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We provide a principled way for investigators to analyze randomized
experiments when the number of covariates is large. Investigators
often use linear multivariate regression to analyze randomized exper-
iments instead of simply reporting the difference of means between
treatment and control groups. Their aim is to reduce the variance of
the estimated treatment effect by adjusting for covariates. If there are
a large number of covariates relative to the number of observations,
regression may perform poorly because of overfitting. In such cases,
the least absolute shrinkage and selection operator (Lasso) may be
helpful. We study the resulting Lasso-based treatment effect estima-
tor under the Neyman–Rubin model of randomized experiments. We
present theoretical conditions that guarantee that the estimator is
more efficient than the simple difference-of-means estimator, and
we provide a conservative estimator of the asymptotic variance,
which can yield tighter confidence intervals than the difference-of-
means estimator. Simulation and data examples show that Lasso-
based adjustment can be advantageous even when the number of
covariates is less than the number of observations. Specifically, a
variant using Lasso for selection and ordinary least squares (OLS)
for estimation performs particularly well, and it chooses a smooth-
ing parameter based on combined performance of Lasso and OLS.

randomized experiment | Neyman–Rubin model | average treatment
effect | high-dimensional statistics | Lasso

Randomized experiments are widely used to measure the ef-
ficacy of treatments. Randomization ensures that treatment

assignment is not influenced by any potential confounding fac-
tors, both observed and unobserved. Experiments are particu-
larly useful when there is no rigorous theory of a system’s
dynamics, and full identification of confounders would be im-
possible. This advantage was cast elegantly in mathematical
terms in the early 20th century by Jerzy Neyman, who introduced
a simple model for randomized experiments, which showed that
the difference of average outcomes in the treatment and control
groups is statistically unbiased for the average treatment effect
(ATE) over the experimental sample (1).
However, no experiment occurs in a vacuum of scientific

knowledge. Often, baseline covariate information is collected
about individuals in an experiment. Even when treatment as-
signment is not related to these covariates, analyses of experi-
mental outcomes often take them into account with the goal of
improving the accuracy of treatment effect estimates. In modern
randomized experiments, the number of covariates can be very
large—sometimes even larger than the number of individuals in
the study. In clinical trials overseen by regulatory bodies like the
Food and Drug Administration and the Medicines and Health-
care products Regulatory Agency, demographic and genetic in-
formation may be recorded about each patient. In applications in
the tech industry, where randomization is often called A/B
testing, there is often a huge amount of behavioral data collected
on each user. However, in this “big data” setting, much of these
data may be irrelevant to the outcome being studied or there
may be more potential covariates than observations, especially
once interactions are taken into account. In these cases, selection

of important covariates or some form of regularization is nec-
essary for effective regression adjustment.
To ground our discussion, we examine a randomized trial of

the pulmonary artery catheter (PAC) that was carried out in 65
intensive care units in the United Kingdom between 2001 and
2004, called PAC-man (2). The PAC is a monitoring device
commonly inserted into critically ill patients after admission to
intensive care, and it provides a continuous measurement of
several indicators of cardiac activity. However, insertion of PAC
is an invasive procedure that carries some risk of complications
(including death), and it involves significant expenditure both in
equipment costs and personnel (3). Controversy over its use
came to a head when an observational study found that PAC had
an adverse effect on patient survival and led to increased cost of
care (4). This led to several large-scale randomized trials,
including PAC-man.
In the PAC-man trial, randomization of treatment was largely

successful, and a number of covariates were measured about
each patient in the study. If covariate interactions are included,
the number of covariates exceeds the number of individuals in
the study; however, few of them are predictive of the patient’s
outcome. As it turned out, the (pretreatment) estimated prob-
ability of death was imbalanced between the treatment and
control groups (P = 0.005, Wilcoxon rank sum test). Because the
control group had, on average, a slightly higher risk of death,
the unadjusted difference-in-means estimator may overestimate
the benefits of receiving a PAC. Adjustment for this imbalance
seems advantageous in this case, because the pretreatment proba-
bility of death is clearly predictive of health outcomes posttreatment.
In this paper, we study regression-based adjustment, using the

least absolute shrinkage and selection operator (Lasso) to select
relevant covariates. Standard linear regression based on ordinary
least squares (OLS) suffers from overfitting if a large number of
covariates and interaction terms are included in the model. In
such cases, researchers sometimes perform model selection
based on observing which covariates are unbalanced given the
realized randomization. This generally leads to misleading in-
ferences because of incorrect test levels (5). The Lasso (6) pro-
vides researchers with an alternative that can mitigate these
problems and still perform model selection. We define an esti-
mator, dATELasso, which is based on running an l1-penalized linear
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regression of the outcome on treatment, covariates, and, fol-
lowing the method introduced in ref. 7, treatment by covariate
interactions. Because of the geometry of the l1 penalty, the Lasso
will usually set many regression coefficients to 0, and is well
defined even if the number of covariates is larger than the
number of observations. The Lasso’s theoretical properties un-
der the standard linear model have been widely studied in the
last decade; consistency properties for coefficient estimation,
model selection, and out-of-sample prediction are well understood
(see ref. 8 for an overview).
In the theoretical analysis in this paper, instead of assuming

that the standard linear model is the true data-generating
mechanism, we work under the aforementioned nonparametric
model of randomization introduced by Neyman (1) and popu-
larized by Donald Rubin (9). In this model, the outcomes and
covariates are fixed quantities, and the treatment group is as-
sumed to be sampled without replacement from a finite pop-
ulation. The treatment indicator, rather than an error term, is
the source of randomness, and it determines which of two po-
tential outcomes is revealed to the experimenter. Unlike the
standard linear model, the Neyman–Rubin model makes few
assumptions not guaranteed by the randomization itself. The
setup of the model does rely on the stable unit treatment value
assumption, which states that there is only one version of treat-
ment, and that the potential outcome of one unit should be
unaffected by the particular assignment of treatments to the
other units; however, it makes no assumptions of linearity or
exogeneity of error terms. OLS (7, 10, 11), logistic regression
(12), and poststratification (13) are among the adjustment
methods that have been studied under this model.
To be useful to practitioners, the Lasso-based treatment effect

estimator must be consistent and yield a method to construct
valid confidence intervals. We outline conditions on the cova-
riates and potential outcomes that will guarantee these proper-
ties. We show that an upper bound for the asymptotic variance
can be estimated from the model residuals, yielding asymptoti-
cally conservative confidence intervals for the ATE, which can be
substantially narrower than the unadjusted confidence intervals.
Simulation studies are provided to show the advantage of the
Lasso-adjusted estimator and to show situations where it breaks
down. We apply the estimator to the PAC-man data, and com-
pare the estimates and confidence intervals derived from the
unadjusted, OLS-adjusted, and Lasso-adjusted methods. We also
compare different methods of selecting the Lasso tuning pa-
rameter on these data.

Framework and Definitions
We give a brief outline of the Neyman–Rubin model for a ran-
domized experiment; the reader is urged to consult refs. 1, 9, and
14 for more details. We follow the notation introduced in refs. 7
and 10. For concreteness, we illustrate the model in the context
of the PAC-man trial.
For each individual in the study, the model assumes that there

exists a pair of quantities representing his/her health outcomes
under the possibilities of receiving and not receiving the catheter.
These are called the potential outcomes under treatment and
control, and are denoted as ai and bi, respectively. In the course
of the study, the experimenter observes only one of these
quantities for each individual, because the catheter is either
inserted or not. The causal effect of the treatment on individual i
is defined, in theory, to be ai − bi, but this is unobservable. In-
stead of trying to infer individual-level effects, we will assume
that the intention is to estimate the average causal effect over the
whole population, as outlined in the next section.
In the mathematical specification of this model, we consider

the potential outcomes to be fixed, nonrandom quantities, even
though they are not all observable. The only randomness in
the model comes from the assignment of treatment, which is

controlled by the experimenter. We define random treatment
indicators Ti, which take on a value 1 for a treated individual, or
0 for an untreated individual. We will assume that the set of
treated individuals is sampled without replacement from the full
population, where the size of the treatment group is fixed be-
forehand; thus, the Ti are identically distributed but not in-
dependent. The model for the observed outcome for individual i,
defined as Yi, is thus as follows:

Yi =Tiai + ð1−TiÞbi.

This equation simply formalizes the idea that the experimenter
observes the potential outcome under treatment for those who
receive the treatment, and the potential outcome under control
for those who do not.
Note that the model does not incorporate any covariate in-

formation about the individuals in the study, such as physiolog-
ical characteristics or health history. However, we will assume we
have measured a vector of baseline, preexperimental covariates
for each individual i. These might include, for example, age,
gender, and genetic makeup. We denote the covariates for in-
dividual i as the column vector xi = ðxi1, . . . , xipÞT ∈Rp and the
full design matrix of the experiment as X = ðx1, . . . , xnÞT. In
Theoretical Results, we will assume that there is a correlational
relationship between an individual’s potential outcomes and
covariates, but we will not assume a generative statistical model.
Define the set of treated individuals asA= fi∈ f1, . . . , ng :Ti = 1g,

and similarly define the set of control individuals as B. Define the
number of treated and control individuals as nA = jAj and nB = jBj,
respectively, so that nA + nB = n. We add a line on top of a
quantity to indicate its average and a subscript A or B to label the
treatment or control group. Thus, for example, the average values
of the potential outcomes and the covariates in the treatment
group are as follows:

aA = n−1A
X

i∈A
ai, xA = n−1A

X
i∈A

xi,

respectively. Note that these are random quantities in this model,
because the set A is determined by the random treatment assign-
ment. Averages over the whole population are denoted as

a= n−1
Xn

i=1
ai,   b= n−1

Xn

i=1
bi,   x= n−1

Xn

i=1
xi.

Note that the averages of potential outcomes over the whole
population are not considered random, but are unobservable.

Treatment Effect Estimation
Our main inferential goal will be average effect of the treatment
over the whole population in the study. In a trial such as PAC-
man, this represents the difference between the average outcome
if everyone had received the catheter, and the average outcome
if no one had received it. This is defined as follows:

ATE= a− b.

The most natural estimator arises by replacing the population
averages with the sample averages:

dATEunadj = aA − bB,

The subscript “unadj” indicates an estimator without regression
adjustment. The foundational work in ref. 1 points out that, un-
der a randomized assignment of treatment, dATEunadj is unbi-
ased for ATE, and derives a conservative procedure for
estimating its variance.
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Although dATEunadj is an attractive estimator, covariate in-
formation can be used to make adjustments in the hope of re-
ducing variance. A commonly used estimator is as follows:

dATEadj =
h
aA − ðxA − xÞT β̂ðaÞ

i
−
h
bB − ðxB − xÞT β̂ðbÞ

i
,

where β̂ðaÞ, β̂ðbÞ ∈Rp are adjustment vectors for the treatment and
control groups, respectively, as indicated by the superscripts. The
terms xA − x and xB − x represent the fluctuation of the covariates
in the subsample relative to the full sample, and the adjustment
vectors fit the linear relationships between the covariates and
potential outcomes under treatment and control. For example,
in the PAC-man trial, this would help alleviate the imbalance in
the pretreatment estimated probability of death: the correspond-
ing element of xB − x would be positive (due to the higher aver-
age probability of death in the control group), the corresponding
element of β̂ðbÞ would be negative (a higher probability of death
correlates with worse health outcomes), so the overall treatment
effect estimate would be adjusted downward. This procedure is
equivalent to imputing the unobserved potential outcomes; if
we define

baB = aA + ðxB − xAÞT β̂ðaÞ,   bbA = bB + ðxA − xBÞT β̂ðbÞ,

we can form the equivalent estimator:

dATEadj = n−1
�
nAaA + nBbaB�− n−1

�
nBbB + nA

bbA�.
If we consider these adjustment vectors to be fixed (nonrandom),
or if they are derived from an independent data source, then this
estimator is still unbiased, and may have substantially smaller
asymptotic and finite-sample variance than the unadjusted
estimator. This allows for construction of tighter confidence
intervals for the true treatment effect.
In practice, the “ideal” linear adjustment vectors, leading to a

minimum-variance estimator of the form of dATEadj, cannot be
computed from the observed data. However, they can be esti-
mated, possibly at the expense of introducing modest finite-
sample bias into the treatment effect estimate. In the classical
setup, when the number of covariates is relatively small, OLS
regression can be used. The asymptotic properties of this kind of
estimator are explored under the Neyman–Rubin model in refs.
7, 11, and 12. We will follow a particular scheme that is studied
in ref. 7 and shown to have favorable properties: we regress the
outcome on treatment indicators, covariates, and treatment by
covariate interactions. This is equivalent to running separate
regressions in the treatment and control groups of outcome
against an intercept and covariates. If we define β̂

ðaÞ
OLS and β̂

ðbÞ
OLS

as the coefficients from the separate regressions, then the
estimator is as follows:

dATEOLS =
h
aA − ðxA − xÞT β̂ðaÞOLS

i
−
h
bB − ðxB − xÞT β̂ðbÞOLS

i
.

This has some finite-sample bias, but ref. 7 shows that it vanishes
quickly at the rate of 1=n under moment conditions on the po-
tential outcomes and covariates. Moreover, for a fixed p, under
regularity conditions, the inclusion of interaction terms guaran-
tees that it never has higher asymptotic variance than the un-
adjusted estimator, and asymptotically conservative confidence
intervals for the true parameter can be constructed.
In modern randomized trials, where a large number of cova-

riates are recorded for each individual, p may be comparable to
or even larger than n. In this case, OLS regression can overfit the
data badly, or may even be ill posed, leading to estimators with
large finite-sample variance. To remedy this, we propose estimating

the adjustment vectors using the Lasso (6). The adjustment vectors
would take the following form:

β̂
ðaÞ
Lasso = arg min

β
 

"
1

2nA

X
i∈A

�
ai − aA − ðxi − xAÞTβ

�2
+ λa

Xp
j=1

��βj��
#
,

[1]

β̂
ðbÞ
Lasso = arg min

β
 

"
1

2nB

X
i∈B

�
bi − bB − ðxi − xBÞTβ

�2
+ λb

Xp
j=1

��βj��
#
,

[2]

and the proposed Lasso-adjusted ATE estimator is as follows:

dATELasso =
h
aA − ðxA − xÞT β̂ðaÞLasso

i
−
h
bB − ðxB − xÞT β̂ðbÞLasso

i
.

[To simplify the notation, we omit the dependence of β̂
ðaÞ
Lasso, β̂

ðbÞ
Lasso,

λa, and λb on the population size n.] Here, λa and λb are regular-
ization parameters for the Lasso, which must be chosen by the
experimenter; simulations show that cross-validation (CV) works
well. In the next section, we study this estimator under the Neyman–
Rubin model and provide conditions on the potential outcomes,
the covariates, and the regularization parameters under whichdATELasso enjoys similar asymptotic and finite-sample advantages asdATEOLS.
It is worth noting that, when two different adjustments are

made for the treatment and control groups as in ref. 7 and here,
the covariates do not have to be the same for the two groups.
However, when they are not the same, the Lasso- or OLS-
adjusted estimators are no longer guaranteed to have smaller or
equal asymptotic variance than the unadjusted one, even in the
case of fixed p. In practice, one may still choose between the
adjusted and unadjusted estimators based on the widths of
the corresponding confidence intervals.

Theoretical Results
Notation. For a vector β∈Rp and a subset S⊂ f1, . . . , pg, let βj be
the jth component of β, βS = ðβj : j∈ SÞT, Sc be the complement of S,
and jSj the cardinality of the set S. For any column vector
u= ðu1, . . . , umÞT, let kuk22 =

Pm
i=1u

2
i , kuk1 =

Pm
i=1juij, kuk∞ =

maxi=1,...,mjuij, and kuk0 =
��fj : uj ≠ 0g��. For a given m×mmatrix D,

let λminðDÞ and λmaxðDÞ be the smallest and largest eigenvalues of D,
respectively, and D−1, the inverse of the matrix D. Let →

d
and →

p

denote convergence in distribution and in probability, respectively.

Decomposition of the Potential Outcomes. The Neyman–Rubin
model does not assume a linear relationship between the po-
tential outcomes and the covariates. To study the properties of
adjustment under this model, we decompose the potential out-
comes into a term linear in the covariates and an error term.
Given vectors of coefficients βðaÞ, βðbÞ ∈Rp, we write for
i= 1, . . . ,n,

ai = a+ ðxi − xÞTβðaÞ + eðaÞi , [3]

bi = b+ ðxi − xÞTβðbÞ + eðbÞi . [4]

[Again, we omit the dependence of βðaÞ, βðbÞ, λa, λb, eðaÞ, and eðbÞ
on n.]
Note that we have not added any assumptions to the model;

we have simply defined unit-level residuals, eðaÞi and eðbÞi , given the
vectors βðaÞ, βðbÞ. All of the quantities in [3] and [4] are fixed,
deterministic numbers. It is easy to verify that eðaÞ = eðbÞ = 0. To
pursue a theory for the Lasso, we will add assumptions on the
populations of ai’s, bi’s, and xi’s, and we will assume the
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existence of βðaÞ, βðbÞ such that the error terms satisfy certain
assumptions.

Conditions. We will need the following to hold for both the
treatment and control potential outcomes. The first set of as-
sumptions (1–3) are similar to those found in ref. 7.

Condition 1: Stability of treatment assignment probability.

nA=n→ pA,   as  n→∞, [5]

for some pA ∈ ð0,1Þ.
Condition 2: The centered moment conditions. There exists a

fixed constant L> 0 such that, for all n= 1,2, . . . and j= 1, . . . , p,

n−1
Xn

i=1

�
xij − ðxÞj

�4
≤L; [6]

n−1
Xn

i=1

�
eðaÞi

�4
≤L;  n−1

Xn

i=1

�
eðbÞi

�4
≤L. [7]

Condition 3: The means n−1
Pn

i=1ðeðaÞi Þ2, n−1
Pn

i=1ðeðbÞi Þ2, and
n−1
Pn

i=1e
ðaÞ
i eðbÞi converge to finite limits.

Because we consider the high-dimensional setting where p is
allowed to be much larger than n, we need additional assump-
tions to ensure that the Lasso is consistent for estimating βðaÞ and
βðbÞ. Before stating them, we define several quantities.

Definition 1: Given βðaÞ and βðbÞ, the sparsity measures for
treatment and control groups, sðaÞ and sðbÞ, are defined as the
number of nonzero elements of βðaÞ and βðbÞ, i.e.,

sðaÞ =
���nj : βðaÞj ≠ 0

o���,   sðbÞ = ���nj : βðbÞj ≠ 0
o���, [8]

respectively. We will allow sðaÞ and sðbÞ to grow with n, although
the notation does not explicitly show this.

Definition 2: Define δn to be the maximum covariance between
the error terms and the covariates.

δn = max
ω=a, b

(
max

j

�����1n Xn
i=1

�
xij − ðxÞj

��
eðωÞi − eðωÞ

������
)
. [9]

The following conditions will guarantee that the Lasso consis-
tently estimates the adjustment vectors βðaÞ, βðbÞ at a fast enough
rate to ensure asymptotic normality of dATELasso. It is an open question
whether a weaker form of consistency would be sufficient for our
results to hold.

Condition 4: Decay and scaling. Let s=maxfsðaÞ, sðbÞg.

δn = o

 
1

s
ffiffiffiffiffiffiffiffiffiffiffi
log  p

p !
. [10]

ðs  log  pÞ� ffiffiffi
n

p
= oð1Þ. [11]

Condition 5: Cone invertibility factor. Define the Gram matrix
as Σ= n−1

Pn
i=1ðxi − xÞðxi − xÞT: There exist constants C> 0 and

ξ> 1 not depending on n, such that

khSk1 ≤CskΣhk∞,   ∀h∈ C, [12]

with C= fh : khSck1 ≤ ξkhSk1g, and

S=
n
j : βðaÞj ≠ 0  or  βðbÞj ≠ 0

o
. [13]

Condition 6: Let τ=minf1=70, ð3pAÞ2=70, ð3− 3pAÞ2=70g. For
constants 0< η< ðξ− 1Þ=ðξ+ 1Þ and 1=η<M <∞, assume the

regularization parameters of the Lasso belong to the following
sets:

λa ∈
	
1
η
,M


×

 
2ð1+ τÞL1=2

pA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2  log  p

n

r
+ δn

!
, [14]

λb ∈
	
1
η
,M


×

 
2ð1+ τÞL1=2

pB

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log p

n

r
+ δn

!
. [15]

Denote, respectively, the population variances of eðaÞ and eðbÞ and
the population covariance between them by the following:

σ2eðaÞ = n−1
Xn

i=1

�
eðaÞi

�2
, σ2eðbÞ = n−1

Xn

i=1

�
eðbÞi

�2
,

σeðaÞeðbÞ = n−1
Xn

i=1
eðaÞi eðbÞi .

Theorem 1. Assume Conditions 1–6 hold for some βðaÞ and βðbÞ.
Then, ffiffiffi

n
p �dATELasso −ATE

�!d N �0, σ2�, [16]

where

σ2 = lim
n→∞

   

�
1− pA
pA

σ2eðaÞ +
pA

1− pA
σ2eðbÞ + 2σeðaÞeðbÞ



. [17]

The proof of Theorem 1 is given in SI Appendix. It is easy to show,
as in the following corollary of Theorem 1, that the asymptotic
variance of dATELasso is no worse than dATEunadj when βðaÞ and βðbÞ

are defined as coefficients of regressing potential outcomes on a
subset of covariates. More specifically, suppose there exists a
subset J ⊂ f1, . . . , pg, such that

βðaÞ =
	�

βðaÞJ

�T
, 0
�T

,   βðbÞ =
	�

βðbÞJ

�T
, 0
�T

, [18]

where βðaÞJ and βðbÞJ are the population-level OLS coefficients for
regressing the potential outcomes a and b on the covariates in
the subset J with intercept, respectively.

Corollary 1. For βðaÞ and βðbÞ defined in [18] and some λa and λb,
assume Conditions 1–6 hold. Then the asymptotic variance offfiffiffi
n

p
  dATELasso is no greater than that of the

ffiffiffi
n

p
  dATEunadj. The dif-

ference is ð1=ðpAð1− pAÞÞÞΔ, where

Δ=− lim
n→∞

kXβEk22 ≤ 0,  βE = ð1− pAÞβðaÞ + pAβðbÞ. [19]

Remark 1: If, instead of Condition 6, we assume that the
covariates are uniformly bounded, i.e., maxi,j

��xij��≤L, then the
fourth moment condition on the error terms, given in [7], can
be weakened to a second moment condition. Although we do
not prove the necessity of any of our conditions, our simula-
tion studies show that the distributions of the unadjusted and
the Lasso-adjusted estimator may be nonnormal when (i) the
covariates are generated from Gaussian distributions and the
error terms do not satisfy second moment condition, e.g.,
being generated from a t distribution with one degree of
freedom; or (ii) the covariates do not have bounded fourth
moments, e.g., being generated from a t distribution with
three degrees of freedom. See the histograms in Fig. 1, where
the corresponding p values of Kolmogorov–Smirnov testing
for normality are less than 2.2e− 16. These findings indicate
that our moment conditions cannot be dramatically weakened
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for asymptotic normality. However, we also find that the
Lasso-adjusted estimator still has smaller variance and mean
squared error than the unadjusted estimator, even when these
moment conditions do not hold. In practice, when the covariates
do not have bounded fourth moments, one may perform some
transformation—e.g., a logarithm transformation—to ensure that
the transformed covariates have bounded fourth moments while
having a sufficiently large variance so as to retain useful in-
formation. We leave it as future work to explore the properties
of different transformations.

Remark 2: Statement [11], typically required in debiasing the
Lasso (15), is stronger by a factor of

ffiffiffiffiffiffiffiffiffiffiffi
log  p

p
than the usual

requirement for l1 consistency of the Lasso.
Remark 3: Condition 5 is slightly weaker than the typical re-

stricted eigenvalue condition for analyzing the Lasso.
Remark 4: If we assume δn =Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log  p=n
p Þ, which satisfies [10],

then Condition 6 requires that the tuning parameters are pro-
portional to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log  p=n

p
, which is typically assumed for the Lasso

in the high-dimensional linear regression model.
Remark 5: For fixed p, δn = 0 in [9], Condition 4 holds auto-

matically, and Condition 5 holds when the smallest eigenvalue of
Σ is uniformly bounded away from 0. In this case, Corollary 1
reverts to corollary 1.1. in ref. 7. When these conditions are not
satisfied, we should set λa and λb to be large enough to cause the
Lasso-adjusted estimator to revert to the unadjusted one.

Neyman-Type Conservative Variance Estimate. We note that the
asymptotic variance in Theorem 1 involves the cross-product
term σeðaÞeðbÞ, which is not consistently estimable in the Neyman–
Rubin model as ai and bi are never simultaneously observed.
However, we can give a Neyman-type conservative estimate of
the variance. Let

σ̂2eðaÞ =
1

nA − df ðaÞ
X
i∈A

�
ai − aA − ðxi − xAÞT β̂

Lasso

ðaÞ �2,
σ̂2eðbÞ =

1
nB − df ðbÞ

X
i∈B

�
bi − bB − ðxi − xBÞT β̂

Lasso

ðbÞ �2,
where df ðaÞ and df ðbÞ are degrees of freedom defined by the
following:

df ðaÞ = ŝðaÞ + 1=
β̂

Lasso

ðaÞ

0
+ 1;   df ðbÞ = ŝðbÞ + 1=

β̂
Lasso

ðbÞ

0
+ 1.

Define the variance estimate of
ffiffiffi
n

p ðdATELasso −ATEÞ as follows:

σ̂2Lasso =
n
nA

σ̂2eðaÞ +
n
nB

σ̂2eðbÞ . [20]

We will show in SI Appendix, Theorem S1, that the limit of σ̂2Lasso
is greater than or equal to the asymptotic variance offfiffiffi
n

p ðdATELasso −ATEÞ, and therefore can be used to construct a
conservative confidence interval for the ATE.

Related Work. The Lasso has already made several appearances in
the literature on treatment effect estimation. In the context of
observational studies, ref. 15 constructs confidence intervals for
preconceived effects or their contrasts by debiasing the Lasso-
adjusted regression, ref. 16 employs the Lasso as a formal
method for selecting adjustment variables via a two-stage pro-
cedure that concatenates features from models for treatment
and outcome, and similarly, ref. 17 gives very general results for
estimating a wide range of treatment effect parameters, in-
cluding the case of instrumental variables estimation. In addition
to the Lasso, ref. 18 considers nonparametric adjustments in the
estimation of ATE. In works such as these, which deal with ob-
servational studies, confounding is the major issue. With con-
founding, the naive difference-in-means estimator is biased for
the true treatment effect, and adjustment is used to form an
unbiased estimator. However, in our work, which focuses on a
randomized trial, the difference-in-means estimator is already
unbiased; adjustment reduces the variance while, in fact, in-
troducing a small amount of finite-sample bias. Another major
difference between this prior work and ours is the sampling
framework: we operate within the Neyman–Rubin model with
fixed potential outcomes for a finite population, where the
treatment group is sampled without replacement, whereas these
papers assume independent sampling from a probability distri-
bution with random error terms.
Our work is related to the estimation of heterogeneous or

subgroup-specific treatment effects, including interaction terms
to allow the imputed individual-level treatment effects to vary
according to some linear combination of covariates. This is
pursued in the high-dimensional setting in ref. 19; this work
advocates solving the Lasso on a reduced set of modified cova-
riates, rather than the full set of covariate by treatment inter-
actions, and includes extensions to binary outcomes and survival
data. The recent work in ref. 20 considers the problem of de-
signing multiple-testing procedures for detecting subgroup-spe-
cific treatment effects; they pose this as an optimization over
testing procedures where constraints are added to enforce
guarantees on type I error rate and power to detect effects.
Again, the sampling framework in these works is distinct from
ours; they do not use the Neyman–Rubin model as a basis for
designing the methods or investigating their properties.

PAC Data Illustration and Simulations. We now return to the PAC-
man study introduced earlier. We examine the data in more
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Fig. 1. Histograms of the unadjusted estimator and the Lasso-adjusted es-
timator when the moment conditions do not hold. We select the tuning
parameters for Lasso using 10-fold CV. The potential outcomes are simulated
from linear regression model and then kept fixed (see more details in SI
Appendix). For the upper two subplots, the error terms are generated from t
distribution with one degree of freedom and therefore do not satisfy second
moment condition; whereas for the lower two subplots, the covariates are
generated from t distribution with three degrees of freedom and thus vio-
late fourth moment condition.
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detail and explore the results of several adjustment procedures.
There were 1,013 patients in the PAC-man study: 506 treated
(managed with PAC) and 507 control (managed without PAC,
but retaining the option of using alternative devices). The out-
come variable is quality-adjusted life years (QALYs). One
QALY represents 1 year of life in full health; in-hospital death
corresponds to a QALY of zero. We have 59 covariates about
each individual in the study; we include all main effects as well as
1,113 two-way interactions, and form a design matrix X with
1,172 columns and 1,013 rows. See SI Appendix for more details
on the design matrix.
The assumptions that underpin the theoretical guarantees of

the dATELasso estimator are, in practice, not explicitly checkable,
but we attempt to inspect the quantities that are involved in the
conditions to help readers make their own judgement. The
uniform bounds on the fourth moments refer to a hypothetical
sequence of populations; these cannot be verified given that the
investigator has a single dataset. However, as an approximation,
the fourth moments of the data can be inspected to ensure that
they are not too large. In this dataset, the maximum fourth
moment of the covariates is 37.3, which is indicative of a heavy-
tailed and potentially destabilizing covariate; however, it occurs
in an interaction term not selected by the Lasso, and thus does

not influence the estimate. [The fourth moments of the covariates
are shown in SI Appendix, Fig. S9. The covariates with the largest
two fourth moments (37.3 and 34.9, respectively) are quadratic
term interactnew2 and interaction term IMscorerct : systemnew.
Neither of them is selected by the Lasso to do the adjustment.]
Checking the conditions for high-dimensional consistency of the
Lasso would require knowledge of the unknown active set S, and
moreover, even if it were known, calculating the cone invertibility
factor would involve an infeasible optimization. This is a general
issue in the theory of sparse linear high-dimensional estimation. To
approximate these conditions, we use the bootstrap to estimate the
active set of covariates S and the error terms eðaÞ and eðbÞ. See SI
Appendix for more details. Our estimated S contains 16 covariates
and the estimated second moments of eðaÞ and eðbÞ are 11.8 and
12.0, respectively. The estimated maximal covariance δn equals 0.34
and the scaling ðs  log  pÞ= ffiffiffi

n
p

is 3.55. Although this is not close to
zero, we should mention that the estimation of δn and ðs  log  pÞ= ffiffiffi

n
p

can be unstable and less accurate because it is based on a sub-
sample of the population. As an approximation to Condition 5, we
examine the largest and smallest eigenvalues of the sub-Gram
matrix ð1=nÞXT

SXS, which are 2.09 and 0.18, respectively. Thus, the
quantity in Condition 5 seems reasonably bounded away from zero.
We now estimate the ATE using the unadjusted estimator, the

Lasso-adjusted estimator, and the OLS-adjusted estimator,
which is computed based on a subdesign matrix containing only
the 59 main effects. We also present results for the two-step
estimator dATELasso+OLS, which adopts the Lasso to select cova-
riates and then uses OLS to refit the regression coefficients. In
the next paragraph and in SI Appendix, Algorithm 1, we show how
we adapt the CV procedure to select the tuning parameter fordATELasso+OLS based on a combined performance of Lasso and
OLS, or cv(Lasso+OLS).
We use the R package “glmnet” to compute the Lasso solution

path and select the tuning parameters λa and λb by 10-fold CV. To
indicate the method of selecting tuning parameters, we denote
the corresponding estimators as cv(Lasso) and cv(Lasso+OLS),
respectively. We should mention that for the cv(Lasso+OLS)-
adjusted estimator, we compute the CV error for a given value of
λa (or λb) based on the whole Lasso+OLS procedure instead of
just the Lasso estimator (SI Appendix, Algorithm 1). Therefore,
the cv(Lasso+OLS) and the cv(Lasso) may select different
covariates to do the adjustment. This type of CV requires more
computation than the CV based on just the Lasso estimator be-
cause it needs to compute the OLS estimator for each fold and
each given λa (or λb), but it can give better prediction and model
selection performance.
Fig. 2 presents the ATE estimates along with 95% confidence

intervals. The interval lengths are shown on top of each interval
bar. All of the methods give confidence intervals containing 0;
hence, this experiment failed to provide sufficient evidence to
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Fig. 2. ATE estimates (red circles) and 95% confidence intervals (bars) for
the PAC data. The numbers above each bar are the corresponding interval
lengths.

Table 1. Selected covariates for adjustment

Method Treatment Covariates

cv(Lasso+OLS) Treated Age, p_death, age · age, age:p_death
cv(Lasso+OLS) Control Age, p_death, age · age, age:p_death, p_death:mech_vent
cv(Lasso) Treated Pac_rate, age, p_death, age · age, p_death · p_death, region:im_score, region:systemnew,

pac_rate:age, pac_rate:p_death, pac_rate:systemnew, im_score:interactnew, age:p_death,
age:glasgow, age:systemnew, interactnew:systemnew, pac_rate:creatinine, age:mech_vent,
age:respiratory, age:creatinine, interactnew:mech_vent, interactnew:male,
glasgow:organ_failure, p_death:mech_vent, systemnew:male

cv(Lasso) Control Age, p_death, age · age, unitsize:p_death, pac_rate:systemnew, age:p_death,
interactnew:mech_vent, p_death:mech_vent*

*Covariate definitions: age, patient’s age; p_death, baseline probability of death; mech_vent, mechanical ventilation at admission;
region, geographic region; pac_rate, PAC rate in unit; creatinine, respiratory, glasgow, interactnew, organ_failure, systemnew, and
im_score, various physiological indicators.
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reject the hypothesis that PAC did not have an effect on patient
QALYs (either positive or negative). Because the caretakers of
patients managed without PAC retained the option of using less
invasive cardiac output monitoring devices, such an effect may
have been particularly hard to detect in this experiment.
However, it is interesting to note that, compared with the

unadjusted estimator, the OLS-adjusted estimator causes the
ATE estimate to decrease (from −0.13 to −0.31), and shortens
the confidence interval by about 20%. This is due mainly to the
imbalance in the pretreatment probability of death, which was
highly predictive of the posttreatment QALYs. The cv(Lasso)-
adjusted estimator yields a comparable ATE estimate and con-
fidence interval, but the fitted model is more interpretable and
parsimonious than the OLS model: it selects 24 and 8 covariates
for treated and control, respectively. The cv(Lasso+OLS) esti-
mator selects even fewer covariates: 4 and 5 for treated and
control, respectively, but performs a similar adjustment as the
cv(Lasso) (see the comparison of fitted values in SI Appendix,
Fig. S8). We also note that these adjustments agree with the one
performed in ref. 13, where the treatment effect was adjusted
downward to −0.27 after stratifying into four groups based on
predicted probability of death.
The covariates selected by Lasso for adjustment are shown in

Table 1, where “A · A” denotes quadratic term of the covariate
A, and “A:B” denotes two-way interaction between two cova-
riates A and B. Among them, patient’s age and estimated
probability of death (p_death), together with the quadratic term
“age · age” and interactions “age:p_death” and “p_death:
mech_vent” (mechanical ventilation at admission), are the most
important covariates for the adjustment. The patients in control
group are slightly older and have slightly higher risk of death.
These covariates are important predictors of the outcome.
Therefore, the unadjusted estimator may overestimate the ben-
efits of receiving PAC.
Because not all of the potential outcomes are observed, we

cannot know the true gains of adjustment methods. However, we
can estimate the gains via building a simulated set of potential
outcomes by matching treated units to control units on observed
covariates. We use the matching method described in ref. 21,

which gives 1,013 observations with all potential outcomes im-
puted. We match on the 59 main effects only. The ATE is −0.29.
We then use this synthetic dataset to calculate the biases, SDs,
and root-mean-square errors (

ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
) of different ATE esti-

mators based on 25,000 replicates of a completely randomized
experiment, which assigns 506 subjects to the treated group and
the remainders to the control group.
SI Appendix, Table S5, shows the results. For all of the

methods, the bias is substantially smaller (by a factor of 100) than
the SD. The SD and

ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
of the OLS-adjusted estimator are

both 10.2% smaller than those of the unadjusted estimator,
whereas the cv(Lasso)- and cv(Lasso+OLS)-adjusted estimators
further improve the SD and

ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
of the OLS-adjusted esti-

mator by ∼4.7%. Moreover, all these methods provide conser-
vative confidence intervals with coverage probabilities higher
than 99%. However, the interval lengths of the OLS-, cv(Lasso)-,
and cv(Lasso+OLS)-adjusted estimator are comparable and
are ∼10% shorter than that of the unadjusted estimator. The
cv(Lasso+OLS)-adjusted estimator is similar to the cv(Lasso)-
adjusted estimator in terms of mean squared error, confidence
interval length, and coverage probability, but outperforms the
latter with much fewer and more stable covariates in the ad-
justment (see Figs. 3 and 4 for the selection frequency of each
covariate for treatment group and control group, respectively).
We also show in SI Appendix, Fig. S10, that the sampling dis-
tribution of the estimates is very close to Normal.
We conduct additional simulation studies to evaluate the finite

sample performance of dATELasso and compare it with that of the
OLS-adjusted estimator and the unadjusted estimator. A quali-
tative analysis of these simulations yields the same conclusions as
presented above; however, for the sake of brevity, we defer the
simulation details in SI Appendix.

Discussion
We study the Lasso-adjusted ATE estimate under the Neyman–
Rubin model for randomization. Our purpose in using the Ney-
man–Rubin model is to investigate the performance of the Lasso
under a realistic sampling framework that does not impose strong
assumptions on the data. We provide conditions that ensure

0 200 400 600 800 1000 1200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Treated

covariates index

se
le

ct
io

n 
fre

qu
en

cy

cv(Lasso)
cv(Lasso+OLS)

Fig. 3. Selection stability comparison of cv(Lasso) and cv(Lasso+OLS) for
treatment group.
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control group.
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asymptotic normality, and provide a Neyman-type estimate of
the asymptotic variance that can be used to construct a conser-
vative confidence interval for the ATE. Although we do not
require an explicit generative linear model to hold, our theo-
retical analysis requires the existence of latent “adjustment
vectors” such that moment conditions of the error terms are
satisfied, and that the cone invertibility condition of the sample
covariance matrix is satisfied in addition to moment conditions
for OLS adjustment as in ref. 7. Both assumptions are difficult to
check in practice. In our theory, we do not address whether these
assumptions are necessary for our results to hold, although
simulations indicate that the moment conditions cannot be
substantially weakened. As a by-product of our analysis, we ex-
tend Massart’s concentration inequality for sampling without
replacement, which is useful for theoretical analysis under the
Neyman–Rubin model. Simulation studies and the real-data il-
lustration show the advantage of the Lasso-adjusted estimator in
terms of estimation accuracy and model interpretation. In
practice, we recommend a variant of Lasso, cv(Lasso+OLS), to
select covariates and perform the adjustment, because it gives
similar coverage probability and confidence interval length
compared with cv(Lasso), but with far fewer covariates selected.
In future work, we plan to extend our analysis to other popular
methods in high-dimensional statistics such as Elastic-Net and
ridge regression, which may be more appropriate for estimating
adjusted ATE under different assumptions.
The main goal of using Lasso in this paper is to reduce the

variance (and overall mean squared error) of ATE estimation.
Another important task is to estimate heterogenous treatment
effects and provide conditional treatment effect estimates for
subpopulations. When the Lasso models of treatment and

control outcomes are different, both in variables selected and
coefficient values, this could be interpreted as modeling treatment
effect heterogeneity in terms of covariates. However, reducing
variance of the ATE estimate and estimating heterogenous treat-
ment effects have completely different targets. Targeting hetero-
genous treatment effects may result in more variable ATE estimates.
Moreover, our simulations show that the set of covariates selected
by the Lasso is unstable, and this may cause problems when inter-
preting them as evidence of heterogenous treatment effects. How
best to estimate such effects is an open question that we would like
to study in future research.

Materials and Methods
We did not conduct the PAC-man experiment, and we are analyzing sec-
ondary data without any personal identifying information. As such, this study
is exempt from human subjects review. The original experiments underwent
human subjects review in the United Kingdom (2).
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Neyman-type conservative variance estimate
We have given a Neyman-type conservative estimate of the variance in the main text which can be used to construct a
conservative confidence interval for the ATE. In this section, we will study the asymptotic behavior of this variance estimate.
Recall that

σ̂2
e(a) =

1

nA − df (a)

∑
i∈A

(
ai − āA − (xi − x̄A)T β̂

(a)

Lasso

)2
, (S1)

σ̂2
e(b) =

1

nB − df (b)

∑
i∈B

(
bi − b̄B − (xi − x̄B)T β̂

(b)

Lasso

)2
, (S2)

where df (a) and df (b) are degrees of freedom defined by

df (a) = ŝ(a) + 1 = ||β̂
(a)

Lasso||0 + 1; df (b) = ŝ(b) + 1 = ||β̂
(b)

Lasso||0 + 1.

Condition S0.1. For the Gram matrix Σ defined in Condition 5, the largest eigenvalue is bounded away from ∞, that is,
there exists a constant Λmax <∞ such that

λmax (Σ) ≤ Λmax.

Recall that the variance estimate of
√
n(ÂTELasso −ATE) is defined as follows:

σ̂2
Lasso =

n

nA
σ̂2
e(a) +

n

nB
σ̂2
e(b) . (S3)

Theorem S1. Assume conditions in Theorem 1 and condition S0.1 hold. Then σ̂2
Lasso converges in probability to

1

pA
lim
n→∞

σ2
e(a) +

1

1− pA
lim
n→∞

σ2
e(b) ,

which is greater than or equal to the asymptotic variance of
√
n(ÂTELasso −ATE). The difference is

lim
n→∞

1

n

n∑
i=1

[
ai − bi −ATE − (xi − x̄)T (β(a) − β(b))

]2
.

Remark 6. The Neyman-type conservative variance estimate for the unadjusted estimator is given by

σ̂2
unadj =

n

nA

1

nA − 1

∑
i∈A

(ai − āA)2 +
n

nB

1

nB − 1

∑
i∈B

(
bi − b̄B

)2
,

which, under second moment conditions of potential outcomes a and b, converges in probability to

1

pA
lim
n→∞

1

n

n∑
i=1

(ai − ā)2 +
1

1− pA
lim
n→∞

1

n

n∑
i=1

(bi − b̄)2.

Therefore, for the β(a) and β(b) defined in [18], the limit of σ̂2
Lasso is no greater than that of σ̂2

unadj and the difference is

− lim
n→∞

1

n

n∑
i=1

1

pA

[
(xi − x̄)T (β(a))

]2
+

1

1− pA

[
(xi − x̄)T (β(b))

]2
.

Remark 7. With the conservative variance estimate in Theorem S1, the Lasso adjusted confidence interval is also valid for
the PATE (Population Average Treatment Effect) if there is a super population of size N with N > n.
Remark 8. The extra Condition S0.1 is used to obtain the following bounds for the number of selected covariates by the Lasso:
max (ŝ(a), ŝ(b)) = op(min (nA, nB)). Condition S0.1 can be removed from Theorem S1 if we redefine σ̂2

e(a)
and σ̂2

e(b)
without

adjusting the degrees of freedom, i.e.,

(σ̂∗)2e(a) =
1

nA

∑
i∈A

(
ai − āA − (xi − x̄A)T β̂

(a)

Lasso

)2
,

(σ̂∗)2e(b) =
1

nB

∑
i∈B

(
bi − b̄B − (xi − x̄B)T β̂

(b)

Lasso

)2
,

and define (σ̂∗)2Lasso = n
nA

(σ̂∗)2
e(a)

+ n
nB

(σ̂∗)2
e(b)

. It follows from the bounds for max (ŝ(a), ŝ(b)) that (σ̂2
e(a)

, σ̂2
e(b)

) and ((σ̂∗)2
e(a)

, (σ̂∗)2
e(b)

)

have the same asymptotic property.
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Theorem S2. Assume the conditions in Theorem 1 hold. Then (σ̂∗)2Lasso converges in probability to

1

pA
lim
n→∞

σ2
e(a) +

1

1− pA
lim
n→∞

σ2
e(b) .

Remark 9. Though (σ̂∗)2Lasso has the same limit as σ̂2
Lasso, our simulation experience shows that, in finite samples, the

confidence intervals based on (σ̂∗)2Lasso may yield low coverage probabilities (e.g., the coverage probability for 95% confidence
interval can be only 80%). Hence, we recommend readers to use σ̂2

Lasso in practice.

Simulation
In this section we carry out simulation studies to evaluate the finite sample performance of ÂTELasso estimator. We also

present results for the ÂTEOLS estimator when p < n and the two-step estimator ÂTELasso+OLS which adopts Lasso to select
covariates and then uses OLS to refit the regression coefficients, see [1, 2, 3, 4] for statistical properties of Lasso+OLS estimator
in linear regression model.

Let β̂
(a)

be the Lasso estimator defined in 1 (we omit the subscript “Lasso” for the sake of simplicity) and let Ŝ(a) = {j :

β̂
(a)

j 6= 0} be the support of β̂
(a)

. The Lasso+OLS adjustment vector β̂
(a)
Lasso+OLS for treatment group A is defined by

β̂
(a)

Lasso+OLS = arg min
β: βj=0, ∀j /∈Ŝ(a)

1

2nA

∑
i∈A

(
ai − āA − (xi − x̄A)Tβ

)2
.

We can define the Lasso+OLS adjustment vector β̂
(b)

Lasso+OLS for control group B similarly. Then ÂTELasso+OLS is given by

ÂTELasso+OLS =
[
āA − (x̄A − x̄)T β̂

(a)

Lasso+OLS

]
−
[
b̄B − (x̄B − x̄)T β̂

(b)

Lasso+OLS

]
.

We use the R package “glmnet” to compute the Lasso solution path. We select the tuning parameters λa and λb by 10-fold
Cross Validation (CV) and denote the corresponding adjusted estimators as cv(Lasso) and cv(Lasso+OLS) respectively. We
should mention that for the cv(Lasso+OLS) adjusted estimator, we compute the CV error for a given value of the λa (or
λb) based on the whole Lasso+OLS estimator instead of the Lasso estimator, see Algorithm 1 for details. Therefore, the
cv(Lasso+OLS) adjusted estimator and the cv(Lasso) adjusted estimator may select different covariates to do the adjustment.
This type of cross validation for cv(Lasso+OLS) requires more computation effort than the cross validation based on just the
Lasso estimator since it needs to compute the OLS estimator for each fold and for each λa (or λb), but it can give better
prediction and covariates selection performance.

The potential outcomes ai and bi are generated from the following nonlinear model: for i = 1, ..., n,

ai =

s∑
j=1

xijβ
(a1)
j + exp

(
s∑
j=1

xijβ
(a2)
j

)
+ ε

(a)
i ,

bi =

s∑
j=1

xijβ
(b1)
j + exp

(
s∑
j=1

xijβ
(b2)
j

)
+ ε

(b)
i ,

where ε
(a)
i and ε

(b)
i are independent error terms. We set n = 250, s = 10, p = 50 and 500. For p = 50, we can compute

OLS estimator and compare it with the Lasso. The covariates vector xi is generated from a multivariate normal distribution
N (0,Σ). We consider two different Toeplitz covariance matrices Σ which control the correlation among the covariates:

Σii = 1; Σij = ρ|i−j| ∀i 6= j,

where ρ = 0, 0.6. The true coefficients β
(a1)
j , β

(a2)
j , β

(b1)
j , β

(b2)
j are generated independently according to

β
(a1)
j ∼ t3; β

(a2)
j ∼ 0.1 ∗ t3, j = 1, ..., s,

β
(b1)
j ∼ β(a1)

j + t3; β
(b2)
j ∼ β(a2)

j + 0.1 ∗ t3, j = 1, ..., s,

where t3 denotes the t distribution with three degrees of freedom. This ensures that the treatment effects are not constant

across individuals, and that the linear model does not hold in this simulation. The error terms ε
(a)
i and ε

(b)
i are generated

according to the following linear model with hidden covariates zi:

ε
(a)
i =

s∑
j=1

zijβ
(a1)
j + ε̃

(a)
i ,

ε
(b)
i =

s∑
j=1

zijβ
(b1)
j + ε̃

(b)
i ,
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where ε̃
(a)
i and ε̃

(b)
i are drawn independently from a standard normal distribution. The vector zi is independent of xi and is

also drawn independently from the multivariate normal distribution N (0,Σ). The values of xi, β
(a1), β(a2), β(b1), β(b2), zi,

ε̃
(a)
i , ε̃

(b)
i , ai and bi are generated once and then kept fixed.

After the potential outcomes are generated, a completely randomized experiment is simulated 25000 times, assigning nA =
100, 125, 150 subjects to treatment A and the remainder to control B. There are 12 different combinations of (p, ρ, nA) in total.

Figures S4, S5, S6 show boxplots of different ATE estimators with their standard deviations (computed from 25000 replicates
of randomized experiments) presented on top of each box. Regardless of whether the design is balanced (nA = 125) or not
(nA = 100, 150), the regression based estimators have much smaller variances and than that of the unadjusted estimator and
therefore improve the estimation precision.

To further compare the performance of these estimators, we present the bias, the standard deviation (SD) and the root-mean

square error (
√

MSE) of the estimates in Table S1. Bias is reported as the absolute difference from the true treatment effect.
We find that the bias of each method is substantially smaller (more than 10 times smaller) than the SD. The cv(Lasso) and

cv(Lasso+OLS) adjusted estimators perform similar in terms of SD and
√

MSE: reducing those of the OLS adjusted estimator
and the unadjusted estimator by 10%− 15% and 15%− 31% respectively. We also compare the number of selected covariates
by cv(Lasso) and cv(Lasso+OLS) for treatment group and control group separately, see Table S2. It is easy to see that the
cv(Lasso+OLS) adjusted estimator uses many fewer (more than 44%) covariates in the adjustment to obtain similar improve-

ment of SD and
√

MSE of ATE estimate as the cv(Lasso) adjusted estimator. Moreover, we find that the covariates selected
by the cv(Lasso+OLS) are more stable across different realizations of treatment assignment than the covariates selected by
the cv(Lasso). Overall, the cv(Lasso+OLS) adjusted, the cv(Lasso) adjusted, the OLS adjusted and the unadjusted estimators
perform from best to worst.

We move now to study the finite sample performance of Neyman-type conservative variance estimates. For each simulation

example and each one of the 25000 completely randomized experiments, we calculate the ATE estimates (ÂTE) and the Neyman

variance estimates (σ̂) and then form the 95% confidence intervals [ÂTE − 1.96 · σ̂/
√
n, ÂTE + 1.96 · σ̂/

√
n]. Figures S1, S2,

S3 present the boxplot of the interval length with the coverage probability noted on top of each box for the unadjusted, OLS
adjusted (only computed when p = 50), cv(Lasso) adjusted and cv(Lasso+OLS) adjusted estimators. More results are showed
in Table S3. We find that all the confidence intervals for the unadjusted estimator are conservative. The cv(Lasso) adjusted
and the cv(Lasso+OLS0 adjusted estimators perform very similar: although their coverage probability (at least 92%) may be
slightly less than the pre-assigned confidence level (95%), their mean interval length is much shorter (26%− 37%) than that of
the unadjusted estimator. The OLS adjusted estimator has comparable interval length with the cv(Lasso) and cv(Lasso+OLS)
adjusted estimator, but has slightly worse coverage probability (90%− 93%).

To further investigate how good the Neyman standard deviation (SD) estimate is, we compare them in Figure S7 with the
“true” SD presented in Table S1 (the SD of the ATE estimates over 25000 randomized experiments). We find that Neyman SD
estimate is very conservative for the unadjusted estimator (its mean is 5%−14% larger than the “true” SD); while for the OLS
adjusted estimator, the mean of Neyman SD estimate can be 6%− 100% smaller than the “true” SD which may be because of
over-fitting. For the cv(Lasso) and cv(Lasso+OLS) adjusted estimator, the mean of Neyman SD estimator is within 1± 7% of
the “true” SD. Although the Neyman variance estimate is asymptotically conservative, in small samples the variance estimate
may be too small and hence the confidence intervals are too narrow. However, if we increase the sample size n to 1000, almost
all the confidence intervals are conservative.

We conduct more simulation examples to evaluate the conditions assumed for asymptotic normality of the Lasso adjusted
estimator. We use the same simulation setup as above, but for simplicity, we generate the potential outcomes from a linear

model (set β(a2) = β(b2) = 0) and remove the effects of the hidden covariates zi in generating the error terms ε
(a)
i and ε

(b)
i and

set ρ = 0, nA = 125. We find that the distribution of the cv(Lasso) adjusted estimator may be non-normal when:

(1). The covariates are generated from Gaussian distribution and the error terms do not satisfy second moment condition, e.g.,
being generated from t distribution with one degree of freedom, see the upper two subplots of Figure 1 (in the main text) for
the histograms of unadjusted the cv(Lasso) adjusted estimators (the corresponding p-values of Kolmogorov–Smirnov testing
for normality are less than 2.2e− 16).

(2). The covariates do not have bounded fourth moments, e.g., being generated from t distribution with three degrees of freedom,
see the lower two subplots of Figure 1 (in the main text) for the histograms of unadjusted the cv(Lasso) adjusted estimators
(again, the corresponding p-values of Kolmogorov–Smirnov testing for normality are less than 2.2e− 16).

These findings indicate that our moment condition (Condition 2 and Remark 1) cannot be dramatically weakened. However,

we also find that the cv(Lasso) adjusted estimator still has smaller SD and
√

MSE than the unadjusted estimator even when
these moment conditions do not hold.

The design matrix of the PAC data
In the PAC data, there are 59 covariates (main effects) including 50 indicators which may be correlated with the outcomes.
One of the main effects (called interactnew) has heavy tail, so we perform the transform: x → log(|x| + 1) to make it more
normally distributed. We then centralize and standardize the non-indicator covariates. The quadratic terms (9 in total)
of non-indicator covariates and two-way interactions between main effects (1711 in total) may also help predict the potential
outcomes, so we included them in the design matrix. The quadratic terms and the interactions between non-indicator covariates
and the interactions between indicator covariates and non-indicator covariates are also centered and standardized. Some of the
interactions are identical to other effects and we only retain one of them. We also remove the interactions which are highly
correlated (with correlation larger than 0.95) with the main effects and remove the indicators with very sparse entries (where
the number of 1’s is less than 20). Finally, we form a design matrix X with 1172 columns (covariates) and 1013 rows (subjects).
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Estimation of constants in the conditions
Let S(a) = {j : β

(a)
j 6= 0} and S(b) = {j : β

(b)
j 6= 0} denote the sets of relevant covariates for treatment group and control

group respectively. Denote S = S(a)⋃S(b) = {j : β
(a)
j 6= 0 or β

(b)
j 6= 0}. We use bootstrap to get an estimation of the relevant

covariates sets S(a), S(b) and then the approximation errors e(a) and e(b) are estimated by regressing the observed potential
outcomes a and b on the covariates in S respectively. We only present how to estimate S(a) and e(a) in detail and the estimation
of S(b) and e(b) are similar.

Let A, B be the set of treated subjects (using PAC) and control subjects (without using PAC) respectively. Denote ai, i ∈ A
the potential outcomes (quality-adjusted life years (QALYs)) under treatment and xi ∈ R1172 the covariates vector of the ith
subject. For each d = 1, ..., 1000, we draw a bootstrap sample {(a∗i (d), x∗i (d)) : i ∈ A} with replacement from the data points

{(ai, xi) : i ∈ A}. We then compute the LassoOLS(CV) adjusted vector β̂(d) based on each bootstrap sample {(a∗i (d), x∗i (d)) :

i ∈ A}. Let τj be the selection fraction of non-zero β̂j(d) in the 1000 bootstrap estimators, i.e., τj = (1/1000)
∑1000
d=1 I{β̂j(d)6=0},

where I is the indicator function. We form the relevant covariates S(a) by the covariates whose selection fraction are larger
than 0.5: S(a) = {j : τj > 0.5}.

To estimate the approximation error e(a), we regress ai on the relevant covariates xij , j ∈ S(a) and compute OLS estimate

and the corresponding residual. That is, let T (a) denote the complement set of S(a),

β
(a)
OLS = arg min

β: βj=0, ∀j∈T (a)

1

2nA

∑
i∈A

(
ai − āA − (xi − x̄A)Tβ

)2
.

e
(a)
i = ai − āA − (xi − x̄A)Tβ

(a)
OLS, i ∈ A.

The maximal covariance δn is estimated as:

max

{
max
j

∣∣∣∣∣ 1

nA

∑
i∈A

(xij − (x̄)j)
(
e
(a)
i − ē

(a)
A

)∣∣∣∣∣ , max
j

∣∣∣∣∣ 1

nB

∑
i∈B

(xij − (x̄)j)
(
e
(b)
i − ē

(b)
B

)∣∣∣∣∣
}
.

Proofs of Theorems 1, S1, S2 and Corollary 1
In this section, we will prove Theorem s1, S1, S2, and Corollary 1 under weaker sparsity conditions than those given in the
main text.
Definition 1. We define an approximate sparsity measure. Given the regularization parameter λa, λb and β(a) and β(b), the

sparsity measures for treatment and control groups, s
(a)
λa

and s
(b)
λb

are defined as

s
(a)
λa

=

p∑
j=1

min

{
|β(a)
j |
λa

, 1

}
, s

(b)
λb

=

p∑
j=1

min

{
|β(b)
j |
λb

, 1

}
, (S4)

respectively. We will allow s
(a)
λa

and s
(b)
λb

to grow with n, though the notation does not explicitly show this. Note that this is

weaker than strict sparsity, as it allows β(a) and β(b) to have many small non-zero entries.
Condition (*). Suppose there exist β(a), β(b), λa and λb such that the conditions 1, 2, 3 and the following statements 1, 2, 3
hold simultaneously.

• Statement 1. Decay and scaling. Let sλ = max
{
s
(a)
λa
, s

(b)
λb

}
,

δn = o

(
1

sλ
√

log p

)
, (S5)

(sλ log p)/
√
n = o(1). (S6)

• Statement 2. Cone invertibility factor. Define the Gram matrix as Σ = n−1∑n
i=1(xi− x̄)(xi− x̄)T . There exist constants

C > 0 and ξ > 1 not depending on n, such that

‖hS‖1 ≤ Csλ‖Σh‖∞, ∀h ∈ C, (S7)

with C = {h : ‖hSc‖1 ≤ ξ‖hS‖1}, and

S = {j : |β(a)
j | > λa or |β(b)

j | > λb}. (S8)

• Statement 3. Let τ = min
{

1/70, (3pA)2/70, (3 − 3pA)2/70
}

. For constants 0 < η < ξ−1
ξ+1

and 0 < M < ∞, assume the

regularization parameters of the Lasso belong to the sets

λa ∈ (
1

η
,M ]×

(
2(1 + τ)L1/2

pA

√
2 log p

n
+ δn

)
, (S9)

4 www.pnas.org — — Footline Author



i
i

“appendices” — 2016/4/7 — 10:02 — page 5 — #5 i
i

i
i

i
i

λb ∈ (
1

η
,M ]×

(
2(1 + τ)L1/2

pB

√
2 log p

n
+ δn

)
. (S10)

It is easy to verify that Condition (*) is implied by Conditions 1 - 6 of the main text. We will prove Theorems 1, S1, S2,

and Corollary 1 under the weaker Condition (*). For ease of notation, we will omit the subscript of β̂
(a)

Lasso, β̂
(b)

Lasso, sλ, s
(a)
λa

and

s
(b)
λb

. Note that we can assume, without loss of generality, that

ā = 0, b̄ = 0, x̄ = 0. (S11)

Otherwise, we can consider ăi = ai − ā, b̆i = bi − b̄ and x̆i = xi − x̄. Thus, we assume ATE = ā− b̄ = 0 and the definition of

ÂTELasso becomes

ÂTELasso =
[
āA − (x̄A)T β̂

(a)
]
−
[
b̄B − (x̄B)T β̂

(b)
]
. (S12)

We will rely heavily on the following Massart concentration inequality for sampling without replacement.
Lemma S1. Let {zi, i = 1, ..., n} be a finite population of real numbers. Let A ⊂ {i, . . . , n} be a subset of deterministic size
|A| = nA that is selected randomly without replacement. Define pA = nA/n, σ

2 = n−1∑n
i=1(zi − z̄)2. Then, for any t > 0,

P (z̄A − z̄ ≥ t) ≤ exp

{
− pAnAt

2

(1 + τ)2σ2

}
, (S13)

with τ = min
{

1/70, (3pA)2/70, (3− 3pA)2/70
}

.
Remark. Massart showed in his paper [5] that for sampling without replacement, the following concentration inequality holds:

P (z̄A − z̄ ≥ t) ≤ exp

{
−pAnAt

2

σ2

}
.

His proof required that n/nA must be an integer. We extend the proof to allow n/nA to be a non-integer but with a slightly
larger constant factor (1 + τ)2.

Proof. Assume z̄ = 0 without loss of generality. For nA ≤ n/2, let m ≥ 2 and r ≥ 0 be integers satisfying n− nAm = r < nA.
Let u ≥ 0, we first prove that

E exp

(
u
∑
i∈A

zi

)
≤ E exp

(
uδ
∑
i∈B

zi/{m(m+ 1)}+ u2nσ2/4

)
(S14)

for a random subset B ⊂ {1, . . . , n} of fixed size |B| ≤ n/2 and a certain fixed δ ∈ {−1, 1}. Let P1 be the probability under
which {i1, . . . , in} is a random permutation of {1, . . . , n}. Given {i1, . . . , in}, we divide the sequence into consecutive blocks
B1, . . . , BnA with |Bj | = m + 1 for j = 1, . . . , r and |Bj | = m for j = r + 1, ..., nA. Let z̄k be the mean of {zi : i ∈ Bk} and
P2 be a probability conditionally on {i1, . . . , in} under which wk is a random element of {zi : i ∈ Bk}, k = 1, . . . , nA. Then
{w1, . . . , wnA} is a random sample from {z1, . . . , zn} without replacement under P = P1P2. Let ∆k = maxi∈Bk zi−mini∈Bk zi
and denote E2 the expectation under P2. The Hoeffding inequality gives

E2 exp

(
u

nA∑
k=1

wk

)
≤ exp

(
u

nA∑
k=1

z̄k + (u2/8)

nA∑
k=1

∆2
k

)
. (S15)

As ∆2
i ≤ 2

∑
i∈Bk

(zi − z̄k)2 ≤ 2
∑
i∈Bk

z2i ,

E2 exp

(
u

nA∑
k=1

wk

)
≤ exp

(
u

nA∑
k=1

z̄k + u2nσ2/4

)
(S16)

Let B = ∪rk=1Bk. As z̄ = 0,
nA∑
k=1

z̄k =
∑
i∈B

zi/{m(m+ 1)}. (S17)

This yields (S14) with δ = 1 when |B| ≤ n/2. Otherwise, (S14) holds with δ = −1 when B is replaced by Bc, as
∑
i∈B zi =

−
∑
i∈Bc zi due to z̄ = 0.

Now, as m(m+ 1) ≥ 6, repeated application of (S14) yields

E exp

(
u
∑
i∈A

zi

)
≤ E exp

[
uδ′

∑
i∈B′

zi/{m(m+ 1)m′(m′ + 1)}+
(
1 + {m(m+ 1)}−2)u2nσ2/4

]
≤ exp

[(
1 + {m(m+ 1)}−2(1 + 1/36 + 1/362 + · · · )

)
u2nσ2/4

]
= exp

[(
1 + (36/35){m(m+ 1)}−2)u2nσ2/4

]
≤ exp

[
(1 + τ)2 u2nσ2/4

]
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with τ = (18/35){m(m+ 1)}−2. The upper bound for τ follows from 2 ≤ m < n/nA < m+ 1.
As z̄ = 0, we also have

E exp

(
u
∑
i∈A

zi

)
≤ exp

[
(1 + τ)2 u2nσ2/4

]
(S19)

for nA > n/2. This yields (S13) via the usual

P {z̄A − z̄ > t} ≤ exp
[
−ut+ (1 + τ)2u2nσ2/(4n2

A)
]

= exp

[
−2

pAnAt
2

(1 + τ)2σ2
+

pAnAt
2

(1 + τ)2σ2

]
(S20)

with u = 2pAnAt/{σ(1 + τ)}2.

Proof of Theorem 1.

Proof. Recall the decompositions of the potential outcomes:

ai = ā+ (xi − x̄)Tβ(a) + e
(a)
i = xTi β

(a) + e
(a)
i , (S21)

bi = b̄+ (xi − x̄)Tβ(b) + e
(b)
i = xTi β

(b) + e
(b)
i . (S22)

If we define h(a) = β̂
(a)
− β(a), h(b) = β̂

(b)
− β(b), by substitution, we have

√
n(ÂTELasso −ATE) =

√
n
[
ē
(a)
A − ē

(b)
B

]
︸ ︷︷ ︸

∗

−
√
n
[
(x̄A)T h(a) − (x̄B)T h(b)

]
︸ ︷︷ ︸

∗∗

.

We will analyze these two terms separately, showing that (∗) is asymptotically normal with mean 0 and variance given by
(17), and that (∗∗) is op (1).

Asymptotic normality of (∗) follows from the Theorem 1 in [6] with a and b replaced by e(a) and e(b) respectively. To bound
(∗∗), we will apply Hölder’s inequality to each of the terms. We will focus on the term involving the treatment group A, but
exact same analysis is applied to the control group B. We have the bound∣∣∣(x̄A)T h(a)

∣∣∣ ≤ ‖x̄A‖∞ ‖h(a)‖1. (S23)

We bound the two terms on the right hand side of (S23) by the following Lemma S2 and Lemma S3, respectively.

Lemma S2. Under the moment condition of [6], if we let cn = (1+τ)L1/4

pA

√
2 log p
n

, then as n→∞,

P
(
‖x̄A‖∞ > cn

)
→ 0

Thus, ‖x̄A‖∞ = Op

(√
log p
n

)
.

Lemma S3. Assume the conditions of Theorem 1 hold. Then ‖h(a)‖1 = op
(

1√
log p

)
.

The proofs of these two Lemmas are below. Using these two Lemmas, it is easy to show that (∗∗)=
√
n · Op

(√
log p
n

)
·

op
(

1√
log p

)
= op (1).

Proof of Corollary 1.

Proof. By Theorem 1 in [6], the asymptotic variance of
√
n ÂTEunadj is 1−pA

pA
limn→∞ σ

2
a + pA

1−pA
limn→∞ σ

2
b + 2 limn→∞ σab,

so the difference is

1− pA
pA

lim
n→∞

(
σ2
e(a) − σ

2
a

)
+

pA
1− pA

lim
n→∞

(
σ2
e(b) − σ

2
b

)
+ 2 lim

n→∞
(σe(a)e(b) − σab) .

We will analyze these three terms separately. Since Xβ(a) and Xβ(b) are the orthogonal projections of a and b onto the same
subspace, we have

(Xβ(a))T e(a) = (Xβ(a))T e(b) = (Xβ(b))T e(a) = (Xβ(b))T e(b) = 0.

Simple calculations yield

σ2
e(a) − σ

2
a = ||e(a)||22 − ||a||22 = −||Xβ(a)||22, (S24)

σ2
e(b) − σ

2
b = ||e(b)||22 − ||b||22 = −||Xβ(b)||22, (S25)
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σe(a)e(b) − σab = (e(a))T (e(b))− aT b = −(Xβ(a))T (Xβ(b)) (S26)

Combining (S24), (S25) and (S26), we obtain the corollary.

Proof of Theorem S1.

Proof. To prove Theorem S1, it is enough to show that

σ̂2
e(a)

p→ lim
n→∞

σ2
e(a) , (S27)

σ̂2
e(b)

p→ lim
n→∞

σ2
e(b) . (S28)

We will only prove the statement (S27) and omit the proof of the statement (S28) since it is identical.
We first state the following two lemmas. Lemma S4 bounds the number of selected covariates (covariates with a nonzero

coefficient), while Lemma S5 establishes conditions under which the subsample mean (without replacement) converges in
probability to the population mean.

Lemma S4. Under conditions in Theorem S1, there exists a constant C, such that the following holds with probability going
to 1:

ŝ(a) ≤ Cs; ŝ(b) ≤ Cs. (S29)

The proof of Lemma S4 can be found below.

Lemma S5. Let {zi, i = 1, ..., n} be a finite population of real numbers. Let A ⊂ {i, . . . , n} be a subset of deterministic size
|A| = nA that is selected randomly without replacement. Suppose that the population mean of the zi has a finite limit and that
there exist constants ε > 0 and L <∞ such that

1

n

n∑
i=1

|zi|1+ε ≤ L. (S30)

If nA
n
→ pA ∈ (0, 1), then

z̄A
p→ lim
n→∞

z̄. (S31)

By definition (S1) and simple calculations,

σ̂2
e(a) =

1

nA − df (a)

∑
i∈A

(
ai − āA − (xi − x̄A)T β̂

(a)
)2

=
1

nA − df (a)

∑
i∈A

(
ai − āA − (xi − x̄A)Tβ(a) + (xi − x̄A)T (β(a) − β̂

(a)
)
)2

=
1

nA − df (a)

∑
i∈A

(
ai − xTi β

(a) − (āA − (x̄A)Tβ(a)) + (xi − x̄A)T (β(a) − β̂
(a)

)
)2

=
nA

nA − df (a)

1

nA

∑
i∈A

(
e
(a)
i − ē

(a)
A + (xi − x̄A)T (β(a) − β̂

(a)
)
)2

=
nA

nA − df (a)

{
1

nA

∑
i∈A

(
e
(a)
i − ē

(a)
A

)2
+

1

nA

∑
i∈A

(
(xi − x̄A)T (β(a) − β̂

(a)
)
)2}

+
nA

nA − df (a)

{
1

nA

∑
i∈A

(e
(a)
i − ē

(a)
A )(xi − x̄A)T (β(a) − β̂

(a)
)

}
.

The second to last equality is due to the decomposition of potential outcome a:

ai = xTi β
(a) + e

(a)
i ; āA = (x̄A)Tβ(a) + ē

(a)
A .

It is easy to see that
1

nA

∑
i∈A

(
e
(a)
i − ē

(a)
A

)2
=

1

nA

∑
i∈A

(e
(a)
i )2 − (ē

(a)
A )2. (S32)

By the 4th moment condition on the approximation error e(a) (see (7)), and applying Lemma S5 gives

1

nA

∑
i∈A

(e
(a)
i )2

p→ lim
n→∞

σ2
e(a) ; ē

(a)
A

p→ lim
n→∞

ē(a) = 0.

Therefore,
1

nA

∑
i∈A

(
e
(a)
i − ē

(a)
A

)2 p→ lim
n→∞

σ2
e(a) . (S33)
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By simple algebra,

1

nA

∑
i∈A

(
(xi − x̄A)T (β(a) − β̂

(a)
)
)2

= (β(a) − β̂
(a)

)T
[

1

nA

∑
i∈A

(xi − x̄A)(xi − x̄A)T
]

(β(a) − β̂
(a)

)

≤ ||β(a) − β̂
(a)
||21 · ||

1

nA

∑
i∈A

(xi − x̄A)(xi − x̄A)T ||∞. (S34)

We next show that (S34) converges to 0 in probability. By Lemma S3 and Lemma S7, we have

||β(a) − β̂
(a)
||1 = ‖h(a)‖1 = op

(
1√

log p

)
, (S35)

|| 1

nA

∑
i∈A

(xi − x̄A)(xi − x̄A)T ||∞ = Op(1). (S36)

Therefore,
1

nA

∑
i∈A

(
(xi − x̄A)T (β(a) − β̂

(a)
)
)2 p→ 0. (S37)

By Cauchy-Schwarz inequality,

| 1

nA

∑
i∈A

(e
(a)
i − ē

(a)
A )(xi − x̄A)T (β(a) − β̂

(a)
)|

≤

[
1

nA

∑
i∈A

(
e
(a)
i − ē

(a)
A

)2] 1
2
[

1

nA

∑
i∈A

(
(xi − x̄A)T (β(a) − β̂

(a)
)
)2] 1

2

(S38)

which converges to 0 in probability because of (S33) and (S37).
By Lemma S4 and Condition 4, we have

nA
nA − df (a)

=
nA

nA − ŝ(a) − 1

p→ 1. (S39)

Combining (S33), (S37), (S38) and (S39), we conclude that

σ̂2
e(a)

p→ lim
n→∞

σ2
e(a) .

The remaining part of the proof is to study the difference between the conservative variance estimate and the true asymptotic
variance: (

1

pA
lim
n→∞

σ2
e(a) +

1

1− pA
lim
n→∞

σ2
e(b)

)
−
(

1− pA
pA

lim
n→∞

σ2
e(a) +

pA
1− pA

lim
n→∞

σ2
e(b) + 2 lim

n→∞
σe(a)e(b)

)
= lim

n→∞
σ2
e(a) + lim

n→∞
σ2
e(b) − 2 lim

n→∞
σe(a)e(b)

= lim
n→∞

σ2
e(a)−e(b)

= lim
n→∞

1

n

n∑
i=1

(
ai − bi − xTi (β(a) − β(b))

)2
. (S40)

Proof of Theorem S2.

Proof. By Lemma S4, max (ŝ(a), ŝ(b)) = op(min (nA, nB)). Therefore, (σ̂2
e(a)

, σ̂2
e(b)

) and ((σ̂∗)2
e(a)

, (σ̂∗)2
e(b)

) have the same limits.
The conclusion follows from Theorem S1.
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Proofs of Lemmas
In this section, we will drop the superscript on h, e and β̂ and focus on the proof for treatment group A, as the same analysis
can be applied to control group B.

Proof of Lemma S2.

Proof. Let cn = (1+τ)L1/4

pA

√
2 log p
n

. By the union bound,

P
(
‖x̄A‖∞ > cn

)
= P

(
max

j=1,...,p

∣∣∣∣∣ 1

nA

∑
i∈A

xij

∣∣∣∣∣ > cn

)
≤

p∑
j=1

P

(∣∣∣∣∣ 1

nA

∑
i∈A

xij

∣∣∣∣∣ > cn

)
. (S41)

By Cauchy-Schwarz inequality, we have

1

n

n∑
i=1

x2ij ≤

(
1

n

n∑
i=1

x4ij

) 1
2
(

1

n

n∑
i=1

12

) 1
2

≤
√
L. (S42)

Substituting the concentration inequality (S13) into (S41),

P
(
‖x̄A‖∞ > cn

)
≤ 2 exp

{
log p− pAnAc

2
n

(1 + τ)2L1/2

}
= 2 exp {− log p} → 0.

Proof of Lemma S3.

Proof. We start with the KKT condition, which characterizes the solution to the Lasso. Recall the definition of the Lasso

estimator β̂:

β̂ = arg min
β

1

2nA

∑
i∈A

(
ai − āA − (xi − x̄A)Tβ

)2
+ λa ‖β‖1 .

The KKT condition for β̂ is
1

nA

∑
i∈A

(xi − x̄A)
(
ai − āA − (xi − x̄A)T β̂

)
= λaκ, (S43)

where κ is the subgradient of ||β||1 taking value at β = β̂, i.e.,

κ ∈ ∂||β||1
∣∣∣β=β̂ with

{
κj ∈ [−1, 1] for j s.t. β̂j = 0

κj = sign(β̂j) otherwise
(S44)

Substituting ai by the decomposition (3), (S43) becomes

1

nA

∑
i∈A

(xi − x̄A)(xi − x̄A)T (β − β̂) +
1

nA

∑
i∈A

(xi − x̄A)(ei − ēA) = λaκ. (S45)

Multiplying both sides of (S45) by −hT = (β − β̂)T , we have

1

nA

∑
i∈A

(
(xi − x̄A)Th

)2
− hT

1

nA

∑
i∈A

(xi − x̄A)(ei − ēA)

= λa(β − β̂)Tκ ≤ λa
(
‖β‖1 − ‖β̂‖1

)
where the last inequality is because

βTκ ≤ ||β||1||κ||∞ ≤ ||β||1 and β̂
T
κ = ||β̂||1.

Rearranging and by Hölder’s inequality, we have

1

nA

∑
i∈A

(
(xi − x̄A)Th

)2
≤ λa

(
‖β‖1 − ‖β̂‖1

)
+ hT

1

nA

∑
i∈A

(xi − x̄A)(ei − ēA)

≤ λa
(
‖β‖1 − ‖β̂‖1

)
+ ‖h‖1

∥∥∥∥∥ 1

nA

∑
i∈A

(xi − x̄A)(ei − ēA)

∥∥∥∥∥
∞︸ ︷︷ ︸

∗

To control the term (∗), we define the event L = {∗ ≤ ηλa}. The following Lemma S6 shows that, with λa defined appropriately,
L holds with probability approaching 1. We will prove this Lemma later.
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Lemma S6. Define L =
{∥∥∥ 1

nA

∑
i∈A(xi − x̄A)(ei − ēA)

∥∥∥
∞
≤ ηλa

}
. Then under the conditions of Theorem 1, P (L)→ 1.

On L
1

nA

∑
i∈A

(
(xi − x̄A)Th

)2
≤ λa

(
‖β‖1 − ‖β̂‖1 + η ‖h‖1

)
. (S46)

By substituting the definition of h, and several applications of the triangle inequality, we have

‖β‖1 − ‖β̂‖1 ≤ ‖hS‖1 − ‖hSc‖1 + 2 ‖βSc‖1 .

Therefore,

1

nA

∑
i∈A

(
(xi − x̄A)Th

)2
≤ λa

(
‖hS‖1 − ‖hSc‖1 + 2 ‖βSc‖1 + η ‖h‖1

)
≤ λa

(
(η − 1) ‖hSc‖1 + (1 + η) ‖hS‖1 + 2 ‖βSc‖1

)
.

Because 1
nA

∑
i∈A

(
(xi − x̄A)Th

)2 ≥ 0, we obtain

(1− η) ‖hSc‖1 ≤ (1 + η) ‖hS‖1 + 2 ‖βSc‖1 ≤ (1 + η) ‖hS‖1 + 2sλa. (S47)

where the last inequality is because of the definition of s in (S4) and S in (S8).
Consider the following two cases:
(I) If (1 + η)‖hS‖1 + 2sλa ≥ (1− η)ξ‖hS‖1 then by (S47),

‖h‖1 = ‖hS‖1 + ‖hSc‖1 ≤
(

1 + η

1− η + 1

)
‖hS‖1 +

2sλa
1− η ≤

2sλa
1− η

(
2

(1− η)ξ − (1 + η)
+ 1

)
.

By the definition of λa and the scaling assumptions (S5), (S6), we have that sλa = o
(

1√
log p

)
.

(II) If (1+η)‖hS‖1+2sλa < (1−η)ξ‖hS‖1 then by (S47) we have ‖hSc‖1 ≤ ξ‖hS‖1. Applying the cone invertibility condition
on the design matrix (S7),

‖h‖1 = ‖hS‖1 + ‖hSc‖1 ≤ (1 + ξ)‖hS‖1 ≤ (1 + ξ)Cs

∥∥∥∥ 1

n
XTXh

∥∥∥∥
∞

(S48)

Before applying this inequality we will revisit the KKT condition (S44), but this time we will take the l∞-norm, yielding∥∥∥∥∥ 1

nA

∑
i∈A

(xi − x̄A)(xi − x̄A)Th

∥∥∥∥∥
∞

≤ λa +

∥∥∥∥∥ 1

nA

∑
i∈A

(xi − x̄A)(ei − ēA)

∥∥∥∥∥
∞

≤ (1 + η)λa (S49)

where the latter inequality holds on the set L. The final step is to control the deviation of the subsampled covariance matrix

from the population covariance matrix, so that we can apply (S48). We define another event with constant C1 = 2(1+τ)L1/2

pA

M =

{∥∥∥∥∥ 1

nA

∑
i∈A

(xi − x̄A)(xi − x̄A)T − 1

n
XTX

∥∥∥∥∥
∞

≤ C1

√
log p

n

}

Lemma S7. Assume stability of treatment assignment probability condition 1 and moment condition 6 hold. Then P (M)→ 1.

We will prove Lemma S7 later. Continuing our inequalities, on the event L ∩M,

s

∥∥∥∥ 1

n
XTXh

∥∥∥∥
∞
≤ C1s

√
log p

n
‖h‖1 + s

∥∥∥∥∥ 1

nA

∑
i∈A

(xi − x̄A)(xi − x̄A)Th

∥∥∥∥∥
∞

≤ o(1) ‖h‖1 + s(1 + η)λa,

where we have applied the scaling assumption (S6) and (S49) in the second line. Hence, by (S48),

‖h‖1 ≤ (1 + ξ)C
[
o(1) ‖h‖1 + s(1 + η)λa

]
.

Again, applying the scaling assumptions (S5) and (S6), we get ‖h‖1 = op
(

1√
log p

)
.
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Proof of Lemma S4.

Proof. In the proof of Lemma S3, we have shown that, on L defined in Lemma S6,

1

nA

∑
i∈A

(
(xi − x̄A)T (β − β̂)

)2
≤ λa

(
‖β‖1 − ‖β̂‖1 + η||β − β̂||1

)
.

≤ λa(1 + η)||β − β̂||1. (S50)

Let xj be the j-th column of the design matrix X and x̄jA = n−1
A

∑
i∈A xij . Again, by KKT conditon, we have∣∣∣∣∣ 1

nA

∑
i∈A

(xij − x̄jA)
(
ai − āA − (xi − x̄A)T β̂

)∣∣∣∣∣ = λa, if β̂j 6= 0.

Substituting ai by the decomposition (3) yields∣∣∣∣∣ 1

nA

∑
i∈A

(xij − x̄jA)(ei − ēA) +
1

nA

∑
i∈A

(xij − x̄jA)(xi − x̄A)T (β − β̂)

∣∣∣∣∣ = λa.

Combining with the definition of the event L, we have if β̂j 6= 0

∆j :=

∣∣∣∣∣ 1

nA

∑
i∈A

(xij − x̄jA)(xi − x̄A)T (β − β̂)

∣∣∣∣∣ ≥ (1− η)λa. (S51)

Let Z = (z1, ..., zn) ∈ Rp×n with zi = xi − x̄A ∈ Rp and denote w = ZT (β − β̂), then

1

nA
||wA||22 =

1

nA

∑
i∈A

(
(xi − x̄A)T (β − β̂)

)2
≤ λa(1 + η)||β − β̂||1.

Let ZA = (zi : i ∈ A), since the largest eigenvalues of ZTAZA and ZAZ
T
A are the same,

1

n2
A

wT
AZ

T
AZAwA ≤ 1

n2
A

λmax(ZTAZA)||wA||22

≤ 1

nA
λmax(ZAZ

T
A)λa(η + 1)||β − β̂||1

≤ Λmax
n

nA
λa(1 + η)||β − β̂||1.

The last inequality holds because

λmax(ZAZ
T
A) = max

u:||u||2=1
uTZAZ

T
Au

= max
u:||u||2=1

uT
∑
i∈A

(xi − x̄A)(xi − x̄A)Tu

= max
u:||u||2=1

uT
∑
i∈A

xix
T
i u− nAuT (x̄A)(x̄A)Tu

≤ max
u:||u||2=1

uT
∑
i∈A

xix
T
i u ≤ nΛmax. (S52)

On the other hand,

1

n2
A

wT
AZ

T
AZAwA =

p∑
j=1

∆2
j ≥

∑
j:β̂j 6=0

∆2
j ≥ (1− η)2λ2

aŝ. (S53)

Combining (S51), (S53) and the fact that with probability going to 1 (see the proof of Lemma S3)

||β − β̂||1 ≤ Cs(1 + η)λa,

where C is a constant. We conclude that with probability going to 1

ŝ ≤ 1

(1− η)2
1

λ2
a

Λmax
n

nA
λa(1 + η)Cs(1 + η)λa ≤

C(1 + η)2

pA(1− η)2
s.
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Proof of Lemma S5.

Proof. For any t > 0, we have

P (|z̄A − lim
n→∞

z̄| > t) ≤ P (|z̄A − z̄| > t/2) + P (|z̄ − lim
n→∞

z̄| > t/2). (S54)

The second term in the right hand side of (S54) obviously converges to 0 as n→∞. To bound the first term, we apply the
concentration inequality (S13). By (S30), it is easy to show

1

n

n∑
i=1

z2i =
1

n

n∑
i=1

|zi|1−ε|zi|1+ε ≤ (nL)
1−ε
1+ε

1

n

n∑
i=1

|zi|1+ε ≤ L
2

1+ε n
1−ε
1+ε .

Concentration inequality (S13) yields

P (|z̄A − z̄| > t/2) ≤ 2 exp

{
− pAnAt

2

4(1 + τ)2L
2

1+ε n
1−ε
1+ε

}
→ 0.

Proof of Lemma S6.

Proof. It is easy to verify that
1

nA

∑
i∈A

(xi − x̄A)(ei − ēA) =
1

nA

∑
i∈A

xiei − (x̄A)(ēA).

Hence,

|| 1

nA

∑
i∈A

(xi − x̄A)(ei − ēA)||∞ ≤ ||
1

nA

∑
i∈A

xiei||∞ + ||(x̄A)(ēA)||∞. (S55)

We analyze these two terms on the right hand side of the inequality separately. For the first term, by triangle inequality and
the definition of δn in (9),

|| 1

nA

∑
i∈A

xiei||∞ ≤ ||
1

nA

∑
i∈A

xiei −
1

n

n∑
i=1

xiei||∞ + || 1
n

n∑
i=1

xiei||∞

≤ || 1

nA

∑
i∈A

xiei −
1

n

n∑
i=1

xiei||∞ + δn. (S56)

We will again bound (S56) by the concentration inequality (S13) in Lemma S1. By Cauchy-Schwarz inequality, we have for
any j = 1, .., p,

1

n

n∑
i=1

x2ije
2
i ≤

(
1

n

n∑
i=1

x4ij

) 1
2
(

1

n

n∑
i=1

e4i

) 1
2

≤ L.

Let tn = (1+τ)L1/2

pA

√
2 log p
n

, then by the union bound and the concentration inequality (S13),

P

(
|| 1

nA

∑
i∈A

xiei −
1

n

n∑
i=1

xiei||∞ > tn

)
≤ 2 exp

{
log p− pAnAt

2
n

(1 + τ)2L)

}
= 2 exp {− log p} → 0.

Taking this back to (S56), we have

P

(
|| 1

nA

∑
i∈A

xiei||∞ ≤ tn + δn

)
→ 1. (S57)

For the second term, by Lemma S2, we have shown that,

P

(
‖x̄A‖∞ ≤

(1 + τ)L1/4

pA

√
2 log p

n

)
→ 1.

Similar proof yields

P

(
‖ēA‖∞ ≤

(1 + τ)L1/4

pA

√
2 log p

n

)
→ 1.

Hence, under the scaling condition (S6),

P

(
‖(x̄A)(ēA)‖∞ ≤

(1 + τ)L1/2

pA

√
2 log p

n

)
→ 1. (S58)

12 www.pnas.org — — Footline Author



i
i

“appendices” — 2016/4/7 — 10:02 — page 13 — #13 i
i

i
i

i
i

Combining (S57) and (S58) yields

P

(
|| 1

nA

∑
i∈A

(xi − x̄A)(ei − ēA)||∞ ≤
2(1 + τ)L1/2

pA

√
2 log p

n
+ δn

)
→ 1.

The conclusion follows from the condition λa ∈ ( 1
η
,M ]×

(
2(1+τ)L1/2

pA

√
2 log p
n

+ δn

)
.

Proof of Lemma S7.

Proof. It is easy to see that
1

nA

∑
i∈A

(xi − x̄A)(xi − x̄A)T =
1

nA

∑
i∈A

xix
T
i − (x̄A)(x̄A)T .

Then, by triangle inequality,

|| 1

nA

∑
i∈A

(xi − x̄A)(xi − x̄A)T − 1

n
XTX||∞ (S59)

≤ || 1

nA

∑
i∈A

xix
T
i −

1

n

n∑
i=1

xix
T
i ||∞︸ ︷︷ ︸

∗

+ ||(x̄A)(x̄A)T ||∞︸ ︷︷ ︸
∗∗

. (S60)

We control the first term (∗) again using the concentration inequality (S13) and the union bound. By Cauchy-Schwarz
inequality, for j, k = 1, ..., p,

1

n

n∑
i=1

x2ijx
2
ik ≤

(
1

n

n∑
i=1

x4ij

) 1
2
(

1

n

n∑
i=1

x4ik

) 1
2

≤ L.

Then,

P

(
|| 1

nA

∑
i∈A

xix
T
i −

1

n

n∑
i=1

xix
T
i ||∞ ≥

(1 + τ)L1/2

pA

√
3 log p

n

)

≤ 2 exp

{
2 log p− 3pAnA(1 + τ)2L log p

(1 + τ)2Lp2An

}
= 2 exp {− log p} → 0. (S61)

The second term (∗∗) is bounded by again observing that, by Lemma S2 and the scaling condition (S6),

(∗∗) ≤ ||x̄A||2∞ = op(

√
log p

n
). (S62)

Combining (S61) and (S62) yields the conclusion.

Tables and Figures
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Fig. S1. Boxplot of the interval length with coverage probability (%) on top of each box for the unadjusted, OLS adjusted (only computed when p = 50), cv(Lasso)

adjusted and cv(Lasso+OLS) adjusted estimators with nA = 100.
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Fig. S2. Boxplot of the interval length with coverage probability (%) on top of each box for the unadjusted, OLS adjusted (only computed when p = 50), cv(Lasso)

adjusted and cv(Lasso+OLS) adjusted estimators with nA = 125.

14 www.pnas.org — — Footline Author



i
i

“appendices” — 2016/4/7 — 10:02 — page 15 — #15 i
i

i
i

i
i

(50,0) (50,0.6) (500,0) (500,0.6)

0
1

2
3

4
5

6
7

Boxplot of interval length (95% confidence interval) with coverage probability on top (nA=150)

(p, ρ)

in
te

rv
a

l 
le

n
g

th

97

96

97

96

95

95 93
93

95

95 92
93

91

90

Unadjusted OLScv(Lasso) cv(Lasso+OLS)

Fig. S3. Boxplot of the interval length with coverage probability (%) on top of each box for the unadjusted, OLS adjusted (only computed when p = 50), cv(Lasso)

adjusted and cv(Lasso+OLS) adjusted estimators with nA = 150.
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Fig. S4. Boxplot of the unadjusted, OLS adjusted (only computed when p = 50), cv(Lasso) and cv(Lasso+OLS) adjusted estimators with their standard deviations

presented on top of each box for nA = 100.
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Fig. S5. Boxplot of the unadjusted, OLS adjusted (only computed when p = 50), cv(Lasso) and cv(Lasso+OLS) adjusted estimators with their standard deviations

presented on top of each box for nA = 125.
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Fig. S6. Boxplot of the unadjusted, OLS adjusted (only computed when p = 50), cv(Lasso) and cv(Lasso+OLS) adjusted estimators with their standard deviations

presented on top of each box for nA = 150.
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Algorithm 1 K-fold Cross Validation (CV) for the Lasso+OLS estimator

Input: Design matrix X, response Y and a sequence of tuning parameter λ1, ..., λJ ; Number of folds K.

Output: The optimal tuning parameter selected by CV: λoptimal.

1: Divide randomly the data z = (X,Y ) into K roughly equal parts zk, k = 1, ...,K;

2: For each k = 1, ...,K, denote Ŝ(k)(λ0) = ∅ and β̂
(k)
Lasso+OLS(λ0) = 0.

• Fit the model with parameters λj , j = 1, ..., J to the other K−1 parts z−k = z \zk of the data, giving the Lasso solution

path β̂(k)(λj), j = 1, ..., J and compute the selected covariates set Ŝ(k)(λj) = {l : β̂
(k)
l (λj) 6= 0}, j = 1, ..., J on the path;

• For each j = 1, ..., J , compute the Lasso+OLS estimator:

β̂
(k)
Lasso+OLS(λj) =


arg min

β: βj=0, ∀j /∈Ŝ(k)(λj)

 1

2|z−k|
∑
i∈z−k

(yi − xTi β)2

 , if Ŝ(k)(λj) 6= Ŝ(k)(λj−1),

β̂
(k)
Lasso+OLS(λj−1), otherwise;

(S63)

• Compute the error in predicting the kth part of the data PE(k) :

PE(k)(λj) =
1

|zk|
∑
i∈zk

(
yi − xTi β̂

(k)
Lasso+OLS(λj)

)2
;

3: Compute cross validation error CV (λj), j = 1, ..., J :

CV (λj) =
1

K

K∑
k=1

PE(k)(λj);

4: Compute the optimal λ selected by CV;
λoptimal = argmin

λj : j=1,...,J
CV (λj);

5: return λoptimal.
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Fig. S7. Boxplot of Neyman SD estimate with the “true” SD presented as red dot.
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Fig. S8. Adjustment (fitted) value comparison for cv(Lasso) and cv(Lasso+OLS).
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Fig. S9. Fourth moment of each covariate. The covariates with the largest two fourth moments (37.3 and 34.9 respectively) are quadratic term interactnew2 and

interaction term IMscorerct : systemnew respectively. Neither of them are selected by the Lasso to do the adjustment. All the fourth moments of the main effects are

less than 7.
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Table S1. Bias, standard deviation (SD) and root-mean square error
√

MSE of ATE estimates

(p, ρ)
Statistic Method (50,0) (50,0.6) (500,0) (500,0.6)

nA = 100
Unadjusted 0.003(0.004)∗ 0.005(0.005) 0.002(0.003) 0.003(0.005)

bias OLS 0.014(0.005) 0.013(0.006) - -
cv(Lasso) 0.007(0.004) 0.014(0.005) 0.006(0.004) 0.005(0.004)
cv(Lasso+OLS) 0.011(0.004) 0.013(0.005) 0.009(0.004) 0.003(0.004)
Unadjusted 0.79(0.08) 1.17(0.11) 0.79(0.07) 1.17(0.11)

SD OLS 0.72(0.07) 0.96(0.09) - -
cv(Lasso) 0.62(0.06) 0.82(0.08) 0.67(0.06) 0.84(0.08)
cv(Lasso+OLS) 0.63(0.06) 0.82(0.08) 0.65(0.06) 0.84(0.08)
Unadjusted 0.79(0.08) 1.17(0.11) 0.79(0.07) 1.17(0.11)√

MSE OLS 0.72(0.07) 0.97(0.09) - -
cv(Lasso) 0.63(0.06) 0.82(0.08) 0.67(0.06) 0.85(0.08)
cv(Lasso+OLS) 0.63(0.06) 0.82(0.08) 0.65(0.06) 0.84(0.08)

nA = 125
Unadjusted 0.008(0.005) 0.011(0.007) 0.006(0.004) 0.01(0.007)

bias OLS 0.008(0.004) 0.005(0.005) - -
cv(Lasso) 0.005(0.003) 0.012(0.005) 0.007(0.004) 0.004(0.004)
cv(Lasso+OLS) 0.012(0.004) 0.012(0.005) 0.011(0.004) 0.003(0.003)
Unadjusted 0.80(0.08) 1.15(0.11) 0.8(0.08) 1.15(0.11)

SD OLS 0.69(0.06) 0.90(0.09) - -
cv(Lasso) 0.62(0.06) 0.79(0.07) 0.67(0.06) 0.82(0.08)
cv(Lasso+OLS) 0.62(0.06) 0.79(0.07) 0.65(0.06) 0.81(0.08)
Unadjusted 0.80(0.07) 1.15(0.11) 0.8(0.07) 1.15(0.11)√

MSE OLS 0.69(0.07) 0.90(0.09) - -
cv(Lasso) 0.62(0.06) 0.80(0.08) 0.67(0.06) 0.82(0.08)
cv(Lasso+OLS) 0.62(0.06) 0.79(0.07) 0.65(0.06) 0.81(0.08)

nA = 150
Unadjusted 0.004(0.004) 0.000(0.005) 0.002(0.003) 0.005(0.005)

bias OLS 0.002(0.003) 0.006(0.005) - -
cv(Lasso) 0.003(0.003) 0.002(0.004) 0.01(0.005) 0.002(0.003)
cv(Lasso+OLS) 0.011(0.004) 0.006(0.004) 0.017(0.005) 0.001(0.003)
Unadjusted 0.85(0.08) 1.19(0.11) 0.85(0.08) 1.19(0.11)

SD OLS 0.76(0.07) 0.96(0.09) - -
cv(Lasso) 0.66(0.06) 0.82(0.08) 0.72(0.07) 0.84(0.08)
cv(Lasso+OLS) 0.67(0.06) 0.81(0.07) 0.71(0.07) 0.84(0.08)
Unadjusted 0.85(0.08) 1.19(0.11) 0.85(0.08) 1.19(0.11)√

MSE OLS 0.76(0.07) 0.96(0.09) - -
cv(Lasso) 0.66(0.06) 0.82(0.08) 0.72(0.07) 0.84(0.08)
cv(Lasso+OLS) 0.67(0.06) 0.82(0.08) 0.71(0.07) 0.84(0.08)

∗The numbers in parentheses are the corresponding standard errors estimated by using the bootstrap with B = 500 resamplings of the ATE estimates.
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Table S2. Mean number of selected covariates for treated and control group

(p, ρ)
Group Method (50,0) (50,0.6) (500,0) (500,0.6)

nA = 100
treated cv(Lasso) 16 13 22 22

cv(Lasso+OLS) 6 6 7 7
control cv(Lasso) 20 11 32 28

cv(Lasso+OLS) 8 6 7 7

nA = 125
treated cv(Lasso) 17 13 25 24

cv(Lasso+OLS) 7 6 6 6
control cv(Lasso) 19 11 32 27

cv(Lasso+OLS) 8 6 9 8

nA = 150
treated cv(Lasso) 18 13 29 26

cv(Lasso+OLS) 8 7 6 6
control cv(Lasso) 19 12 30 25

cv(Lasso+OLS) 8 6 11 8

Table S3. Coverage probability (%) and mean interval length (in parentheses) for 95% confidence interval

(p, ρ)
Methods (50,0) (50,0.6) (500,0) (500,0.6)

nA = 100
Unadjusted 97.3(3.54)∗ 95.8(4.79) 97.3(3.54) 95.8(4.79)
OLS 92.2(2.55) 90.0(3.19) - -
cv(Lasso) 95.8(2.58) 94.5(3.20) 94.3(2.61) 92.4(3.07)
cv(Lasso+OLS) 95.6(2.57) 94.4(3.17) 94.8(2.60) 93.0(3.11)

nA = 125
Unadjusted 97.4(3.56) 96.0(4.74) 97.3(3.56) 95.9(4.74)
OLS 93.3(2.54) 91.6(3.14) - -
cv(Lasso) 96.0(2.56) 95.0(3.15) 94.1(2.59) 92.9(3.02)
cv(Lasso+OLS) 95.7(2.55) 94.9(3.12) 94.4(2.58) 93.6(3.06)

nA = 150
Unadjusted 97.1(3.72) 95.8(4.88) 97.1(3.72) 95.8(4.88)
OLS 91.4(2.64) 90.4(3.21) - -
cv(Lasso) 95.4(2.66) 94.9(3.23) 92.9(2.68) 92.6(3.08)
cv(Lasso+OLS) 94.7(2.63) 94.8(3.19) 92.0(2.63) 93.1(3.11)
∗The numbers in parentheses are the corresponding mean interval lengths.

Table S4. Statistics for the PAC illustration

No. of selected covariates

Methods ÂTE σ̂ATE 95% confidence interval treated control
Unadjusted -0.13 0.081 [-0.69,0.43] - -
OLS -0.31 0.054 [-0.77,0.14] - -
cv(Lasso) -0.33 0.052 [-0.77,0.12] 24 8
cv(Lasso+OLS) -0.36 0.053 [-0.82,0.09] 4 5
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Table S5. Statistics for the PAC synthetic data set

No. of selected covariates

Bias SD
√

MSE Coverage (%) Length treated control
unadjusted 0.001(0)∗ 0.20(0.02) 0.20(0.02) 99 1.06 - -
OLS 0.002(0) 0.18(0.02) 0.18(0.02) 99 0.95 - -
cv(Lasso) 0.001(0) 0.17(0.02) 0.17(0.02) 99 0.94 25(23) 15(14)
cv(Lasso+OLS) 0.000(0) 0.17(0.02) 0.17(0.02) 99 0.95 6(6) 4(3)
∗The numbers in parentheses are the corresponding standard errors estimated by using the bootstrap with B = 500 resamplings of the ATE estimates.

Footline Author PNAS Issue Date Volume Issue Number 23


	/content/pnas/supplemental/1510506113/DCSupplemental/Supplemental_PDF01/pnas.1510506113.sapp.pdf
	Neyman-type conservative variance estimate
	Simulation
	The design matrix of the PAC data
	Estimation of constants in the conditions
	Proofs of Theorems 1, S1, S2 and Corollary 1
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Theorem S1
	Proof of Theorem S2

	Proofs of Lemmas
	Proof of Lemma S2
	Proof of Lemma S3
	Proof of Lemma S4
	Proof of Lemma S5
	Proof of Lemma S6
	Proof of Lemma S7

	Tables and Figures


