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242 VI. COMPLETELY CONTINUOUS SYMMETRIC TRANSFORMATIONS

TRANSFORMATIONS WITH SYMMETRIC KERNEL

97. Theorems of Hilbert and Schmidt

Let us apply the theory of completely continuous symmetric transfor-
mations to the particular case of a transformation 4 of the functional space
L?(a, b) which is generated by a symmetric or Hermitian kernel A(x, y), that

1s, a kernel such that
A(x, y) = A(y, x),

which belongs to the space L2 of square-summable functions in the plane
domaina < x < b, a<y < b. By the remark made in Sec. 69, the transfor-
mation 4 can not be zero for all the elements of L2 unless the kernel A (x, y)

uéself is zero almost everywhere. Therefore we have the

THEOREM. [f the kernel A(x, y) 1s not zero almost everywhere, the transfor-
mation A _has a least one characteristic value different from O, and each of its
characteristic values is of finite multiplicity. There is an orthonormal sequence
(finite or wnfinite) of characteristic functions @,(x) of A corresponding to the
characteristic values u, == 0, and every function g(x) belonging to L® admits the
development, convergent in the mean:

(18) g% = h(x) + 3 (g, #)pi(x)
where h(x) 1s a function (depending on g(x)) such that Ah(x) = 0; consequently,
(19) Ag(x) = 2 uig, @) @i(x).

We shall complete this theorem by several statements which are peculiar
to the transformations being considered.
Since the functions

Pi(x, ) = @u(x)p:(y) t=12...)
form an orthonormal systefn in L2, the series

Z (4, D)P,(x, )

converges in the mean to some function S(x, y) belonging to L% We have
_ b b it
(4, D) = [[A(x, V)PV)pi(x)dxdy = (Ag,, P:) = Wy,
a a

hence
S(x, y) = Z p; Dy(x, y).

For any fand gin L2, the product F(x, y) = g(x)f(y) belongs to L2 and we have
(S, F) = 3 u/(a,, F).
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On the other hand, since 44 = 0 implies (4f, k) = (f, Ah) = 0, (18) furnishes:
(41, 8) = 2 (4], 9)) (9. g) = 2 (f A (@a, g) =2 w(f, @) (@ B

i 1

hence

(4, F) = (4f, g) = 2, u(®,, F),

and consequently
(4, = {5 F)

The difference A(x, ¥) — S(x, y) is therefore orthogonal to all these functions
F(x,y) and hence also to all the kernels of finite rank, and since these are
everywhere dense in L2 it follows that A(x,y) — S(x, y) = 0 almost every-
where. From this we have the

THEOREM.” Every function A (x y) which is symmetric and square-
summable can be developed; in the sense of convergence in the mean, into the series

(20) Az, y) = 2 mod2)ey),

where {@,(x)} denotes the orthonormal sequence of characteristic functions, and
{u} the sequence of corresponding characteristic values, of the transformation A
generated by the kernel A(x, ).

It follows in particular that _
(21) lA(x ) F = 3 2,

and further, denoting by Sy(x, y) the N-th partial sum of the series (20),
that

|A(%,y) — Sy 9E = 4

i>N

Up to now we have made no hypothesis concerning the arrangement
of the characteristic values u,. If they are arranged in such a way that their

absolute values form a nondecreasing sequence, that is,

el 2 el 2 il e

the partial sum Sy(x, y) which is obviously a kernel of finite rank, possesses
a remarkable minimum property:

For every symmetric kernel Ay(x,y) of rank N, we have
14(x, y) — An(x, 9] 2 14(x, y) — Sy(x, )]

In fact, since the number of characteristic values of 4, which are different
from 0 is at most equal to N, the characteristic value of degree p + N of

"E. Scumipt [1].
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A= (A —Ay) + Ay, that is, u,, y, can not exceed in absolute value the
characteristic value of degree p of 4 — A,, which we shall denote by T
(see Sec. 95, inequality (14)). Applying relation (21) to A — A, instead of A4,
we obtain
lA e ANF = Z Xi - Z fu'i-ﬂ\' s IA TR S;Vlz'
p=1 p=1

which was to be proved.

Let us return to the development (19), which is valid in the sense of con-
vergence in the mean for all functions of the form

Ag(x) = jA (%, )g()dy.

It is important to know if, in certain cases, this development is also con-
vergent in the ordinary sense or even absolutely and uniformly convergent.
This will be the case in particular if there exists a constant C such that

(22) S14(x, )2y < C?

for all.values of x. (Example: A(x,y) = |x — y|™% e < }.)

In fact, condition (22) implies that if the sequence {f,(x)} converges
in the mean to f(x), its transform, {4f,(x)}, converges uniformly to Af(x),
since

[4f(x) — Af ()12 = | [ A(%, 9) [[3) — Fu)]dy]® <

< [14( ) 2dy - [11) — 100y < CPIIf — LI

But since the development (18) is convergent in the mean, development (19),
which is derived from it by applying the transformation A4 to both sides, is
uniformly convergent in the interval a < x < b.

Moreover, the convergence of development (19) is also absolute, that is,
we can rearrange it in any arbitrary manner. In fact, ordinary convergence is,
as we have just established, a consequence of mean convergence; but since
mean convergence of a series with orthogonal terms Xy, is equivalent to
the convergence of the numerical series with non-negative terms X||y,]|2, i
does not depend on the arrangement of its terms.

Thus we have obtained the

THEOREM. If the symmetric kernel A(x,y) satisfies condition (22), the
development (19) converges absolutely and uniformly, whatever the function g(x)

belonging to L2
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98. Mercer’s Theorem

Development (20) of the kernel A(x, y) is not necessarily uniformly convergent,
even for continuous A(x, y). However, for an important class of continuous kernels
the convergence is uniform. We have namely the theorem of Mercer [1]:

THEOREM. If the t:;msformatian A genmevaled by the comlinuous symmetric kernel
A(x, y) is positive, that is, if (Af, f) = O for all §, or, equivalently, if all the characteristic
values p; # O arve positive, the development (20) is uniformly convergent.

“This theorem extends immediately to the case where all but a finite number of the
#; # 0 are of the same sign, positive or negative.
We observe tirst that since the kernel A4 (x, y) is continuous, all the image functions

b
Af(x) = [A(x y)f(y)dy

are continuous; therefore, in particular, all the characteristic functions g,(¥) = Agpi(x)
are continuous. Consequently the ‘‘remainders’ g
n
Anlx.y) = Alx.9) = 2, ni9i(x)7,0) (n=12..),
i=1

are also continuous functions. Since we have

Az, y) = 2 mgil®)g:7)

i=n+l

in the sense of mean convergence, it follows that

b b i) s
(23) ‘ S Az W) F)dxdy = 2 ulee f) (@) 2 0
aa f==n4

for every element f of L2
From this we deduce that 4,(x, ¥) =0. In fact, if we had 4,(x,, x,) < 0, we should
have by continuity 4,(r, y) < 0 in a neighborhood

X —O0<x<x+0, g—d<y<x+46

of the point (x,, x,). Setting f(x) = 1 for 2, — 6 < x < x, + d and f(x) = O elsewhere,
integral (23) would become negative, a contradiction.
Hence we have

n
Anlx. %) = A(%, %) — 2 u@(#)ps(x) = O
i=1
for » = 1, 2, .... From this we conclude that the series of positive terms
s g (%) py(x)
i=1

is convergent and that its sum is < A4(z, #). Denoting by M the maximum of the con-
tinuous function A4(x, #), we have by Cauchy's inequality:

@) I Z ppwb) P < 2 pl o B S o) 1P < M D g ol

i=m i=m i=m i=7m
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From this it follows that the series
(25) 2 1:2:(%)9:(7)
i=1
converges, for every fixed value of x, uniformly in y; its sum B(x, ¥) is therefore a con-

tinuous function of y, and for every continuous function f(¥) we have

b e b
Bz y){y)dy = Zi 1:@i(®) [ @) (v)dy.

a

Now by one of the theorems proved in the preceding section, the series in the second
member converges to Af(x). Hence we have

b
[ [Bix, ) — A(x, ))f(y)dy = 0;

setting in particular f(y) = B(x, y) — A(x, y) (for a fixed value of x), it follows that
B(x,y) — A(x,y) = 0 for a < y < b, hence

(==]
A(x, ) = B(z, 2) = Zl i | @i(x) |
1=
Since the terms of this series are positive continuous functions of » and its sum
A(x, x) is a continuous function, it follows from a known theorem of Dint that the series
converges uniformly. Applying Cauchy’s inequality (24) again, we deduce from this that
series (25) converges uniformly with respect to its two variables x and y simultaneously,
which was to be proved.
Whatever be the continuous symmetric kernel A(x, y), its iterate

b
Ay(x, y) = [A(x, 2)A(z, y)dz

i1s continuous and of positive type. In fact,

(A ], ) = (A%, ) = (4}, Af) = O.

The characteristic functions @,(x) of 4 are also characteristic functions for 42, but they
correspond to the squares of the characteristic values u; of 4:

A2, = A(Ap;) = A(p,p;) = uip;.

The sequence u2, 42, ... contains all the characteristic values of A2 different from O,
each as many times as its multiplicity indicates. If not, there would be a characteristic
function ¢ corresponding to a characteristic value u % 0O of 42 and orthogonal to all the g,.
This would be in contradiction to the fact that

(== ] oo (==}
pp = A = D (A%, p)p; = O, (¢, A%0)p; = Zlﬂ%(qo. e = 0.
i=1 i=1 =

By the theorem of Mercer we therefore have, for the iterate of an arbitrary con-
tinuous kernel A(x, y), the uniformly convergent development:

Au(x, y) = 2, 13od2) ().

i=1



