belonging to M.

THEOREM: In order that the system M be closed in H, it is necessary
and sufficient that a linear functional ® in H which vanishes forallge M,
be identically equal to zero.

Proof: The necessity is an immediate consequence of the continuity
of the linear functional. In order to prove the sufficiency, let us assume that
the system is not closed. Then there exists 8 > 0 and a vector /, € H for
which

inf ||y — @18, — as8s—. .. —eagnl|=8>0  (g;eM).

n, ai

3 Since any linear functional can be extended to the whole space without increasing the norm,
one usually considers a linear functional as being defined on the whole space when the domain
is not specified.
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We denote by G the closed linear envelope of the system M. On the basis
of Section 6, there exists g € G such that

Ao — g Il = 8.

Let
f=hs—g.

Then f | G. Consider the functional @ defined by
®(h) =".f),

the norm of which is equal to ||f|| = 8 > 0. This nonzero functional
vanishes for each vector of G and, in particular, for each vector of M.
Thus, the sufficiency is also proved.

18. A Lemma Concerning Convex Functionals*

Definition: A real functional p(h) in H is said to be convex if

) p(f+8) = p(f) +p(g)
and
(2 plaf) =|a|p(f),
Jor f, g eH and any complex number a. _
From this definition it follows that p(0) = 0 and p(h) = 0.

LeMMA: If a convex functional p(h) is lower semicontinuous, i.e., if for
each hy € H and each & > 0 there exists & > 0 such that

p(h) — p(he) > — ¢
Jor |h — hyl| <3, then the convex functional is bounded, i.e., there exists
M > 0 such that
p(h) =M h|
Jor h e H.

Proof:® First, we prove that if the functional is not bounded in the
unit sphere (|| 4 || < 1), then it will not be bounded in the sphere S(p, g)
with center g € H and radius p > 0, where g and p are arbitrary. For,
assuming that p(h) < C for ||h — gl| <p, we find that

p(h —g) = p(h) + p( —g) =p(h) + p(g) <2C
for ||h —gll <p. Consequently, if

4 In this section we follow I. M. Gelfand [1].
® This proof does not require that H be a Hilbert space; it goes through if H is any Banach
space.
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then
s
P

for feS5(1, 0), so that the functional p(h) is bounded in the unit sphere. In
view of property (2) it is sufficient to prove that the functional p(h) is bounded
in the sphere S(1, 0). We assume the contrary. Then p(/) is unbounded in
every sphere. We choose a point f; €S(1, 0) such that p(f;) > 1. The
lower semicontinuity of the functional p(h) implies that there is a sphere
S(ps, /1) < S(1,0) with radius p, <  at all points of which p(h) > 1. Since
p(h) is unbounded in every sphere, there exists a point f; € S(p,, f;) and also
a sphere S(ps, f2) < S(py.f,) with radius p, <} p, in which p(h) > 2. Con-
tinuing this process, we get an infinite sequence of spheres,

S(l: 0) = S(Pl:.fl) > S(pﬁst) = SRR

for which pn <3p, ,, (n=1,2,3, ...;p,=1), and also ph) > n if
h €S(pn, fn). But the sequence of centers { f,}{ is fundamental and, there-
fore, converges to some element f. Then p(f) > n for each n, which is
impossible. Thus, the lemma is proved.

We remark that this lemma can also be formulated as follows: if a
convex functional is lower semicontinuous, then it is continuous.

CoROLLARY: Let pi(h), (k = 1,2, 3, ...) be a sequence of convex con-
tinuous functionals in H. If this sequence is bounded at each point he H,
then the functional

P(h) = sup pa(h)
is also convex and continuous.
Proof: That p(h) is a convex functional is evident. On the other hand,
for each 4, H and each = > 0, there exists N such that
p(ho) = pho) <.

Then there exists 8 > 0 such that

|2ah) = Prtha) | <5
for ||lh—hg| <8. But if [lh—h,|| <8 then

PU) = plho) > suppalh) — pi(ho) = 5 2 Pu(h) = plle) —> —=.
This implies that the functional p(h) is lower semicontinuous. It remains

only to apply the lemma, and the corollary is proved.
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We give two simple applications of the propositions just proved. We
know that each linear functional in L%(a, b) can be expressed in the form

b
(1) o) = [ o e (d

where ¢(t) is the function in L*a, b) which “‘represents” the functional
@(h). We shall prove that if a functional @(k) is defined everywhere in
L*(a, b) by means of formula (1), where ¢(¢) is some fixed function, then
this functional is necessarily linear, so that (f) belongs to L*a, b). In
other words we shall prove that if the integral (1) exists for each function
h(t)e L*a, b), then o(t)e L*a, b). This fact is a special case of a more
general theorem of F. Riesz.®

For the proof we denote by ex the set of all points 7 which belong to
the intersection of the intervals [a, b], [—n, n] and for which

le(] =n.

pulh) = [ 1 he)e(t) | di

Further let

This is a convex continuous functional in L*a, b). The quantity

p(h) —sup pa(h) = limpa(h) = [ | HO)9(0) ds

is finite for any /(z) € L¥(a, b). So, by the corollary of the lemma, the func-
tional p(h) is continuous, i.e., p(h) = M || h | for he H. But |®(h)| = p(h)
so that, since the homogeneity and additivity of the functional ®(k) are
evident, @(h) is a linear functional.

An analogous proposition is valid for the space /2. We restrict our-
selves to its formulation. Let a functional @( /) be defined everywhere in
[2 by means of the formula

o) =Lax (/=)

where {a,}° is some fixed sequence. Then

(2 ;Z':J a |* < oo,

¢ Riesz‘s theorem pertains to the space L” (a, b) for agy p>1. (The space L?(a, b) is defined

as the space of functions measurable in (a, ) for which _ﬂf(x) |Pdx exists). See F. Riesz [1].
a
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which implies that @( f) is a linear functional. In other words, if the series
«©0
D G X,
k=1
converges for each sequence {x,};° such that
e
Dolxlt < oo
k=1 :

then the inequality (2) must hold. This fact is a special case of a more
general theorem of E. Landau.?

19. Bounded Linear Operators

An operator T'is linear if its domain of definition D is a linear manifold

and if
T(af + Bg) = oTf + BTg
for any f, g e D and any complex numbers « and B.

We emphasize the fact that, in contrast with the definition of a linear
functional, this definition does not require that the operator be bounded.
This is related to the fact that many important operations of analysis such
as, for instance, the operation of differentiation, generate unbounded but
homogeneous and additive operators, i.e., operators which are linear in
the sense of the definition given here.

A linear operator T is bounded if

sup |ITf|| < oo.
JeDIf IS
The left member of this inequality is called the norm of the operator T
in D and is denoted by the symbol || T || or, sometimes, by || T ||p.

It is easy to see that the properties of Section 15 relating to linear
functionals are also valid for bounded linear operators:

1. The norm of a bounded linear operator 7 can be defined equivalently by

ITh= sup |TSfI :SUP@ -
FeD,lifll=1 rep |11l
2. A bounded linear operator is continuous.
3. If a linear operator is continuous at one point, then it is bounded.
4. The extension by continuity of a bounded linear operator T leads to a
unique linear operator with the same norm as the original operator.

” Landau’s theorem pertains to the space /7 forany p>1. (The space /7 is the space of numeri-
o
cal sequences x,, xa, . . . for which the series Y’ |x;|? converges.) See E. Landau [1].

= =
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5. If § and T are linear operators, then oS + BT, where « and 8 are com-
plex numbers, is a linear operator with the intersection Dg N Dy of the
domains Dg and D; as the domain of definition. Each of the products
ST and TS (cf. Section 14) is also a linear operator. If S and T are bounded
linear operators defined everywhere in H, then the operators ST and T'S
are also bounded linear operators defined everywhere in H, and

ISTIN=USI-1ITl, NTSN=UT]-NISI

20. Bilinear Functionals

We shall say that 2 is a bilinear functional defined in H,? if to each
pair of elements f, g€ H there corresponds a definite complex number

2(f,g), and
(@) oSy + aaf,8) = 1 2(f1,8) + a2 2(f3,8),
(b)  Q2(f,Bi8: + B:282) = B2 f,81) + BoSA 1, 82),

(c) sup [2(f.g)| < oo
IfI=1,lgh=1
An example of a bilinear functional is the scalar product ( f, g). The number
sup | R(£,8)]
IFI=s1, ligllst

is called the norm of the bilinear functional 2, and is denoted by the
symbol || 2]. It is not difficult to prove that
12(= sup [2Afg)| = supM ]
IWFl=1, ligl=1 WA Ngl
Therefore, for any f, g€ H,
(L) = 1Rl-1A-IIgl
A bilinear functional is a continuous function of each of its arguments,
since
12(£,8) — A fo, 8) | = | 2(f—So: 8 —80) + A S —f0, 80) + 2 fo, 8 —8o)| =
= 1210 {ILf—foll - llg —&oll +1Lf—=Soll -llgoll + Il foll-llg —goll}-
The following simple proposition is often useful.
THEOREM: If a complex scalar function w ( f, g) satisfies the conditions
(@) w(afi + aafs,8) =0y 0(f1,8) + e (fs,8),
(b)  @(f,Big1 + Bugs) = Biw(f.g1) + Bew (£, 82),
© lw(£NI=CISI7
@ (8=l

8 It is possible to introduce bilinear functionals which are not defined everywhere in H, but
in what follows they will not be considered.
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where C is a constant, f, f,, /3, g, &, & are arbitrary elements of H and a,,
as, By, By are arbitrary complex numbers, then w is a bilinear functional with
norm || = C.

Proof: 1t is immediately proved by means of (a) and (b) that®

w(f,h) + w(h,f) = ${a(f+ hf+ k) — o(f — h,f— h)}.

This implies that

(1) le(f,h) +w(h,f) | SEC{If+h 12+ f—hIZ=C{| f112+ k]2
Let |fll= 1,11kl = 1and h = Ag where A is a complex number such that
| A| = 1 (A will be specified later). Then (1) yields

2 |Ze( £, 8) + Ae(g,f)| < 2C.
We suppose that «( f, g) # 0 and, in accordance with (d), let

w(f,8) =|w(f,8)le”,  o(g.f) =|(f,8)|e".
Then, by (2),
|(f,8) |- | 2e™ + 2e®| < 2C.

Letting
28
A=¢ T,
we find that
, L @tB a8 aiB
" +Xf=e % +e T =2 °
which yields

le(£,®)=C  (IfI=Llgls1).
This proves the theorem, since this relation is also correct for (£, g) = 0.
CoROLLARY: If the bilinear functional Q satisfies the condition

121, 8) | = |2(g, )|,
Jor f,g€H, then
ey V2]
€2l %lg TR
Proof: By the theorem,
[L(/,/) |
1821l éf?ﬁ' N

but on the other hand

|2(£,.0) | 12(£,8)| _
e e A i

* From this equation and the analogous equation
w(il) —of) =5 {0 (f+ ihf+ i) —o(f—ih,f—ih)}

it follows by means of (c) that w is a bilinear functional with norm < 2C. But, by means of con-
dition (d), it is established that the norm of w does not exceed C.
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21. The General Form of a Bilinear Functional

THEOREM: Each bilinear functional 2 (f, g) has a representation of
the form
Af,8) = (41.8).
In this equation A is a bounded linear operator with domain H which is
uniquely determined by 2. Furthermore,
Al =14l

Proof: For fixed f, the expression 2 ( f, g) defines a linear functional
in g with domain H. Consequently, according to the theorem of F. Riesz
(cf. Section 16), there exists an element /4., uniquely determined by the
element f, for which

Q2(f,8) =(g.hy)

Af,8) = (b, 8)
for each ge H. Define the mapping A from H into H by the equation
Af=h, for feH. Then

or

Af,8)=(A1.8).
QAarfi + 02fs,8) = 01 2(f1,8) + 2292(f,8)

Since

we have
(A{arfy + aafo} — a1 Afy —as Afo,8) =0
for g eH. Since g is arbitrary,
A(arfi + asfs) = 1A fy + axd fy,
so that A4 is a linear operator. The domain of the operator 4 is the whole
space H. Furthermore, since

[(4f,2)| = I4f1l- gl

we have
|21, 8)I (41, 8)| AL
Q = = s —_—,
o = g T P
On the other hand
|[(Af,8)| (Af,Af) A fIl
Q = LS ¥as ) e —_—
Il =sup et = P P

These relations show that the operator A is bounded and that
[1£2]| = [|All.
The operator 4 is uniquely determined by the linear functional 2. In
fact, if
Af.8) =(47,8) =(47.8),
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for f, g € H, then
(Af - Af, g) =O.
But this is possible only for 4"'= 4",

22. Adjoint Operators

Let A be an arbitrary bounded linear operator defined on H. The

expression
(/. 4g)

defines a bilinear functional on H with norm | 4 |. According to the
theorem proved in the preceding section, there exists a unique bounded
linear operator A* defined on H with norm || 4* || = || 4 || such that

(6] (f, 4g) = (4*/.8)
for f, g e H. This operator A* is called the adjoint of A. It is easy to see
that the operator (4*)*= 4** is equivalent to the original operator A.

If A is bounded and 4* = A, then 4 is said to be self-adjoint. A bounded
linear operator A4, defined on H, is said to be normal if it commutes with
its adjoint, i.e., if

AR = A,
Let 4 and B be two bounded linear operators defined on H. Then
(ABf,8) = (Bf, A*g) = (f, B*4*g),
which implies that
(AB)* = B*A*.

Therefore, the product of two self-adjoint operators is self-adjoint if and
only if the operators commute.

THEOREM: If A is a bounded self-adjoint operator, then

sup [(4f,8)] Ep | (A1)

A1 =llgli=1

In other words,°
Al = max {|4],| A|}

A =sup(4f.f), A= inf(4f,f).

s
I1£lI=1 ifi=1
Proof: The bilinear functional

2f.8) =(A/.8)
|R(£,8)]=12(.f)|

Therefore, the corollary of the theorem of Section 20 applies and the
theorem is proved.

where

satisfies the condition

10 Translator’s Note: It follows from (1) that (4 £, /) is real for f € H if A is self-adjoint.
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23. Weak Convergence in H

We say that the sequence of vectors f,e H, (k = 1, 2, 3. . .) converges
weakly to the vector fand we write f;, 5 fif

lim (fo ) = (1)

for he H. The concepts of a weakly fundamental sequence and of weak
completeness are defined analogously. ;
If the sequence { f,};° converges to f in the sense of Section 3, i.e., if

lim || f, —fIl=0

k—»w

then we shall continue to write f, — f, but we shall say, to avoid confusion,
that the sequence converges strongly to f. Strong convergence implies
weak convergence, but not conversely. Indeed, let {e,};" be any infinite
orthonormal sequence of vectors in H. Since, for any A€ H,

S hedl s (hhy

(see Section 8), then for any ~€ H,
lim (e, &) = 0.

k—+w®
Thus, the sequence {e,}; converges weakly to the vector 0, but this sequence
does not converge strongly since
lex—elP=2 (i#k)
so that |le,—e;|| does not converge to zero as i, k — co. However, the
following theorem is valid.
THEOREM 1: If the sequence of vectors {f,}T converges weakly to the

vector [ and if

Emmllﬁ( I =11£1l,
then -

Pﬂlifa —flI=0,

i.e., the sequence {f,}7 converges strongly to the vector f.
Proof: The proof follows from the equation

I e =S 1 = /i I? — (fu ) — (SiSi) + ISR
Indeed, by the hypothesis of the theorem,

klitﬂ {Ifil? = (fis) — (S + 1 £} =0.

An important property of every weakly convergent sequence of vectors
is boundedness. The proof of this property does not present any difficulty
if the following general proposition is proved first.
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THEOREM 2: If the linear functionals ®,, ®,, D,, ..., defined on the
space H, have the property that the numerical sequence {®,(h)}7" is bounded
Jor each he H, then the sequence {||P.|} of the norms of the functionals is
bounded.

Proof: The proof follows almost immediately from the lemma con-
cerning convex functionals proved in Section 18. For ke H, let

pa(h) = | Pu(h) | n=123,...).

The pn are convex continuous functionals in H. By the lemma just men-
tioned, the convex functional

p(h) = sup pa(h)

is continuous, i.e.,
M =sup p(h) < oo.

[IKll = 1
Consequently,
| Pall = M n=12,3,..))

and the theorem is proved.
COROLLARY 1: Every weakly convergent sequence { f,}7 is bounded.
Proof: Each vector f, determines a functional @,(h) = (h, f;). Since
the sequence {f,};" converges weakly, the numerical sequence {®,(h)}
converges for each 4 € H and, hence, is bounded. It remains only to apply
Theorem 2 and to use the fact that

| Dell = Il frll-
COROLLARY 2: Every Hilbert space is weakly complete.
Proof: Let the sequence of vectors { f,}° be fundamental in the sense
of weak convergence, i.e., for each A€ H, let
lim (f, —f. h)=0.

m, n—=%0

It follows that the sequence of numbers ( f;, &) (k=1, 2, 3, . . .) converges
for each fixed e H. According to Theorem 2 the sequence {f,}? is
bounded:
Al =M e=4.23,...).
Therefore, the limit
lim (1, /)

defines a linear functional @(k) with norm < M. According to the repre-
sentation theorem of F. Riesz, @(h) = (h, f), where f'is a unique element
of the space H. This element is the weak limit of the sequence {f,}Z.

\
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24. Weak Compactness

A point set is said to be compact™ if every sequence belonging to it
contains a convergent subsequence. Corresponding to the two types of
convergence (strong and weak) are strong (or ordinary) compactness and
weak compactness. The concept of compactness is associated with the most
important theorem of elementary analysis — the Bolzano-Weierstrass
theorem. The conclusion of this theorem is false for a Hilbert space if the
theorem is stated in terms of strong convergence. To prove this, it is
sufficient to take the infinite orthonormal sequence of vectors e, s, €3, . . . .
This sequence is bounded, but none of its subsequences is strongly con-
vergent. In connection with what has been said, it may be surprising that
the following theorem holds.

THEOREM 1: Every bounded point set in H is weakly compact.

Proof: Let us take any sequence {g,}% of points such that, for some C,

llgell £ C < o0 =il 23 ),
Let L denote the linear envelope of the set {g,}, and let G = L be its
closure. Define F by

F=HoG.
Consider the numerical sequence
(1 (8,80, (k=1,23,..).
It is bounded because
(gugd)| S lgll-llgd s C (k=1,2,3,..).

Therefore, the sequence (1) contains a convergent subsequence. In other
words, {g,} ;" contains a subsequence {g,,}:, for which

lim (gla glk) _

k—m

exists. Similarily, from the boundedness of the numerical sequence

2 (g2 &11)
we conclude that {g,,}., contains a subsequence {gu}i-, for which

lim (g3, g24)

k—m

exists. Repeating this argument, we get an infinite sequence of sequences

811s 125 L1z -+ - >
8215 £225 L3y + - -
gals gaz; g33a s vy

~

diagonal sequence

11 Translator’s Note: This general concept is often called sequential compactness.



24, WEAK COMPACTNESS 47

8115 822, aay - -
has the property that, for each integer r
lim (gn gkk)

k—o

exists. Hence, it follows that
klim (8, 8
exists for each g € L and, therefore, for each g € G. If f€ F, then
(.f!gkk)=0) (k=1,2)3a)

Consequently,
Pm (/> 8xk)

exists for each f e F. Since H = F @ G, the results we have obtained imply
the existence, for each 4 € H, of

Elm (h) gkk)-

Therefore, the sequence {g,}:, is fundamental in the sense of weak con-
vergence. By the weak completeness of the space, this sequence converges
weakly to some element of H, and this proves our theorem.

THEOREM 2: For the weak convergence of the sequence of vectors
{8} 7" it is necessary and sufficient that :

1. the numerical sequence p

(gksf) (k =i 1:23 3!' . )
converge for each f of some set M which is dense in H; and
2. the sequence {g,}i-, be bounded, i.e, the inequality
gl £C < oo k= 120,70

hold for some C.

Proof: The necessity of condition 1 is evident. The necessity of con-
dition 2 is indicated by Corollary 1 of Theorem 2 of Section 23. We turn
to the proof of the sufficiency of the conditions mentioned. By Theorem
1 of the preceding paragraph, {g,};, has a weakly convergent subsequence
{gx}i21- Let g be the weak limit of this subsequence.

Then
lim (h, g&) = (5, 9) ’

According to condition 1 of the theorem,
lim (/, &)
exists for each fe M. Therefore,
lim (£, =(/,8)

for feM, and it remains to prove (we leave this to the reader) that this
equation holds if f/'is any element of H.
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25. A Criterion for the Boundedness of an Operator

THEOREM: Let A and A* be linear operators defined on H and assume
that
(41,8) = (f, 4%g)
Jor f, g €H. Then A is bounded, and A* is the adjoint of A.
Proof: We assume the contrary and suppose that there exists a
sequence of vectors { fi}° such that

Ifell=1, |Afill> k (k=1,2,3,...).
The expressions

(g! Afk) i ¢k(g) (k 5 ls2’ 3) .. -)
define linear functionals @, in H. Since

Qk(g) = (A*g!f;c) (k =1,2,3,.. -)9

the numerical sequence {®,(g)}7., is bounded. By Theorem 2 of Section
23, the sequence of norms | @, || (k = 1,2,3,...), ie., the sequence of
numbers [|Af.ll, is also bounded, which is a contradiction. Thus, the
theorem is proved.

An important special case of this theorem is due to Hellmger and
Toeplitz. We mention it in the following section.

26. Linear Operators in a Separable Space

In this section we shall consider linear operators defined everywhére
on a separable Hilbert space H. We show that bounded operators admit
matrix representations completely analogous to the well known matrix
representations of operators on finite dimensional spaces.

We choose any orthonormal basis {e,}{” in H and let!?

Aepmicy v il 1,2, 3554.)

and
(1) (Aey, e) = ay, (Lk=1,23,...).
Thus
Ck = 2 a;ké',- (k - 1,2, 3, . ® .).
i=1
Moreover,

3 |axl? < oo k=1,23,..).
i=1

12 We remark that if the operator A is not defined everywhere in H, but only on a set D which
is dense in H, then there exists in H an orthonormal basis {e,}?, the elements of which belong
toD
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We introduce the infinite matrix

Gy Gys Gyy ...

Gy Qg Ays . . .

Qg Qgp Qg3 ...
of which the elements of the kth column are the components of the vector
into which the operator 4 maps the kth coordinate vector. If the operator
A is bounded, then it is uniquely détermined by the infinite matrix (au)-
For the proof of this assertion it is necessary to show how to represent
the operator in terms of the matrix and the orthonormal basis {edv.
First, we have

A s s L 28 ik
i=1

Since the operator A is linear, it is well defined on the linear envelope of
the given basis, i.e., for all vectors each of which has only a finite number
of nonzero components relative to the basis. Since A is continuous, the
value of Af for an arbitrary vector f € H may be found by means of a passage
to a limit.

It is not difficult to write a simple formula for the components of
the vector f; indeed, if

2 f= kEI X
then
(3 Af =k§ykek,
where
4) Yy = ; Ay Xy
In fact, if
Jo= k?_,'l XiCrs
then &
Afn = I‘Zl e,
where

P = 'Z_:I QX
By the boundedness of the operator 4,
=(4f, &) =lim (4fn, &) = hm yi"’ = lim Z QX = ; Ay X,

n—so0 n—w j=1
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DEFINITION: If the operator A is defined everywhere in H and if its
value for any vector (2) is given by the formulas (3) and (4), then we say
that the operator A admits a matrix representation relative to the orthogonal
basis {e;}7.

Thus, we have proved that every bounded linear operator defined on
the entire space admits a matrix representation with respect to each ortho-
gonal basis. This is the analogue, mentioned at the very beginning of the
present section, between a separable Hilbert space and a finite-dimensional
space, with respect to bounded linear operators.

THEOREM: If an operator A, defined everywhere in a separable space
H, admits a matrix representation with respect to some orthogonal basis,
then it is bounded.

(This proposition is a frequently used special case of the theorem
of the preceding section, mentioned above, which is due to Hellinger and
Toeplitz).'®

Proof: By hypothesis, the series

(A.f’ek) =Eakx‘xi (k :la 2! 3! . -‘)
i=1
converges for each vector
f=kE| Xy

where {e;}° is the orthonormal basis, mentioned in the theorem, with
respect to which the operator A admits a matrix representation. Therefore,
by the theorem of Landau (see Section 18),

®) 2 lau* <o (k=1,23,...).
i=1
We introduce the sequence of vectors

C::f:&kiei (k:192:3s)

i=1
and by means of them, define the linear operator 4*. First, let
A%, =} (k=1,23..)
and then use linearity to define A* on the linear envelope of the set of
vectors e;. Finally, extend 4* by continuity to all of H. It is easy to prove
that for any f, g € H,
(41, &) = (f,4%g)
after which, to complete the proof, it remains to apply the theorem of
the preceding section.

13 E. Hellinger and O. Toeplitz [1].
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We shall not present all the details of the proof just outlined, but we
mention another proof of the theorem, which is based directly on the lemma
concerning convex functionals in Section 18. In view of inequality (5),
the expression

D.f) =;amx,- k=123,..)
defines a linear functional of

L o]
f= Exkek-
k=1

Therefore,

P = SN 0=123..)

defines a convex continuous functional of /. Since
’(Z;II P ? = k;l (Af.e) |* = 1411

the sequence {pa(f)},>., is bounded for each feH. On the basis of the
corollary of the lemma concerning convex functionals, the functional

P =sup palf) = limpu( )= | 191 = 14

is continuous, i.e., there exists a constant M such that

/ p(f) = M| fI.

But this implies that the operator A is bounded.
The proof of the theorem can be formulated also in the following
form: if for arbitrary numbers x,(k=1, 2, 3, . . .) such that

Z [ X |* < oo
k=1
-
2
k=1
holds, then there exists a constant M such that
3

o0
Eakr'xf
k=1 | i=1

This reduces to the theorem of E. Landau (see Section 18) if a,, = 0 for
k> 1.

Let us agree to write

the inequality

| 2
paR . ’ < oo
i=1

o0

2 2]
< MY | x|
k=1

A ~(ay)
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if the bounded linear operator A, defined everywhere in H, corresponds to
the matrix (a;) according to (1). Here the orthogonal basis {e,}; is arbi-
trary but fixed.

If

A ~ (ay), B ~ (by)
then, as is easily verified,
AB ~ (cy)

where

Cik =Z‘1amb,k (Lk=1,2,3,..5).

If we define matrix multiplication by means of this equation, then
AB ~ (a;) " (b,).
Furthermore, if

A~ (ay)
and
A* ~ (ay)
then
ay, =ay (,k=1,2,3,...).

Therefore, the condition that the bounded operator A4 be self-adjoint may
be expressed in the form

(6) @y = Ty
Matrices for which equation (6) holds are called symmetric or Hermitean.

A bilinear functional is generated by the operator 4 by means of the
equation

(Af.8) =k_ZI (;akixi 372

In this equation

f=X %8, - g=2 ne.
k=1 k=1

In the double sum appearing above it is possible to reverse the order of
summation, since the equation
(41,8) = (f,4%¢)
implies that
kzl(zlak:xi Vo = _El(k_zl Qi Pic) Xi +

From the inequality
(7 [(4f,8)l = MIfl-lgl
it follows that

Z 2 QX iPx

i=1 k=1

< M, [S1xl \[3 Il
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If each of the vectors fand g has only a finite number of nonzero com-
ponents, then the last inequality may be written in the form
P P q

® |5 Saen| sm [Ewe [Sine

THEOREM: In order that the matrix (ay) represent a bounded linear
operator defined everywhere in H, it is necessary and sufficient that, for some
constant M, the inequality (8) hold for any numbers x,,x,, . . ., x, and y,, ys,

e Yoo
Proof: If the operator A4 is bounded and
ay = (Adege) 0, k=1,2,35 .

then (7) implies (8). Now let (a,,) be a matrix which satisfies condition (8).

We shall show that this matrix determines a bounded linear operator A.
First, from (8) with

x1=X3=. Ve =xk~1=xk+l= & e =0,xk¢0,
h=nm=...=Vp1=Ves1 =Vas2=...=0
we get
Ea:kj’: =M iEU’flz .

This implies the convergence of the series

;aikj’i
for any sequence {y;};° in /2. Hence, the theorem of Landau (see Section
18) implies the convergence of the series

2 lanl? (k=1,2,3,...).
i=1
We define the operator A4,, first for the basis elements by the formula
Age, = aye, k=1,23,..),
i=1

and then, by means of linearity, for all vectors with only a finite number
of components different from zero. Now we prove that the operator 4,
is bounded. We have, by (8) for fand g with only finite number of nonzero
components,
9 [(Aofs8) | = MIfll-lIgll.
By the continuity of the scalar product, the inequality (9) is satisfied for
all g eH. Let
g=Af

Il Auf“2 = MHfH ' HAnf“

in (9) to get
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so that
| Aofll = M| f].
Thus, 4, is bounded. Extending 4, by continuity to the whole space H,
we get the bounded operator 4 and the correspondence
A ~(ay).
The theorem is proved.
We note that if the matrix (a;) is symmetric (Hermitean), i.e., if

Ay = Ay
then it is possible to replace the condition (8) by (see Section 22)
14
Z Ap X%y | = MZ’: 2 %
=1 i=1

We now give an example of the matrix representation of a bounded
linear operator. Consider the integral operator in L¥ — oo, oo) defined
by the formula

86 =4/() = [ K0/ @ dr

where the function X (s, #) is called the kernel of the operator. If the kernel
satisfies the condition

(10) H| K(s, 1) [*ds dt < oo,
it is called a Hilbert-Schmidt kernel, and the operator determined by it

is called a Hilbert-Schmidt operator. We suppose that the condition (10)
is satisfied. Then, for almost all # and u

J.lK(s,t)-K(s,u)]dsgr\/J]K(s,t){"dsJ f|K(s,u)|2ds.

But since

fflf(t)|°if(u)l ,\/J-JK(SI)Izds\/J‘fK(s u) |*ds dt du =
If(t)f/ [1x6, t)|2dsdt; <

flf(t)l*dtf f|K(s 1) |*dsdt < oo,

-0 —ab
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we have, by Fubini’s theorem,

gl = J fd.s'

2 li
|
4. B
J' ds _[ K(s,0)f (1) dt J K@, 0) /(@) du ’ <

- a0

J f f(0) [2dt J f f | K (s, ) [*dsdr .

We see that the Hilbert-Schmidt operator is bounded and that its norm
does not exceed the quantity

J J' J'u((s 1) |dsa.

- @ —-®©

f K(s, 1) f(t)dt

Let us take in L2 (— oo, o0) any complete orthonormal system of func-
tions {@,(7)};° and define

= ” K0 o) eu)dsdt  (k=1,2,3,..).
Choose any f (1) _esz(w oo, oo) and let
f fOwDdt=x, (k=1,23,..).
Then the Fourier coefficients
y,=fg(s)mats adadah . )
of the function . i
86) = [ K0/

are given by

= f T K(s,0f (1) 9(s) ds di =

=J‘f(z){ fK(s,:)mdssd: (i=1,2,3,...).
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But since

an  [Kena®d~Taw®  (=123,..)
and -
J(@) ”“glxk P(1),

we have, by the Parseval relation,

n=2mx  (i=123,..)).

In a similar way, it follows from relation (11) that
@ 2
fd: =3 | ot ):
k=1
But on the other hand, by the Parseval relation,

flK(s,t)l”ds=§;

fK(s,t)mds

j K(s, ) o(s)ds

and, therefore,

@

[[ 1k 12dsdr =3 | aue

LhWk=1
We see that each Hilbert-Schmidt operator is represented by a matrix
operator for which

i | @y |2 < oo
k=1

27. Completely Continuous Operators

Hilbert considered first the important class of completely continuous
operators. A linear operator 4 defined everywhere in H is said to be com-
pletely continuous if it maps each bounded point set into a set which is
compact in the sense of strong convergence.

A completely continuous operator 4 is bounded. In fact, otherwise
there would exist a sequence of points f; (k=1, 2, 3, . . .) for which
but this is impossible, since the point set {4f,}}° is compact.

Completely continuous operators have another definition: a linear
operator A defined everywhere in H is completely continuous if it maps
every weakly convergent sequence into a strongly convergent sequence.
The proof of the equivalence of these definitions we leave to the reader.
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We also leave to the reader the proofs of the following simple facts:
1. If A is a completely continuous operator and if B is a bounded
operator defined everywhere in H, then the operators AB and BA are

completely continuous.
2. If A, and A, are completely continuous operators, then

a; A, +aA, is a completely continuous operator.

THEOREM: If A is a bounded linear operator defined everywhere in H,
and if the operator A*A is completely continuoiis, then the operator A is
completely continuous.

Proof: Let M be any bounded infinite set of points f (| f|l = C). Let
{fJ7 be any sequence of elements of this set. This sequence is mapped
by the operator A*A into a strongly convergent sequence. Since

”Afﬂ == Ame‘.P = (A(fﬂ _fm)’ A (f" _fm)) =
=(A*A(fa — [ S0 —f) S | A*Afa — A* AL - | fo — Ll

we have
lim || A* Afa — A* Af,| =0
where '
s = Sl s 20.
Therefore,

m, n—»m

so that the sequence {Afy};° converges and the theorem is proved.
COROLLARY : If the operator A is completely continuous, then
the operator A* has the same property.
Proof: In fact, if the operator 4 is completely continuous, then the
operator AA*= (4*)*4* is completely continuous, and it remains only
to apply the theorem just proved.

28. A Criterion for Complete Continuity of an Operator

The following theorem is often used to prove that a given operator is
completely continuous.

THEOREM: If for each € > 0 there exists a completely continuous
operator A, such that

(A4 — A1l = el

for f €H then the operator A is completely continuous.

Proof: We choose a sequence of positive numbers € > & > ..
(lim e, = 0) and consider a sequence of completely continuous operators

n->o

A, A, . .. corresponding to it by the condition of the theorem. Let M
be an arbitrary bounded set of points f{/| /|| < C) in the space H. Let us
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take an arbitrary sequence { f,};° of points belonging to M. According to
the complete continuity of 4, there exists a subsequence

(l) fnsfmfm L

which is mapped by the operator 4, into a convergent sequence. From the
sequence (1) we select a subsequence

(2) .f!l! ﬂ%» faa, .

which is mapped into a convergent sequence by the operator 4,,. Continu-
ing this process, we get the infinite sequence of sequences

.flh.fl!:.flsi o)
fn:fzs,.f;as (R
fabfsssfaa» s

such that each is a subsequence of the preceding. The diagonal sequence

fn:fza,faas it

is mapped into a strongly convergent sequence by each of the operators 4,,.

We prove next that the diagonal sequence { fi;};-, is mapped into a con-

vergent sequence also by the operator 4. For this it suffices to prove that
3) lim || Afan— Afpml =0.

m, n—o

We have the inequality
| Afan — Afpumll = (A — Ae,) frnll + | Aey frn— Aey Sfrnmll +
+ (A — Ae,) fomll £ 26, C + | Ag, fan— A, frumll-

By taking k sufficiently large, we can make the term 2¢,C as small as
desired. After this, we can take N so large that the second term of the
last member is made as small as desired for m, n > N. Thus, the relation
(3) is proved.

We make use of the theorem just proved in order to establish the com-
plete continuity of the matrix operator defined by

Yi =kElaikxk (i 2 ls 2, 3 oy ')1
where

@) 3 lawlt < oo,
which implies the complete continuity of every integral operator with a
Hilbert-Schmidt kernel. From (4) it follows that
P @

lim 3 3 a.lt < e
prw =1 k=1
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Therefore, for each ¢ > 0 there exists an integer p = p(¢) such that
E E I Jkl

i=p+1 k=1

Now we construct the operator 4, with the aid of the relation

Af=ye; +yses+...+ e,

where
yz=iaikxk (!=l:29 3’)
k=1

if

[f= Zxkek-

k=1

Let

Af=_;y.-e.-
We have

147 —Aflt = 3 |yl =

0 o 2
7 E Z QX
i=p+1 k=1
It remains only to verify that the operator A4, is completely continuous.
Choose any bounded set of vectors in H. The operator 4, maps this set
into a bounded set in a finite-dimensional subspace of H, and this set is
compact by the classical Bolzano-Weierstrass theorem.
We emphasize the fact that the convergence of the series

@
kZ | @ [*

k=1

=S Slaulisfie < @lfe.
i=p+1 k=1

is only a sufficient, but not a necessary condition for the complete con-
tinuity of the matrix operator. In the special case when the numbers a;;
satisfy the relation

ay=0for|i—k|>r (i & =-12200%% )

for some fixed r, it is possible to specify a necessary and sufficient condition
for complete continuity. It is expressed by the relation

lim ay = 0.

i, k—
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For simplicity we sketch the proof only in the case with r = 1. In
this case, the matrix defining the operator has the form

e B30 070
71 a B, 0 0O

() 0 v ag B3 0 ...
00?3‘14134--

and is called a Jacobi matrix. Forr> 1 the matrix is called a generalized
Jacobi matrix. Let the operator A, determined by the matrix (5), be
completely continuous. Then the sequence of vectors

Ae,=pB;_,e;_ + 0;€; + Y€y
(Bo=0, i = Lad o

must converge strongly. Supposing that the matrix 4 does not satisfy the
condition in question, we select a sequence iy, iy, iy, . . . such that

i 2i_,+3
and
JBik—!lz o l“iklg P J?ik =35>0

where § < co. A simple computation yields
I Ae;, — A, JI* = | By |* + | @y |2 + [y, |2 +
+ B 2+ la;, |2+ | Vi [2—>28 7£0.

This contradicts the strong convergence of the sequence {Ae,} .
We now prove the sufficiency of the assertion. Let

a0, B, —0, >0 (k_*°°)

and let the sequence {f®}{ converge weakly to /. Because
i =kZ|x§;’) Aey zgxﬁ'd(ﬁk- 1€k-1 T ol + yep ) =
=kZI By + ap X + 3, 1) e (v0=0)

we have
4™ — f(rn) 2=

=kE:|| Bl — xm ) + o {oef— Xy 4 Vi1 {2 — X ) |2
343

k=1 k=g+1
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The first term on the right side tends toward zero for fixed g as m, n — co.
Therefore, it is sufficient to show that it is possible to make the second term
on the right side as small as desired for all m and » by taking ¢ sufficiently
large. But, if ¢ is sufficiently large and k > ¢, then

| Bel <& lae| <& |-l <e
Therefore,

o0
Z l| ﬁk{xfrc"ll—xﬁﬂ:} + o o _xﬁ(m)} 3 ?’k—l{xgc")-l *xgcm—)l} s

k=g+ i
< Qg2 Hf(n) _,f(m) Iz
Thus, our assertion is proved.

29. Sequences of Bounded Linear Operators

We distinguish three modes of convergence of a sequence {Ax};" of
bounded linear operators defined everywhere in H: weak convergence,
strong convergence (or, simply, convergence), and uniform convergence.
A sequence {An}}°

converges weakly to the operator 4 if for each fe H

42 A f2Af (n>o0)
converges strongly to the operator 4 if for each fe H

A,— A A, f—Af (n—>o0)
converges uniformly to the operator 4 if

A,— A 4, —A4l-0 (n—>c0)

If a sequence of operators converges uniformly, then it also converges
strongly; if it converges strongly, then it also converges weakly.

Using the results of Section 23 and the lemma about convex functionals
in Section 18, itis possible to prove the following proposition: if the sequence
{4z} of bounded linear operators defined everywhere in H converges
weakly, then the sequence {|4.l};° of the norms of these operators is
bounded.

We mention one more proposition, which is analogous to Corollary 2
in Section 23: if the sequence of bilinear functionals {2.( f, g)}° has the
property that for arbitrary f'and g the limit

Iin’;l?n (f,g)=w(f.2)
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exists and is finite, then this limit defines a bilinear functional. As is easily
seen, it is sufficient to prove that

lo(f,e)| =C <o
for||f]| = 1, g |l £ 1,and somenumber C. Each of the bilinear functionals
2u(/, g) is determined by a particular bounded linear operator:

O (/. 8) = (4uf, 8).

The hypothesis implies that the sequence of operators {4}y converges
weakly. Consequently, for f, ge H,

[(4ufs8)| = C | fI- gl
or equivalently,
|2 (£ CIf I lgl

le(f,8) | = Clfll-lgl.

Hence, it follows that



Chapter III

ROJECTION OPERATORS AND UNITARY
OPERATORS

30. Definition of a Projection Operator
Let G be a subspace of the space H and let

F=HogG,
o that
» - H=GoPF
T'hien each vector 4 e H is uniquely representable in the form
h=g+/

gy

where g €G and f'eF. In Section 7 the vector g was called the projection -
of h on G. The operator which maps each / € H into its projection g on G
is called the operator of projection on G or, simply, a projection operator.
It is denoted by Ps or sometimes, when the subspace G is specified in
dvance, by P. Thus, if g and 4 are related as above,

g=Ph=PGh.

7 A projection operator is evidently linear. In addition, it is bounded
and its norm is equal to one. Indeed, since the equation

§
i , ke =lgl? + £
. implies that ST
¢y) ‘ gl sllhl, —=> fe hii<l U
we have . _
Pl = L
But if 4 €G, then g = A, so that there can be equality in (1). Therefore,
IPll=1.

31. Properties of Projection Operators
"From the definition of a projection operator it follows easily that
) P2 =P,
2) P* = P.
Indeed, if P = P; then for an arbitrary A< H the vector g = Ph

belongs to G, so that Pg = g and P?h = Ph, and this implies that P* = P.
63
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In order to prove that P is self-adjoint, we choose two arbitrary vectors
hy, hoe H and let
h =g + fi, hs = g +/a

where g, = Ph, and g, = Ph,. Then

(&1, h2) = (81, £2) = (hy, g2),
so that

(Phy, hy) = (hls th)

for hy, hye H. This implies that P* = P,

From the properties just established it follows that

(Ph, h) =z 0.
In fact,
(Ph, h) = (P*h, h) = (Ph, P*h) = (Ph, Ph) = 0.

Now we prove that the properties 1), 2) characterize a projection
operator.

THEOREM: [f P is any operator defined on H such that, for arbitrary
hl, h2 € H’

() (Phy, hy) = (Phy, hy),

(2) (Phy, hy) = (hy, Phy)

then there exists a subspace G <= H such that P is the operator of projec-
tion on G.

Proof: The operator P is bounded. This follows from (2) and a
theorem in Section 25. However, it can be proved also by the following
simple argument. We have

| Ph|[* = (Ph, Ph) = (P%h, h) = (Ph, h)
and
| PRI = ||PhIl-|lAIl,
so that
I PRIl = |iA].
Thus, the operator P is bounded and its norm is not greater than 1. We
denote by G the set of all vectors g € H for which

Pg—gp.

Clearly, G is a linear manifold. We shall prove that G is closed so
that it is also a subspace. Let gne G (n = 1, 2, 3, .. .) and g» — g. Then
& = Pgn

and

Pg —gn = Pg — Pgn = P(g — gn),
so that

i.Pg —gnll =g =gall
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Let n — oo to get

IPg—gll =0,
so that

Pg=g.

Hence, g € G, which implies that G is closed. We must prove that P = Pg,
where Pg is the operator of projection on G. For each 4 € H, the vector
Ph belongs to G because P(Ph) = Ph. The subspace G also contains Pgh.
Therefore, it is sufficient to prove that

(Ph —Pgh,g) =0

(Ph, &) = (Psh, &)
for each g’ € G. But this follows from the equations
(Ph,g") = (h,Pg) = (h,g'),
(Pgh,g") =(h,Psg)=(hg).
To conclude the present section, we remark that if G is a subspace and

E is the identity operator, then E — P is the operator of projection on
HoG.

or

32. Operations Involving Projection Operators

In the present section we shall prove a few simple propositions concern-
ing the multiplication, addition and subtraction of projection operators.

THEOREM 1: The product of two projection operators Pg and Pg, is
also a projection operator if and only if Pg_and Pg, commute, i.e., if

PG,PG, =PG|PGI'
In this case,
PG.PG, =PG’
where G = G, N G,.!

Proof: First, let the product be a projection operator. Then
Pg P, = (P Pg)* = P& P§ = Pg Pg,.
Fix he H arbitrarily and let
g =Pg Pgh =PsPgh.

By the first representation ge G, and, by the second, ge G,. Hence
g€G, NG, If heG, NG, then Pg Pch = h. Thus, one half of the
theorem is proved. Now assume that P; and Pg, commute. Let

PG,PG|=PG,PG1 =P.

1 A geometrical implication of the commutativity of the operators PG, and PG, is that the sub-
spaces G;© (G; N Gy) and G; © (G; N G,) are orthogonal.
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It follows that

P*=(Pg,P;,)* = Pg P PG Pg, = Pg Ps P Pg,=PgPg, =P
and
(Phl, hz) = (PG,PG. hh hs) = (PG. hls PG, hz)
= (hy, PG. PG. hs) = (hy, Pc-. PG, hs) = (hy, Phy).
These equations show that the operator P = P P, satisfies the conditions
of the theorem of the preceding section. Therefore, it is a projection

operator.
COROLLARY: Two subspaces G, and G, are orthogonal if and only if

P, P, =0.
THEOREM 2: A finite sum of projection operators
Pg +Pg, +...+Pg,=Q (n < o0)
is a projection operator if and only if
PgPg, =0 (i#k)

i.e., if and only if the spaces G; (j = 1,2, 3, . . ., n) are pairwise orthogonal.
In this case
Q =P,
where
G=G;9G;®...®DGn.

Proof: If the spaces G; are pairwise orthogonal, then Q% = Q, and,
therefore, the sufficiency of the condition is evident. The last part of the
assertion of the theorem is also evident. It remains only to prove the
necessity of the condition. Let Q be a projection operator. Then

I£12 2 (Qf.1) =jZI(PG,f,f) 2 (Pe.f.f) + (P, 1of)
for any pair of distinct indices i and k. From this relation it follows that

I1Pe f1? + | Pg, f1* S I F1I1%
In this inequality let
S =Pgh.
Then
P, Pgh|* + | Pg k|2 < || Pg |2
which yields
“PG-‘PGkh Il =0
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forhe H. Thus,
PGtPGk = O

so that the spaces G; and G, are orthogonal.
THEOREM 3: The difference of two projection operators,
(l) P, G, —P Gy

is a projection operator if and only if Gy < G,. In this case Pg, — Pg, is the
operator of projection on G, © G,.

Proof: In view of the remark at the end of the preceding section,
we attempt to find conditions for which the difference

Q=E—(PG,“PG.)
is a projection operator. Since the equation
Q=(E—Pg) +Pg,

represents Q as the sum of two projection operators, it follows from
Theorem 2 that
(E —Pg)P;,=0
or, equivalently,
2 Pg, = Pg, Pg,.
If g € G, then
8§=Psg=PgPsg =P8,

so that g e G,. Since every element g € G, belongs to G,, we have G, <G;.
This condition, which can be expressed in the form of (2), is necessary
and sufficient in order that the difference (1) be a projection operator.
It remains only to characterize the space G on which the operator (1)
projects. The operator Q projects on

[Ho Gi]® G..
Hence, the operator (1) projects on
3 Ho {[Ho G,]® G},

i.e., on the subspace of vectors orthogonal both to G, and to H © G,.
Since this subspace consists of all the vectors of G, which are orthogonal
to G,, it is the subspace

@ G, © G,.

We notice that the difference (4) can be obtained directly from (3) by
formally removing the brackets.
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33. Monotone Sequences of Projection Operators

We shall prove that the relation G, < G, is equivalent to the inequality

(1) | Pg,f 1l = I Pg fll
for all feH. The inequality (1) is evidently equivalent to
(P, /) = (Ps, /of)

or
({Pg, —Ps}f,f) =0
for feH. The last two inequalities are generally expressed by
P G _S_ P G,*
Thus, we wish to prove that the relation G, < G, is equivalent to the
relation P, < P;. This will permit us to introduce for consideration

monotone sequences of projection operators.
First, let G, = G,. Then it follows that

Pg, = P Pg,.
Therefore, for each f € H,
PG.f:“PG.PGlf
and
@) I Pg, fll £ 1| Pg, fIl.
Conversely, assume (2) for each f€ H. Consider
JS=(E—Pg)h,

where 4 is an arbitrary element of H. From (2) and
Po(E — Pg)h =0,

we obtain
P (E—Pg)h =0
or
Pgh = Pg Pgh.
Since this equality holds for each # € H,
Pg, =Pg,Pg,,

so that G, = G,. This completes the proof.

THEOREM: If Pg, (k = 1,2,3,...) is an infinite sequence of pro-
Jection operators and if Pg, < Pg, w1 (k=1,2,3,..)), then, as k - oo,
Pg, converges strongly to some projection operator P.

Proof: For m < n the difference P;, — Pg,, is a projection operator.
Therefore, for each feH,

() IPg,f—Pg, fI2=(Pg, —Ps,)fI* =
({Pg, — P, } [,1) =P, fI* — || Pg, fII2.
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Since, for fixed f, || P, f II* increases with k but is bounded above by || f12,
it has a finite limit. Hence, the right member of (3) tends to zero and the
sequence {Pg, f}.., is fundamental in the sense of strong convergence.
By the completeness of the space there exists the strong limit

S*=lim Pg,f.

n—©

We define the operator P by
f*=Pf,

feH. The operator P is obviously linear. Since

(Pka;PGkg) = (Pka;g) = (f;PGkg)
a passage to the limit yields

(Pf,Pg) =(Pf,8) =(f,Pg).
Therefore,
P =P*=p2

so that P is a projection operator.

34. The Aperture of Two Linear Manifolds®

The present section is devoted to a concept which was introduced by
B. Nagy and, independently of him, by M. G. Krein and M. A. Krasno-
selski.®

DEFINITION: The aperture of two linear manifolds in H is defined as
the norm of the difference of the operators which project H on the closures
of these two linear manifolds.

The aperture of the linear manifolds M; and M, is denoted by the
symbol &(M,;,M,). Thus,

@(Mls M:) = ”PI —Pa” = ”Pa "Pl ",
where P,, P, are the operators of projection on the closed linear manifolds
(subspaces) M,, M,, respectively. From the definition of aperture it follows

that
@(Ml’ Mz) = 6(M1’ Mz) = 6(H S Mb Ho Mz)-

Consider the identity
Pg_P1=Pg(E_P1)—(E—P3)P1.
2 The results of this paragraph are necessary only for the construction of the theory of sym-

metric extensions (Chapter 7).
3 M. G. Krein and M. A. Krasnoselski [1], B. Sz. Nagy [2].



