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Fast and stable multiple smoothing parameter
selection in smoothing spline analysis of variance
models with large samples

Nathaniel E. Helwi
Department of Statistics, University of lllinois
and
Ping Ma
Department of Statistics, University of lllinois

Abstract

The current parameterization and algorithm used to fit a smoothing spline analysis of vari-
ance (SSANOVA) model are computationally expensive, making a generalized additive model
(GAM) the preferred method for multivariate smoothing. In this paper, we proposéian e
cient reparameterization of the smoothing parameters in SSANOVA models, and a scalable
algorithm for estimating multiple smoothing parameters in SSANOVAs. To validate our ap-
proach, we present two simulation studies comparing our reparameterization and algorithm to
implementations of SSANOVAs and GAMs that are currently available in R. Our simulation
results demonstrate that (a) our scalable SSANOVA algorithm outperforms the currently used
SSANOVA algorithm, and (b) SSANOVASs can be a fast and reliable alternative to GAMs. We
also provide an example with oceanographic data that demonstrates the practical advantage of
our SSANOVA framework. Supplementary materials that are available online can be used to
replicate the analyses in this paper.

Keywords: Algorithms, Multivariate analysis, Nonparametric methods, Smoothing and nonpara-
metric regression, Smoothing splines

1 Introduction

A typical nonparametric regression model can be writtey asn(x;) + € fori € {1,...,n} where
yi € R is the response variable for tiv¢h observationy; = (X1, ..., Xjp)" is thep x 1 predictor

vector for the-th observationy is an unknown smooth function relating the response and predictor

*A shortened version of this paper was selected as a winner of the 2013 Student Paper Competition sponsored by
the Statistical Computing and Statistical Graphics Sections of the American Statistical Association.
"This work was funded by NSF grants DMS-1055815, DMS-0800631, and DMS-1228288.
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variables, ana; ~ N(0, o?) is independent, normally distributed measurement error. Given a set
of values ki, ;) fori € {1,...,n}, a popular approach for estimatipgs the minimization of a

penalized least-squares functional of the form
n

(/) D i = n(x))? + AI() (1)
i=1

whereJ is a quadratic penalty functional that quantifies the roughnegs afidA € (0, «) is a
global smoothing parameter that controls the traffdetween the goodness-of-fit of the data and

the smoothness af

Two possible approaches for estimating tfethat minimizes Equation (1) are smoothing
spline analysis of variance models (SSANOVAs; see Gu, 2013b; Wahba, 1990) and generalized
additive models (GAMs; see Wood, 2004, 2006); note thas subscripted because the optimal
function depends on the chosen smoothing parameters. In general, SSANOVAs benefit from a
solid theoretical foundation, but are computationally expensive to fit. In contrast, GAMs are fast to
compute, but are not built upon the same solid theoretical framework as SSANOVAs. Due to their
fast performance, GAMs are typically preferred over SSANOVAs in practice, despite the theoreti-

cal advantages of the SSANOVA framework.

Kim and Gu (2004) give an SSANOVA approximation usimek n selected knots, and their al-
gorithm requireO(ncf) flops to estimate, for each choice of smoothing parameters. In contrast,
when using Wood'’s (2004) approach to fit a GAM witselected knots, the algorithm requires
O(nc?) flops for the initialization, followed b(q?) flops for each choice of smoothing parameters.
Furthermore, using the conventional SSANOVA parameterization, there are often more smoothing
parameters than predictors, whereas a GAM uses one smoothing parameter for each predictor. As
a result, fitting an SSANOVA (using Kim & Gu’s, 2004, algorithm) typically takes substantially
longer than fitting the corresponding GAM (using Wood’s, 2004, algorithm), and the timing dif-

ference increases with

In this paper, we propose affieient reparameterization of the smoothing parameters in SSANOVA

models, such that there is one smoothing parameter for each predictor. We also propose a new al-
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gorithm for fitting an SSANOVA usingj selected knots. This new algorithm only requi@®ic?)

flops for the initialization; then, after the initialization, the estimatiompbnly requiresO(q®)

flops for each choice of smoothing parameters. In the following sections, we present our pro-
posed SSANOVA reparameterization (Section 2), describe a new algorithm for estimating multiple
smoothing parameters in SSANVOA models (Section 3), present two simulation studies compar-
ing our approach to other approaches (Section 4), and demonstrate the benefits of our approach

using an example (Section 5).

2 An Efficient Reparameterization

2.1 Conventional SSANOVA Parameterization

Then, minimizing Equation (1) can be estimated via a tensor product reproducing kernel Hilbert
space (RKHS) of functiong{ = ®§’:17{Xj on the domainX = H?zl)(,-, whereHy, is a RKHS of
functions onX;, which denotes the domain of theh predictor. In most case®{y, can be decom-
posed into three orthogonal subspaces, sucH.as= H., ® Hs & H,, whereH,, = H., & Hj

is thenull spaceof the j-th predictor (i.e.;H,, = {¢ : J(¢) = 0}) with H,, denoting a space of
constant functions (i.e%f,; = {¢ : ¢ o 1}), andH,, is thecontrast spacef the j-th predictor (i.e.,

He; ={¢ : 0 < J(¢) < oo}). The reproducing kernel (RK) off has the formp, = ij:lpxj, where

px; is the RK ofHy,, which has the formpyx, = p., + p; + pc; With p.,, pr,, andpc, denoting the

RKs of H.,, Hz;, andH,,, respectively (see Gu, 2013b; Wahba, 1990).

The marginal space decompositiols, = H., & Hx, © Hc, imply that the tensor product space
H can be decomposed into the summationfoéBhogonal subspaces. Typically, the tensor prod-
uct space is written a&f{ = H, & H., whereH, andH; are the tensor product null and contrast
spaces, respectively. Using the conventional SSANOVA parameterization, the contrast space of
H is written asH. = &;_, H,, where theH, are orthogonal subspaces with corresponding inner
products(-, -);. Then, the inner product off; is defined ag’;_, 6;1(-, e wheref = (64, ... ,6s)
are local smoothing parameters withe (0, o). Using this definition of the inner product f@{_,

it can be shown that the RK df(; is given byp. = Y¢_, 6oy, wherep; denotes the RK of,;.
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For example, withp = 2 predictors using cubic marginat& = H,, & H. where

H,=H, ® Wﬁl ® 7_([’12 ® (Wﬁl ® 7_{ﬁz)

(2)
He = He, & He, ® (He, @ Hi,) @ (Hi, @ He,) ® (He, @ He,)
are the null and contrast spacestf The RK has the formpx = p, + pc, Where
pn = 1+ pry + P, + PO
n n N2 mM~ng (3)

Pc = 61pe, + 020c, + O30c,01, + Oapi, Pc, + O5Pc,Pc;

are the RKs ofH,, and#, respectively, and = (64,...,0s) are the additional smoothing param-
eters. Note that there ase= 5 uniquefy parameters for onlyp = 2 predictors; this allows for

flexible smoothing, but creates dlittult multivariate optimization problem.

2.2 Proposed SSANOVA Reparameterization

To improve the #iciency of the SSANOVA framework, we define the marginal RKs as

PX; = Pn; T 7iPc (4)

wherep,, = p., +p5, is the RK of thej-th predictor’s null spacey is the RK of thej-th predictor’s
contrast space, ang < (0, o) is the j-th predictor’s smoothing parameter. Note that this definition

of the marginal RKs corresponds to the marginal inner produclg, = -, )n; + yjfl(-, “)e;» Which

implies thaty; rescales the marginal penalty of th¢h predictor. Also, note that this reparameter-
ization imposes a structure on the smoothing parameters in the tensor product RKHS, which can

result in substantial computational savings.

For example, withp = 2 predictors, theficient SSANOVA reparameterization uses

Pc = Y1PePn, + V2PnPe, + Y1Y2Pc,Pc, (5)

as the contrast space RK. In contrast to the conventional parameterization (see Equation (3)), the

reparameterized RK in Equation (5) only uses two unique smoothing parameters. Thus, the repa-
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rameterization requires a bivariate optimization, whereas the traditional parameterization involves
a five-variable optimization problem. Théieiency of the reparameterization is even more pro-
nounced in higher dimensions: wifh= 3 predictors, we have a trivariate optimization problem
using the reparameterization, whereas the traditional parameterization would require the optimiza-

tion of a function with respect to 14 parameters.

2.3 Properties of Proposed Reparameterization

First, note that fop = 1 predictor, the ficient reparameterization is identical to the conventional
parameterization because there is only piter 6) parameter, which can be absorbed intodice-
efficients. Second, note that fpr> 1 predictors, theféicient reparameterization is identical to the
conventional parameterization whenever the SSANOVA model contains strictly addite¢senf

the predictors; note that thisfters from other SSANOVA reparameterizations (e.g., COSSO; Lin

& Zhang, 2006). So, thefiéicient and conventional parameterizations onlfediwith respect to

their treatment of two-way (and higher-way) interactions between predictors. When one or more
interaction &ects are present, théieient reparameterization will require fewer unique smoothing

parameters than the conventional parameterization.

To better understand the constraints of thieeent reparameterization, it is helpful to consider
the case op = 2 predictors. Comparing théfecient reparameterization in Equation (5) to the con-
ventional parameterization in Equation (3), note that the reparameterization assundgs-thgt
0, = 64, andfs = 6.0, when defining the contrast space RK. Although seemingly limited, this
reparameterization is actually rather flexible. For example, sefting > 1 allows the nonpara-
metric interaction spaceH;, ® H.,) to dominate the contrast RK; in contrast, settingy, <« 1
allows the nonparametric maitftect spacesk(., and#,) and parametric-nonparametric interac-
tion effect spacesi(., ® Hz, andHx, & H,,) to dominate the contrast RK. The relative influence
of each predictor on the contrast RK can be controlled by adjusting theydtig; for example,
settingy; > vy, allows the first predictor more influence on the contrast RK (assuming the same

spline type for each predictor).
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The main limitation of the #icient reparameterization is its lack of flexibility (compared to
the conventional parameterization) when the SSANOVA model is misspecified. Continuing with
the case ofp = 2 predictors, suppose that the true data-generating model is of theyfesm ~
n1(xy) + m2(x2), i.e., there is no interactionffect. In theory, using the conventional SSANOVA
parameterization it would be possible to obtain the correct (additive) model by estirfiating
for k € {3,4,5}. In contrast, using thefigcient reparameterization the solution would contain
a small bias, given that the parametric-nonparametric interacfiestespaces cannot be fully
separated from the nonparametric maffeet spaces. However, with largeandy; parameters
selected using the GCV score (see Section 3), we have found that the bias introduced by the

efficient reparameterization is negligible in most cases (see Section 4.2 & Helwig, 2013).

3 Fast and Stable SSANOVA Algorithm

Overview. The scalable algorithm proposed in this section is unrelated tofficéeat reparame-
terization given in the previous section. Throughout this section, we write the algorithm in terms
of the conventional parameterization withparameters. However, remembering that thieient
reparameterization imposes a certain structure oftiparameters, this scalable algorithm could

be easily applied to thefgcient reparameterization using theparameters.

3.1 SSANOVA Computation

Given a set of smoothing parametdrs- (1/6.,...,4/6¢) and a set of selected knqﬁq}f‘zl, itis
well-known that thep; minimizing Equation (1) can be approximatedra$x) = Y., dvéy(X) +
Z:‘:lctpc(x, X;), where{¢,})y_, are basis functions spannirtl,, p. denotes the RK ofH;, and
d = {d\}ux1 andc = {Ci}q«1 are the unknown function céiecient vectors (see Kim & Gu, 2004; Gu

& Wahba, 1991). Using this representation, Equation (1) can be approximated as
(1/n)lly — Kd — Jgcl” + A'QqC (6)

where|| - ||? denotes the squared Frobenius noyr, {yiln1, K = {éy(Xi)}n fori € {1,...,n} and

vel{l...,u}, Jg = Y1 6dk Wwheredy = {p;(Xi, X)}nxq fori € {1,...,n} andt € {1,...,q}, and
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Q9 = Zlf:l Qka Wherer = {p;(s’(ta S'(W)}qxq for ta we {1’ ceey q}

Given a choice oft, the optimal function cd@cients are given by

n i

d K’K K’J K’

d)_ 9 y (7)
C J,gK J;Jg + /1an J;)

where ()" denotes the Moore-Penrose pseudoinverse of the input matrix. The fitted values are

given byy = Kd + Jo¢ = Sy, where

.
KK K’ K’

SA:(K J,,) o (8)
K 3130+ AnQy) |3,

is the smoothing matrix, which depends on the chosen smoothing parametersAipopular
criterion for estimating smoothing parameters in penalized regression models is the generalized

cross-validation (GCV) score of Craven and Wahba (1979), which is given by
GCV() = {nll(1n — SYYIPH/AIN = tr(Sp)]?). 9)

The estimatesl and § that minimize the GCV score have desirable properties (see Craven &
Wahba, 1979; Gu, 2013b; Gu & Wahba, 1991; Li, 1986), so our algorithm focuses on a fast GCV

score evaluation for given smoothing parameters.

Kim and Gu'’s (2004) algorithm seeks to find the smoothing parameters that minimize the GCV
score in Equation (9). For each choice of smoothing parameters, Kim and Gu’s algorithm forms
the inner (cross-product) portion &, and uses a pivoted Cholesky decomposition to find the
inverse ()'; given the needed inverse calculation, the fitted values can be easily obtained, so the
GCV score can be easily evaluated. However, obtaining the inner (cross-product) portion of the
smoothing matrix require®(nc?) flops, which can be quite costly for large So, because Kim
and Gu’s algorithm requires iterative work that depends on the (possibly quite large) sample size

n, the algorithm is not scalable for large samples.
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Our key insight is the fact that the dieient estimation (see Equation (7)) and the GCV score
evaluations (see Equation (9)) only depend on various crossproduct vectors and matrices. The
crossproduct vectors and matrices needed for Equation (7) are straightforward. Expanding the
term in the numerator of Equation (9), we haie, — S)ylII* = Iyl — 2y’'Syy + y’S}y, which only
depends on crossproduct vectors and matrices. Next, note that the trace calculation needed in the

denominator of the GCV score can be written as

.
K’K K'J, ][K/K K’Jg] 10)

tr(Sy) =tr
JyK Jpde +anQy) (JK  J3Jg

So, after initializing the necessary crossproduct vectors and matrices, the SSANOVA can be fit

using onlyO(qf) flops for each choice of smoothing parameters.

3.2 A Scalable Algorithm

First, form then x sqmatrixJ = (J1, Jo, ..., Js) and theg x sgmatrixQ = (Qq, Q2, ..., Qs). Next,

calculate theix 1 vectoryx = K’y and thesgx 1 vectory; = J'y. Finally, initialize theux u matrix
Ck = K’K, theu x sgmatrix Cx; = K’J, and thesqgx sgqmatrixC; = J’J. Then, given & vector,
defined = (0 ®« lq) where the symbabk denotes the Kronecker product, and calcu@je= Q6.

Next, calculate the x 1 vectory’ = 6'y; and note thay = J,y. Then, calculate tha x q matrix
C%, = Cys0, and note tha€%, = K'J. Likewise, calculate thg x q matrix C = 8'C,0, and note
thatCf = J,J,.

Next, note that, = X4[Cy + /ln(Ngg]TX;, whereXy = (K, Jg) is then x (u + g) design matrix,

Ck CY ~ [Owu Oux
Cy z[ « KJ} and O, E( s “). (11)
(Cﬁj), Cg oq><u Qb’

Now, if we let ABA’ denote the full-rank spectral decomposition 6§ [+ AnQy], we know that
tr(Sy) = tr(XsAB*A’X}) = tr(AB~*A’Cy); note that we define the full-rank spectral decompo-
sition by calculating the full spectral decomposition, and then setting to zero the eigenvalues

that are smaller than the first eigenvalue multiplied by machine epsilon. Furthermore, we have
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I(1n = SYYII? = lIylIZ — 2y,z + 2 Cyz, wherey, = (yk; Y9) is a U+ g) x 1 vector andz = AB™*A'y,,.
This implies that

GCV() = n{llyll* - 2y,z + Z Cyz}/{[n — tr(AB*A’Cy)]%} (12)

can be used to evaluate the GCV score.

Below we outline the full algorithm. First, note smoothing is fully parameterizedby 16, *
fork € {1,..., s}. However, when estimating multiple smoothing parameters in SSANOVA mod-
els, it has proven useful to separate the overall level of smoothing (capturgdrbyn the relative
smoothing of each subspace#t (captured by thé,’s), see Gu and Wahba (1991). As a result,
the below algorithm iterates between estimatinigr a fixedd, and then estimating for a fixed
A. In the below algorithm denotes the maximum number of iterations, which is a user-provided

positive integer. In general, we have found that setting 5 works well (see Helwig, 2013).
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Fast SSANOVA Algorithm for Large Samples

. Initializations:
1. Defined = (J1,J,,...,Jds) andQ = (Q1,Q>, ..., Qs)
2. Defineyx =K'y, y;=Jy, Ck =K’K, Cxy =K’J,andC; = J'J
3. Initialized = 15, e = 10°, 7 = 0, w = 5, and GCVQy) = |ly|?
II. Iterative Procedure:
1. Updatet for fixed 8
a. é = (@' ®k |q), Qo = Qé, yﬁ = é,yj, CHKJ = CKJé, Cg = é,CJé
b. Form theC, andQ, matrices from Equation (11)
c. Minimize the GCV score w.r.ft using Equation (12)
2. Updated for fixed A
a. Given current, calculateln
b. Minimize the GCV score w.r.€ = In(#) using Equation (12)
3. Check for Convergence
a. If[GCV(1p) — GCV(;l)]/GCV(/lo) < €, stop (algorithm converged
b. Elseifr = w - 1, stop (iteration limit reached)
c. Else set GCVYp) = GCV(fl) andr =7+ 1 and return to step 1
lll. Estimate Rirameters:
1. LetABA’ denote the full-rank spectral decomposition ©f fr AnQy]
a. (@.¢)=Yy,ABA’ and §=Kd+Js
b. 2 ={llyl2 - 2@, &)y + (@', &)Cy(d'. &)'}/{n — tr(ABIA'Cy)}

For the minimization of the GCV score with respectitfin step 1c of the Iterative Procedure),
it is possible to use some Newton-type (or other optimization) method. However, given that each
GCV score evaluation is rather cheap using this algorithm, we prefer a brute-force search because
this provides a better chance of avoiding local optima. Consequently, throughout this paper, we
evaluate the GCV score for € {107%} for k € {0,1,...,9}. For the minimization of the GCV
score with respect tg (in step 2b of the Iterative Procedure), we follow the suggestion of Kim
and Gu (2004) and use the quasi-Newton methods of Dennis and Schnabel (1996) through the R
functionnlm. Finally, note that we parameterize the problem in term& @hstead of9) because
£ is unconstrained (see Gu & Wahba, 1991).

3.3 Smart Starting Values

In the algorithm, thé, values are initialized to one, but this is arbitrary. When fitting an SSANOVA

using the standard parameterization, much better starting values fér plaeameters can be ob-
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tained by using Algorithm 3.2 from Gu and Wahba (1991), which will be briefly described. Sup-
pose that the true function can be writtenras: Y.;_; Pxn, wherePy is the projection operator
corresponding té-th orthogonal subspace #{.. In this case, it would be sensible to weight each
subspace according ®.7//?, so that the roughness penalties of thedent subspaces are bal-
anced. So, ify were known, one could defirtg = ||Py|/? for k € {1, ..., s}, and then minimize the

GCV score with respect to.

Clearly,n will be unknown in practice, so Gu and Wahba (1991) propose the following proce-
dure for initializingé. First, set, = tr(Qy)* fork € {1, ..., s}. Then, given th&, values, select
the A that minimizes the GCV score (or some similar criterion), and@ ¢note the contrast space
function codficient vector that corresponds to the optimal Next, define the starting smooth-
ing parameter values o = eﬁé’Qké for k € {1,...,s}. Note that thef, values are obtained

using the relatiorsy, = ||P,nl> with the true projectiorPyn replaced by the estimated projection
Pkna = 6k 211 G Pro(Xs, )]

When fitting an SSANOVA using theflecient reparameterization, Algorithm 3.2 from Gu and
Wahba (1991) cannot be used to initialize the smoothing parameters (because of the assumed
interdependencies between the smoothing parameters of fiieeedt subspaces). However, it
is possible to use a similar logic to initialize the smoothing parameters in this reparameterized
model. Assuming that; = (X1, X2) with x;; € [0,1] fori € {1,...,n} andj € {1, 2}, the contrast
space can be decomposed iste 3 orthogonal subspaces, suchds= H; & H, ® Hs, where
Hy = He, ® Hyy, Ho = Hy, @ He,, andHsz = He, ® He,. In this case, the, andy, parameters can
be initialized using the following procedure.

First setd, = tr(Qy), whereQy is the penalty matrix corresponding to the subspakefor
k € {1,2,3}), and definey; = 6,/6; andy, = 6,/6s. Then, giverd = (61, 6, 65) with 6; = y; for
j € {1, 2} andfs; = y,y,, select thel that minimizes the GCV score (or some similar criterion), and
let € denote the contrast space function fii@&éent vector that corresponds to the optimaNext,

defineék = Hﬁé’Qké for k € {1,2, 3}. Finally, define the starting smoothing parameter values as
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31 = 63/6, andy, = 65/6,. Note that they; values are obtained using a similar logic to that used
by Algorithm 3.2 from Gu and Wahba (1991), with the additional assumptioréthaty,y-.

This modified starting algorithm can be extended to various other situations, éfgrerl
types of predictors op > 2 predictors. The general structure of the modified starting algorithm is
(1) initialize they; parameters so that thefidirent subspaces have (approximately) equal influence,
(2) select thel that minimizes the GCV score and fetienote the optimal contrast space function
codficient vector, (3) defin@, = 62cQic for k € {1,..., s}, and (4) initialize they[ values by
taking the appropriate ratio of tifg values; we recommend using thevalues corresponding to

the highest-order interaction in the model.

4 Simulation Studies

Overview.We conducted two simulation studies. Simulation A compares our scalable algorithm to
Kim and Gu'’s (2004) algorithm using the conventional SSANOVA parameterization. Simulation B
compares ourfécient SSANOVA parameterization (in combination with the scalable algorithm)

to Wood'’s (2004) GAM algorithm. See the supplementary online materials for R code that can be
used to replicate these simulations. Note: simulations were conducted in R (ver 3.0.3) on an iMac
(3.1 GHz Intel Core i5) using ApplesecLib BLAS (see R documentation).

4.1 Simulation A
4.1.1 Simulation A: Design

Simulation A compares the scalable algorithm proposed in Section 3 to Kim and Gu'’s (2004) al-
gorithm when using the conventional SSANOVA parameterization (see Section 2.1). The scalable
algorithm is implemented in Helwig’'s (201#%)gssp.R function, and Kim and Gu’s algorithm is
implemented in Gu’s (2013&sanova.R function. As a part of Simulation A, we manipulated

two conditions relevant to the problem at hand: (a) the function type (4 levels: see Figure 1), and
(b) the number of observations (5 levels:= 100k for k € {1,5, 10, 25,50}). Using cubic and
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nominal marginal splines fox; andx, (respectively), there are = 4 smoothing parameters for
na andng when using the conventional SSANOVA parameterization with the two-way interac-
tion included. In contrast, there age= 5 smoothing parameters fgg andnp when using the

conventional SSANOVA parameterization with cubic marginals and the interaction included.

4.1.2 Simulation A: Analyses

For each combination af andn, we generateg by (a) independently sampling; andx;, from a
uniform distribution on the appropriate range for the giyesee Figure 1, (b) independently sam-
pling ¢ from a N(Q 9) distribution, and (c) defining the observed responsg asn(X1, Xi2) + €

fori € {1,...,n}. Then, we fit a nonparametric regression model using foffierdint methods:
Method 1 is our scalable SSANOVA algorithm with fully optimizédparameters, Method 2 is our
scalable algorithm with partially optimized (i.e., fixed after smart starparameters, Method 3

is Kim and Gu’s (2004) SSANOVA algorithm with fully optimize#l parameters, and Method 4

is Kim and Gu’s algorithm with partially optimized, parameters. In both thieigssp.R and
ssanova.R functions, the fully optimized smoothing parameters are obtained using the option
skip.iter=FALSE, whereas the partially optimized smoothing parameters are obtained using the

optionskip.iter=TRUE.

For each function and method, we fit a two-way SSANOVA model with an interaction term
included (syntay~x1*x2). Forn, andng, we (a) used cubic and nominal marginal splinesxor
andx,, respectively, and (b) examined the solution usirg 30 basis function knots. In contrast,
for nc andnp, we (a) used cubic marginal splines for batrandx,, and (b) examined the solution
usingq = 100 basis function knots. We used a bin-sampling approach to select knots spread
throughout the covariate domain (Helwig & Ma, prep), and we used the same knots for each of the
four methods. For each method, we selected the smoothing parameters that minimized the GCV
score. Given the optimal smoothing parameters, we calculated the fitted values, and then defined

the true mean-squared-error (TMSE) as

TMSE = (1/n) ) (7(x) - ) (13)
i=1
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wheren denotes the true function from Figure X ,denotes the predictor variable scores for the
i-th observation, ang is the fitted value for theth observation. Finally, we used 100 replications

of the above procedure within each cell of the simulation design.

4.1.3 Simulation A: Results

The log-TMSE for each combination of Simulation A conditions is plotted in Figure 2. First,
note that all of the methods performed reasonably well, and note that (as expected) the TMSE
approached zero asincreased for all examined conditions. Furthermore, as expected, the TMSE
values associated with the partially optimiz&dparameters (i.e., Methods 2 and 4) tended to be
larger than the TMSE values associated with the fully optimiégzhrameters (i.e., Methods 1 and

3); however the TMSE dlierence between the fully and partially optimized solutions was negligi-
ble. Comparing the TMSE values of Methods 1 and 2 to those of Methods 3 and #geitteseness

of our approach is readily apparent: our scalable algorithm performed nearly identically to Kim

and Gu’s (2004) algorithm in all of the Simulation A conditions.

The only mentionable fierence between the two algorithms occurs when analyzingith
n = 5x10* observations; in this case, Method 1 produced three poorer solutions (i.e., solutions with
larger TMSE values) that did not occur when using the other methods. For these three outlying
cases, Method 2 produced better solutions, suggesting that the three poorer results from Method 1
are due to a poor iterative update of the smoothing parameters. So, in some cases, it appears that
our scalable algorithm may be slightly more stable when using the partially optimizeam-
eters; however, for a vast majority of the simulation conditions, our scalable algorithm produced

TMSEs comparable to those of Kim and Gu’s (2004) classic algorithm.

The runtime for each combination of Simulation A conditions is also plotted in Figure 2. First,
note that (as expected) the runtimes increased iasreased for all methods. Furthermore, as
expected, the runtimes associated with the partially optimizgxhrameters (i.e., Methods 2 and
4) tended to be smaller than the runtimes associated with the fully optirizearameters (i.e.,

Methods 1 and 3); the runtimeftkrence between the fully and partially optimized solutions dif-
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fered depending on the algorithm andComparing the runtimes of Methods 1 and 2 to those of
Methods 3 and 4, it is evident that our scalable algorithm saves a substantial amount of compu-
tation time when fitting SSANOVASs to large samples; the scalable algorithm was anywhere from
10 to 200 times moreficient than Kim and Gu’s (2004) algorithm, and the runtimgedence

between the algorithms increased substantially iasreased.

4.2 Simulation B
4.2.1 Simulation B: Design

Simulation B compares oufficient SSANOVA reparameterization (see Section 2.2) in combina-
tion with our scalable SSANOVA algorithm (see Section 3) to Wood’s (2004) GAM algorithm.
Our diicient reparameterization and algorithm are implemented in Helwig’'s (2biggsa.R
function, and Wood’s algorithm is implemented in Wood'’s (20d4y. R function. For compara-

bility, we use the same simulation conditions (izes,andn’s) that were examined in Simulation A.
Note that the fiicient reparameterization uses: 2 uniquey; parameters for each of the four sim-
ulation functions. Fona andng, the GAM essentially estimates di@irent function for each level

of the nominal predictor (assuming that the two-way interaction term is included), so there are
s = 3 unigue smoothing parameters; in contrasttoandnp the GAM separately penalizes the
partial derivative of the estimated function with respect to each predictor, so these &e@nique
smoothing parameters regardless of whether or not the two-way interaction term is included (see
Wood, 2006, 2014).

4.2.2 Simulation B: Analyses

We used the same data simulation procedure that was used in Simulation A. Then, we fit a non-
parametric regression model using fouftelient methods: Method 1 is our scalable SSANOVA
algorithm with fully optimizedy; parameters, Method 2 is our scalable algorithm with partially
optimized (i.e., fixed after smart stagt) parameters, Method 3 is Wood’s (201g8m. R function,

and Method 4 is Gu’s (2013a)sanova.R function with partially optimized), parameters; note

that Method 4 in Simulation A is identical to Method 4 in Simulation B (to facilitate comparisons
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between the two simulations). For each function and method, we fit a two-way model with an
interaction. For théigssa.R function the syntax is straightforwarg~x1*x2). For thegam.R
function, the smooths functios (R) is used (with théy=x2 option) for fittingn, andng, whereas

the tensor product functiorté .R) is needed for fittingjc andnp; see the online supplementary R

code for specific details and function syntax.

For all four methods, we used cubic marginal splines for the continuous variable(s). For Meth-
ods 1, 2, and 4 we used the same knots that were used in Simulation &;+e0 bin-sampled
knots forna andng, andq = 100 bin-sampled knots fojc andnp. For Method 3, we used the
defaultgam.R knot-selection algorithm, which places an equidistant grid of points throughout the
covariate domain (see Wood, 2014). The “cardinal” spline parameterization used by \§&oiRs
function is not directly comparable to the SSANOVA framework (see Wood, 2006, 2014), so it is
not possible to fit a GAM with an identical number of parameters. To allow for a fair comparison,
we used (ak = 11 knots for each level of, when fittingn andng, for a total of 33 basis function
codficients, and (bk = 11 knots for each marginal when fittimg andrp, for a total of 121 basis
function codficients. Finally, as in Simulation A, for each method we (a) selected the smoothing
parameters that minimized the GCV score, (b) used the TMSE to evaluate the quality of the so-
lutions, and (c) used 100 replications of the above procedure within each cell of the simulation

design.

4.2.3 Simulation B: Results

The log-TMSE for each combination of Simulation B conditions is plotted in Figure 3. Similar
to Simulation A, all of the methods in Simulation B performed reasonably well, and (as expected)
the TMSE approached zero asncreased for all examined conditions. Furthermore, as expected,
the TMSE values associated with the partially optimizegarameters (i.e., Method 2) tended to

be larger than the TMSE values associated with the fully optimyzgdrameters (i.e., Method 1);

however the TMSE dierence between the fully and partially optimized solutions was negligible.

Comparing the TMSE values of Methods 1 and 2 to those of Methods 3 and 4febeveness
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of our dficient reparameterization is obvious. In all of the examined conditions ficieat repa-
rameterization (i.e., Methods 1 and 2) performed comparable to Wood’s GAM (Method 3) and the
conventional SSANOVA parameterization (Method 4) with respect to the observed TMSE values.
Furthermore, for a majority of the examined functions (i, ,nc, andnp), the GAM introduced

a noticeable bias (compared to the other methods) that increasen, &ttthe largest sample size

(n = 5x 10%), the TMSESs associated with Method 3 tended to be about 50% larger than the TM-
SEs associated with the other three methodsi{fpnc, andnp). So, for a majority of the function
shapes, an SSANOVA with bin-sampled knots outperformed the corresponding GAM with respect

to recovering the unknown true function.

The analysis runtime for each combination of simulation conditions is also plotted in Figure 3.
As expected, the runtimes (a) increased axreased for all methods, (b) were slightly larger for
the fully optimizedy;’s (i.e., Method 1) compared to the partially optimizgd (i.e., Method 2).
Furthermore, as expected, the runtimes for tiieient parameterization (with scalable algorithm)
were noticeably smaller than the corresponding runtimes for the conventional parameterization
(with scalable algorithm); for example, fa the median runtimes for Methods 1 and 2 with
n = 5x 10* were (a) 6.6 and 2.4 seconds (respectively) in Simulation A, and (b) 2.2 and 1.8 sec-
onds (respectively) in Simulation B. In comparison, #grwith n = 5 x 10%, the median runtime
was 2.7 seconds for the GAM, 75.7 seconds for the partially optimized SSANOVA (with classic
algorithm), and 111.3 seconds for the fully optimized SSANOVA (with classic algorithm). Thus,
when smoothing large samples, a two-way SSANOVA model (using fiigcient reparameteriza-

tion and scalable algorithm) can be fit more quickly than the corresponding GAM.

5 EINifio Example

5.1 Data

The data used in the example were obtained from Bache & Lichman (2013), but are originally
from the Tropical Atmosphere Ocean project (TAO; see NOAA, 2014). The TAO project col-

lects oceanographic data from approximately 70 buoys positioned throughout the equatorial Pacific
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Ocean (see Figure 4a). The TAO project monitors the BoNind La Nina phenomena, which in-
volve unusually warm and cold equatorial ocean temperatures, respectively. For this example, we
analyzed ocean surface temperature data collected from January 1994 to May 1998, and we only
analyzed data from buoys east of 1%6ngitude. There wera = 86501 data points included in

the example; see the online supplementary R code for more specifics.

5.2 Analyses

We analyzed the ocean temperature data using a two-way SSANOVA where the first predictor was
the bidimensional spacdfect (i.e., longitude and latitude) and the second predictor was fii@et e

(in years). We used (a) a cubic thin-plate spline for the bidimensional sffact @ee Appendix),

(b) a cubic smoothing spline for the tim&ect, and (c) a total off = 676 bin-sampled knots.
Finally, we fit the model using theficient reparameterization (see Section 2) with partially opti-
mized smoothing parametersk(ip . iter=TRUE in Helwig's bigssa.R function) and the scalable
algorithm (see Section 3). We tried fitting the model both without and with the two-way interaction
between the space and timiéests.

5.3 Results

The relevant fit statistics for the additive and interaction models are given in Table 1. From the fit
statistics in Table 1, there is clear evidence that the interaction model should be preferred; however,
the additive model can explain about 75% of the data variation, suggesting that theffeeis e

(from the interaction model) are worth examining. The temporal méieceplot (Figure 4b) re-

veals the intense 1995 La i event (i.e., drop in ocean temperatures) and the 19976l &ient

(i.e., increase in ocean temperatures). The spatial nfééateplot (Figure 4c) reveals that the
equatorial ocean surface temperatures are generally warmer in the western Pacific and colder in

the southeastern Pacific.

The general trends in Figure 4 account for about 75% of the variation in the Pacific Ocean
surface temperatures. However, the space-time interadtiect @ccounts for approximately 20%

of the variation that is unexplained by the maffeet trends. To visualize the significant interaction
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effect, it is helpful to examine the predicted ocean surface temperature$eaeti time points.
Selected ocean surface temperatures from January 1994 to May 1998 are plotted in Figure 5, and
an animation of the predicted temperatures can be found with the online supplementary material
accompanying this article. Note that the 1995 La&levent is characterized by an unusually large
plume of cold water in the southeast Pacific in September, whereas the 19970E\\int has no

plume of cold water in the southeast Pacific in September. Furthermore, from the animation in the
online supplementary materials, note that the warmer waters of the western Pacific tend to move
eastward during the 1997 EIl ihb.

6 Discussion

Our results clearly reveal the benefits of our SSANOVA reparameterization and algorithm. Specif-
ically, Simulation A demonstrates that our scalable SSANOVA algorithm (a) produces TMSE val-
ues comparable to the classic SSANOVA algorithm, and (b) is much more computatidghieigne

than the classic SSANOVA algorithm when analyzing large samples. Furthermore, Simulation B
reveals that SSANOVAs can (a) outperform GAMs when analyzing matgrdnt function shapes,

and (b) be fit more quickly than a GAM whenis large. Also, comparing the results of the two
simulations, it is evident that oulffecient reparameterization istective under a wide variety of
different data situations; for example, thi@aent reparameterization performed well when the
SSANOVA model was misspecified (i.e., fitting an interaction modejt@ndnc) or correctly

specified (i.e., fitting an interaction model#g andnp).

Our results also allow for an interesting comparison between Gu’s (2013) SSANOVA ap-
proach and Wood’s (2004, 2006) GAM approach. For a majority of the simulation functions,
the SSANOVA methods produced smaller TMSE values than the comparable (interaction) GAM;
this was particularly true for the functions with nonparametfieas of two continuous predictors
(i.e.,nc andnp). However, the dference between the SSANOVA and GAM solutions was minor
(e.g., TMSE of GAM was .005 larger), and the GAM runtime was substantially smaller than the

classic SSANOVA runtime. So, Wood&am.R function seems to be a reasonable alternative to

ACCEPTED MANUSCRIPT
19



Downloaded by [University of Wisconsin - Madison] at 09:56 22 October 2014

ACCEPTED MANUSCRIPT

Gu’s ssanova.R function when fitting two-way SSANOVA models to large samples. Further-
more, Helwig'sbigssp.R andbigssa.R functions dfer fast and accurate alternatives to Gu’s

ssanova.R function when fitting SSANOVAs to large samples.

Finally, our results also demonstrate the flexibility and potential of the SSANOVA approach
for analyzing real data. The El Nb data example demonstrates that SSANOVAs can provide a
powerful nonparametric framework for analyzing spatiotemporal data. And, using the reparame-
terization and algorithm developed in this paper, it is now possible to use the powerful SSANOVA
framework to analyze large spatiotemporal data sets. As a result, we suspect that SSANOVAs will
prove quite useful for discovering interesting functional relationships among large noisy data sets

in the physical and social sciences.

Appendix: Spline Types and Reproducing Kernels

The null and contrast space RKs for variouffetient types of splines are given in Table 2. The
thin-plate spline RK is more complicated (see Gu, 2013b, for a thorough discussion). For practical
computation with a set of selected kngkg);' ;, the following procedure can be used to fit a cubic
thin-plate spline withx; € RY (assumingl < 3).

First, define¥ = (yy(X)}qm fort € {1,..., g} andv € {0,.. ., d}, whereyo(%) = 1, (%) = %;
forje{l1,...,d},andM = d+1. Next, letF;R denote the QR decomposition‘i!fsuch thaF,isa
gx M matrix of orthonormal columns with the first column proportional to a column of onefRRand
isaMx M upper triangular matrix. Also, |€t, denote ajx(q— M) matrix of orthonormal columns
that are orthogonal to the columnsFef, so that the columns ¢F = (F1, F,) form an orthonormal
basis forRY. Given the knots{it}?:l, the null space RK ign(Xg, Xn) = o du(Xg)pv(Xn) Where
by = {B1(Xg). . - .. dm(Xg)}1xm is Obtained using the relatiapy, = aw,R ™ with ¥ = {yu(Xg)}1am-

For a cubic thin-plate spline, the RK of the contrast space has the form
PelXg: Xn) = E(Xg, Xn) = A B, ® &, — TE D, + 2P, D EDG;,
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where® = {¢,(X)} «mforte{l,....,qglandve {1,..., M}, ég = {&(Xi, Xg)lgxa fOr t € {1,...,q},
E = {£(% %w)lqxq fOr t,w € {1,..., g}, and the semi-kernel is given by
allXg = Xnll? In(|Ixg = xpl)) if d =2

(14)
BliXg — Xnll*9sign(2—d) if d € {1,3}

éj(xg’ Xh) = {

wherea andg are positive scalars that can be absorbed into the smoothing parameters by setting
a = 3 = 1 when defining the RK.

Note that the penalty matri® = {pc(Xi, Xw)lgxq fOr t,w e {1,..., g} has the form

uuuuu

Q =E-qlPO®'E - qlEZ0d +q20P ZPD’
= (I - F1F)E(l - F1FY)
= FoF,EF,F,
where the relationy/gF; = @ is used. Similarly, the basis function matdx= {pc(X;, X;) }nxq fOr
ie{l,...,nfandt e {1,...,q} has the form

J =E-qlOd'E - ClEPD + 20D EDD’
= 2( - o) - T LOD'E(l - g lOD)
= (E - YRIFE)F,F,

whereZ = {£(Xi, X)Inxq fOri € {1,...,njandt € {1,...,q}, ® = {¢y(Xi)}nxm fori e {1,...,n} and
ve{l,...,M},and¥ = {y(Xi)}nxm fOri € {1,...,n}andv € {0,..., d}; the relation\ Q¥R = ®

is used.

It should be noted that SSANOVAs formed with marginal RKs from Table 2 will be scale
invariant in the sense that scale transformations of the covariates would not change the result.
This is because cubic and periodic smoothing splines assume that the observed data domain has
been transformed to the interval [0,1] as a preprocessing step, so the covariate scales are implicitly
removed before the formation of the tensor product space. In contrast, the thin-plate spline RK

retains the data scale; however, note that the thin-plate null spagg, RK\/ﬁ«//gR‘l is scale free
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because the data ii, are post-multiplied byrR~1, whereR contains the data scale. Furthermore,
assuming that th¢-th predictor has a thin-plate spline marginal, note that always attached

to the j-th predictor's contrast space RK using our reparameterization; as a result the scale of the
thin-plate contrast space RK can be absorbedqntso the thin-plate RK isféectively scale free

using our éicient reparameterization.

Supplementary Materials

README (Overview): Summary of the other supplementary materials. (README.txt)
Simulation Functions Plot: R code for creating functions plot in Figure (sim_funplot.R)
Simulation A Script: R code for replicating Simulation A analyses and FigurésinA_script.R)
Simulation B Script: R code for replicating Simulation B analyses and FigurésBnB_script.R)
El Nifio Script: R code for replicating El Nio analyses, Figures 4-5, and mo\{&nino_script.R)

El Nifio Animation: An animation of the predicted equatorial Pacific Ocean surface temperatures
from January 1994 to May 1998. (EINinoMovie.mp4)
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Table 1: Fit statistics for the two-way SSANOVA models fit to the Eidldata.

Model GCV R AIC BIC

Additive  0.93 0.75 239422.7 242027.9
Interaction 0.20 0.95 106029.6112383.3

Note. R is explained variation and AIBIC is Akaike’'syBayesian Information Criterion.

Table 2: Marginal reproducing kernels foifidrent spline types.

Spline Type Pn(Xg, Xn) Pe(Xgs Xn)

m-th Order Smoothing S5 ky(Xg)ku(Xn)  km(Xg)km(Xn) + (=1)™ kam(IXg — Xnl)
mth Order Periodic Ko(Xg)Ko(Xn) (=)™ kom(1Xg — Xnl)
Nominal 1f lxg=x, — 1/ f

Note 1 Them-order splines assumee [0, 1], and nominal spline assumgs {1,..., f}.
Note 2 For linear and cubic splines, the needed functionsgrg = 1, k1(X) = X — 0.5, kx(X) =
0.5[k4(X) — 1/12], andka(X) = {k}(X) — [K2(X)/2] + 7/240}/24.
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y =|’]A(X1, Xz) y =|’]B(X1, Xz) y =|']c(X1, Xz) y =T1D(X1. Xz)

Figure 1. Four simulation functions. See supplementary R code for function specifics.
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Figure 2: Simulation A log-TMSE (top) and runtime (bottom) boxplots. Within each sample size,
left (white) box is Method 1 (scalable algorithm, fully optimizégs), left-middle (light gray)

box is Method 2 (scalable algorithm, partially optimizéds), right-middle (dark gray) box is
Method 3 (classic algorithm, fully optimizegk's), and right (black) box is Method 4 (classic
algorithm, partially optimizedy’s).
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Figure 3: Simulation B log-TMSE (top) and runtime (bottom) boxplots. Within each sample size,
left (white) box is Method 1 (scalable algorithm, fully optimizeds), left-middle (light gray) box

is Method 2 (scalable algorithm, partially optimizggk), right-middle (dark gray) box is Method 3
(Wood’'s GAM algorithm), and right (black) box is Method 4 (classic algorithm, partially optimized

0k’s).
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Figure 4: (a) Approximate locations of the buoys in the example, (b) nféecteof time variable,
and (c) main #&ect of space variable.

ACCEPTED MANUSCRIPT
28



Downloaded by [University of Wisconsin - Madison] at 09:56 22 October 2014

ACCEPTED MANUSCRIPT

:—LV iy
P % — 3 g §m e
Nt e N 20 20
5o e (s i zM:
N N . \J
e 160 200 250 300

Loy Loy

Sop. 1995

May 1995

o zm 5 . zm 5
e B it B
a1 a1
(G s G s
I~ I~

) T D) £ S0 ) T D) £ S0
Longhude Longhude

s
| B |
Temp. (‘C)
s
| B |
Temp. (‘C)

s
| B |
Temp. (‘C)
s
| B |
Temp. (‘C)

Longhude

s
| B |
Temp. (‘C)

Longhude Longhude

Figure 5: Some predicted equatorial ocean surface temperatures from Jan. 1994 to May 1998. See
the online supplementary material for an animation of the predicted temperatures.
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