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Fast and stable multiple smoothing parameter
selection in smoothing spline analysis of variance

models with large samples∗

Nathaniel E. Helwig†

Department of Statistics, University of Illinois
and

Ping Ma
Department of Statistics, University of Illinois

Abstract

The current parameterization and algorithm used to fit a smoothing spline analysis of vari-
ance (SSANOVA) model are computationally expensive, making a generalized additive model
(GAM) the preferred method for multivariate smoothing. In this paper, we propose an effi-
cient reparameterization of the smoothing parameters in SSANOVA models, and a scalable
algorithm for estimating multiple smoothing parameters in SSANOVAs. To validate our ap-
proach, we present two simulation studies comparing our reparameterization and algorithm to
implementations of SSANOVAs and GAMs that are currently available in R. Our simulation
results demonstrate that (a) our scalable SSANOVA algorithm outperforms the currently used
SSANOVA algorithm, and (b) SSANOVAs can be a fast and reliable alternative to GAMs. We
also provide an example with oceanographic data that demonstrates the practical advantage of
our SSANOVA framework. Supplementary materials that are available online can be used to
replicate the analyses in this paper.

Keywords:Algorithms, Multivariate analysis, Nonparametric methods, Smoothing and nonpara-
metric regression, Smoothing splines

1 Introduction

A typical nonparametric regression model can be written asyi = η(xi) + ei for i ∈ {1, . . . , n} where

yi ∈ R is the response variable for thei-th observation,xi ≡ (xi1, . . . , xip)′ is the p × 1 predictor

vector for thei-th observation,η is an unknown smooth function relating the response and predictor

∗A shortened version of this paper was selected as a winner of the 2013 Student Paper Competition sponsored by
the Statistical Computing and Statistical Graphics Sections of the American Statistical Association.

†This work was funded by NSF grants DMS-1055815, DMS-0800631, and DMS-1228288.
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ACCEPTED MANUSCRIPT

variables, andei ∼ N(0, σ2) is independent, normally distributed measurement error. Given a set

of values (xi , yi) for i ∈ {1, . . . , n}, a popular approach for estimatingη is the minimization of a

penalized least-squares functional of the form

(1/n)
n∑

i=1

(yi − η(xi))
2 + λJ(η) (1)

whereJ is a quadratic penalty functional that quantifies the roughness ofη, andλ ∈ (0,∞) is a

global smoothing parameter that controls the trade-off between the goodness-of-fit of the data and

the smoothness ofη.

Two possible approaches for estimating theηλ that minimizes Equation (1) are smoothing

spline analysis of variance models (SSANOVAs; see Gu, 2013b; Wahba, 1990) and generalized

additive models (GAMs; see Wood, 2004, 2006); note thatηλ is subscripted because the optimal

function depends on the chosen smoothing parameters. In general, SSANOVAs benefit from a

solid theoretical foundation, but are computationally expensive to fit. In contrast, GAMs are fast to

compute, but are not built upon the same solid theoretical framework as SSANOVAs. Due to their

fast performance, GAMs are typically preferred over SSANOVAs in practice, despite the theoreti-

cal advantages of the SSANOVA framework.

Kim and Gu (2004) give an SSANOVA approximation usingq� n selected knots, and their al-

gorithm requiresO(nq2) flops to estimateηλ for each choice of smoothing parameters. In contrast,

when using Wood’s (2004) approach to fit a GAM withq selected knots, the algorithm requires

O(nq2) flops for the initialization, followed byO(q3) flops for each choice of smoothing parameters.

Furthermore, using the conventional SSANOVA parameterization, there are often more smoothing

parameters than predictors, whereas a GAM uses one smoothing parameter for each predictor. As

a result, fitting an SSANOVA (using Kim & Gu’s, 2004, algorithm) typically takes substantially

longer than fitting the corresponding GAM (using Wood’s, 2004, algorithm), and the timing dif-

ference increases withn.

In this paper, we propose an efficient reparameterization of the smoothing parameters in SSANOVA

models, such that there is one smoothing parameter for each predictor. We also propose a new al-

2
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

is
co

ns
in

 -
 M

ad
is

on
] 

at
 0

9:
56

 2
2 

O
ct

ob
er

 2
01

4 



ACCEPTED MANUSCRIPT

gorithm for fitting an SSANOVA usingq selected knots. This new algorithm only requiresO(nq2)

flops for the initialization; then, after the initialization, the estimation ofηλ only requiresO(q3)

flops for each choice of smoothing parameters. In the following sections, we present our pro-

posed SSANOVA reparameterization (Section 2), describe a new algorithm for estimating multiple

smoothing parameters in SSANVOA models (Section 3), present two simulation studies compar-

ing our approach to other approaches (Section 4), and demonstrate the benefits of our approach

using an example (Section 5).

2 An Efficient Reparameterization

2.1 Conventional SSANOVA Parameterization

Theηλ minimizing Equation (1) can be estimated via a tensor product reproducing kernel Hilbert

space (RKHS) of functionsH ≡ ⊗p
j=1HX j on the domainX ≡

∏p
j=1X j, whereHX j is a RKHS of

functions onX j, which denotes the domain of thej-th predictor. In most cases,HX j can be decom-

posed into three orthogonal subspaces, such asHX j = H• j ⊕ Hñ j ⊕ Hc j , whereHn j ≡ H• j ⊕ Hñ j

is thenull spaceof the j-th predictor (i.e.,Hn j ≡ {φ : J(φ) = 0}) with H• j denoting a space of

constant functions (i.e.,H• j ≡ {φ : φ ∝ 1}), andHc j is thecontrast spaceof the j-th predictor (i.e.,

Hc j ≡ {φ : 0 < J(φ) < ∞}). The reproducing kernel (RK) ofH has the formρX =
∏p

j=1 ρX j , where

ρX j is the RK ofHX j , which has the formρX j ≡ ρ• j + ρñ j + ρc j with ρ• j , ρñ j , andρc j denoting the

RKs ofH• j ,Hñ j , andHc j , respectively (see Gu, 2013b; Wahba, 1990).

The marginal space decompositionsHX j = H• j ⊕Hñ j ⊕Hc j imply that the tensor product space

H can be decomposed into the summation of 3p orthogonal subspaces. Typically, the tensor prod-

uct space is written asH = Hn ⊕ Hc, whereHn andHc are the tensor product null and contrast

spaces, respectively. Using the conventional SSANOVA parameterization, the contrast space of

H is written asHc = ⊕s
k=1H

∗
k , where theH∗k are orthogonal subspaces with corresponding inner

products〈∙, ∙〉∗k. Then, the inner product ofHc is defined as
∑s

k=1 θ
−1
k 〈∙, ∙〉

∗
k, whereθ = (θ1, . . . , θs)′

are local smoothing parameters withθk ∈ (0,∞). Using this definition of the inner product forHc,

it can be shown that the RK ofHc is given byρc =
∑s

k=1 θkρ
∗
k, whereρ∗k denotes the RK ofH∗k .
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ACCEPTED MANUSCRIPT

For example, withp = 2 predictors using cubic marginals,H = Hn ⊕Hc where

Hn ≡ H• ⊕ Hñ1 ⊕Hñ2 ⊕ (Hñ1 ⊗Hñ2)

Hc ≡ Hc1 ⊕Hc2 ⊕ (Hc1 ⊗Hñ2) ⊕ (Hñ1 ⊗Hc2) ⊕ (Hc1 ⊗Hc2)
(2)

are the null and contrast spaces ofH . The RK has the formρX = ρn + ρc, where

ρn ≡ 1+ ρñ1 + ρñ2 + ρñ1ρñ2

ρc ≡ θ1ρc1 + θ2ρc2 + θ3ρc1ρñ2 + θ4ρñ1ρc2 + θ5ρc1ρc2

(3)

are the RKs ofHn andHc, respectively, andθ = (θ1, . . . , θ5)′ are the additional smoothing param-

eters. Note that there ares = 5 uniqueθk parameters for onlyp = 2 predictors; this allows for

flexible smoothing, but creates a difficult multivariate optimization problem.

2.2 Proposed SSANOVA Reparameterization

To improve the efficiency of the SSANOVA framework, we define the marginal RKs as

ρX j = ρn j + γ jρc j (4)

whereρn j = ρ• j +ρñ j is the RK of thej-th predictor’s null space,ρc j is the RK of thej-th predictor’s

contrast space, andγ j ∈ (0,∞) is the j-th predictor’s smoothing parameter. Note that this definition

of the marginal RKs corresponds to the marginal inner products〈∙, ∙〉X j = 〈∙, ∙〉n j + γ
−1
j 〈∙, ∙〉c j , which

implies thatγ j rescales the marginal penalty of thej-th predictor. Also, note that this reparameter-

ization imposes a structure on the smoothing parameters in the tensor product RKHS, which can

result in substantial computational savings.

For example, withp = 2 predictors, the efficient SSANOVA reparameterization uses

ρc = γ1ρc1ρn2 + γ2ρn1ρc2 + γ1γ2ρc1ρc2
(5)

as the contrast space RK. In contrast to the conventional parameterization (see Equation (3)), the

reparameterized RK in Equation (5) only uses two unique smoothing parameters. Thus, the repa-
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ACCEPTED MANUSCRIPT

rameterization requires a bivariate optimization, whereas the traditional parameterization involves

a five-variable optimization problem. The efficiency of the reparameterization is even more pro-

nounced in higher dimensions: withp = 3 predictors, we have a trivariate optimization problem

using the reparameterization, whereas the traditional parameterization would require the optimiza-

tion of a function with respect to 19θk parameters.

2.3 Properties of Proposed Reparameterization

First, note that forp = 1 predictor, the efficient reparameterization is identical to the conventional

parameterization because there is only oneγ (or θ) parameter, which can be absorbed into thec co-

efficients. Second, note that forp > 1 predictors, the efficient reparameterization is identical to the

conventional parameterization whenever the SSANOVA model contains strictly additive effects of

the predictors; note that this differs from other SSANOVA reparameterizations (e.g., COSSO; Lin

& Zhang, 2006). So, the efficient and conventional parameterizations only differ with respect to

their treatment of two-way (and higher-way) interactions between predictors. When one or more

interaction effects are present, the efficient reparameterization will require fewer unique smoothing

parameters than the conventional parameterization.

To better understand the constraints of the efficient reparameterization, it is helpful to consider

the case ofp = 2 predictors. Comparing the efficient reparameterization in Equation (5) to the con-

ventional parameterization in Equation (3), note that the reparameterization assumes thatθ1 = θ3,

θ2 = θ4, andθ5 = θ1θ2 when defining the contrast space RK. Although seemingly limited, this

reparameterization is actually rather flexible. For example, settingγ1, γ2 � 1 allows the nonpara-

metric interaction space (Hc1 ⊕ Hc2) to dominate the contrast RK; in contrast, settingγ1, γ2 � 1

allows the nonparametric main effect spaces (Hc1 andHc2) and parametric-nonparametric interac-

tion effect spaces (Hc1 ⊕ Hñ2 andHñ1 ⊕ Hc2) to dominate the contrast RK. The relative influence

of each predictor on the contrast RK can be controlled by adjusting the ratioγ1/γ2; for example,

settingγ1 > γ2 allows the first predictor more influence on the contrast RK (assuming the same

spline type for each predictor).
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The main limitation of the efficient reparameterization is its lack of flexibility (compared to

the conventional parameterization) when the SSANOVA model is misspecified. Continuing with

the case ofp = 2 predictors, suppose that the true data-generating model is of the form ˆy =

η1(x1) + η2(x2), i.e., there is no interaction effect. In theory, using the conventional SSANOVA

parameterization it would be possible to obtain the correct (additive) model by estimatingθ̂k = 0

for k ∈ {3,4,5}. In contrast, using the efficient reparameterization the solution would contain

a small bias, given that the parametric-nonparametric interaction effect spaces cannot be fully

separated from the nonparametric main effect spaces. However, with largen andγ j parameters

selected using the GCV score (see Section 3), we have found that the bias introduced by the

efficient reparameterization is negligible in most cases (see Section 4.2 & Helwig, 2013).

3 Fast and Stable SSANOVA Algorithm

Overview.The scalable algorithm proposed in this section is unrelated to the efficient reparame-

terization given in the previous section. Throughout this section, we write the algorithm in terms

of the conventional parameterization withθk parameters. However, remembering that the efficient

reparameterization imposes a certain structure on theθk parameters, this scalable algorithm could

be easily applied to the efficient reparameterization using theγ j parameters.

3.1 SSANOVA Computation

Given a set of smoothing parametersλ = (λ/θ1, . . . , λ/θk) and a set of selected knots{x̆t}
q
t=1, it is

well-known that theηλ minimizing Equation (1) can be approximated asηλ(x) =
∑u

v=1 dvφv(x) +
∑q

t=1 ctρc(x, x̆t), where{φv}uv=1 are basis functions spanningHn, ρc denotes the RK ofHc, and

d = {dv}u×1 andc = {ct}q×1 are the unknown function coefficient vectors (see Kim & Gu, 2004; Gu

& Wahba, 1991). Using this representation, Equation (1) can be approximated as

(1/n)‖y − Kd − Jθc‖2 + λc′Qθc (6)

where‖ ∙ ‖2 denotes the squared Frobenius norm,y ≡ {yi}n×1, K ≡ {φv(xi)}n×u for i ∈ {1, . . . , n} and

v ∈ {1, . . . , u}, Jθ =
∑s

k=1 θkJk whereJk ≡ {ρ∗k(xi , x̆t)}n×q for i ∈ {1, . . . , n} and t ∈ {1, . . . , q}, and
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Qθ =
∑s

k=1 θkQk whereQk ≡ {ρ∗k(x̆t, x̆w)}q×q for t,w ∈ {1, . . . , q}.

Given a choice ofλ, the optimal function coefficients are given by



d̂

ĉ


 =



K ′K K ′Jθ

J′θK J ′θJθ + λnQθ




† 

K ′

J′θ


 y (7)

where (∙)† denotes the Moore-Penrose pseudoinverse of the input matrix. The fitted values are

given byŷ = Kd̂ + Jθĉ = Sλy, where

Sλ =
(
K J θ

)


K ′K K ′Jθ

J′θK J ′θJθ + λnQθ




† 

K ′

J′θ




(8)

is the smoothing matrix, which depends on the chosen smoothing parameters inλ. A popular

criterion for estimating smoothing parameters in penalized regression models is the generalized

cross-validation (GCV) score of Craven and Wahba (1979), which is given by

GCV(λ) = {n‖(In − Sλ)y‖2}/{[n− tr(Sλ)]2}. (9)

The estimateŝλ and θ̂ that minimize the GCV score have desirable properties (see Craven &

Wahba, 1979; Gu, 2013b; Gu & Wahba, 1991; Li, 1986), so our algorithm focuses on a fast GCV

score evaluation for given smoothing parameters.

Kim and Gu’s (2004) algorithm seeks to find the smoothing parameters that minimize the GCV

score in Equation (9). For each choice of smoothing parameters, Kim and Gu’s algorithm forms

the inner (cross-product) portion ofSλ, and uses a pivoted Cholesky decomposition to find the

inverse (∙)†; given the needed inverse calculation, the fitted values can be easily obtained, so the

GCV score can be easily evaluated. However, obtaining the inner (cross-product) portion of the

smoothing matrix requiresO(nq2) flops, which can be quite costly for largen. So, because Kim

and Gu’s algorithm requires iterative work that depends on the (possibly quite large) sample size

n, the algorithm is not scalable for large samples.
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Our key insight is the fact that the coefficient estimation (see Equation (7)) and the GCV score

evaluations (see Equation (9)) only depend on various crossproduct vectors and matrices. The

crossproduct vectors and matrices needed for Equation (7) are straightforward. Expanding the

term in the numerator of Equation (9), we have‖(In − Sλ)y‖2 = ‖y‖2 − 2y′Sλy + y′S2
λy, which only

depends on crossproduct vectors and matrices. Next, note that the trace calculation needed in the

denominator of the GCV score can be written as

tr(Sλ) = tr







K ′K K ′Jθ

J′θK J ′θJθ + λnQθ




† 

K ′K K ′Jθ

J′θK J ′θJθ







. (10)

So, after initializing the necessary crossproduct vectors and matrices, the SSANOVA can be fit

using onlyO(q3) flops for each choice of smoothing parameters.

3.2 A Scalable Algorithm

First, form then× sqmatrixJ ≡ (J1, J2, . . . , Js) and theq× sqmatrixQ ≡ (Q1,Q2, . . . ,Qs). Next,

calculate theu×1 vectoryK ≡ K ′y and thesq×1 vectoryJ ≡ J′y. Finally, initialize theu×u matrix

CK ≡ K ′K , theu× sqmatrix CKJ ≡ K ′J, and thesq× sqmatrix CJ ≡ J′J. Then, given aθ vector,

defineθ̃ ≡ (θ ⊗K Iq) where the symbol⊗K denotes the Kronecker product, and calculateQθ = Qθ̃.

Next, calculate theq× 1 vectoryθJ = θ̃
′
yJ and note thatyθJ ≡ J′θy. Then, calculate theu× q matrix

Cθ
KJ = CKJθ̃, and note thatCθ

KJ ≡ K ′Jθ. Likewise, calculate theq× q matrix Cθ
J = θ̃

′
CJθ̃, and note

thatCθ
J ≡ J′θJθ.

Next, note thatSλ = Xθ[Cθ + λnQ̃θ]†X′θ, whereXθ ≡ (K , Jθ) is then× (u+ q) design matrix,

Cθ ≡




CK Cθ
KJ

(Cθ
KJ)
′ Cθ

J


 and Q̃θ ≡



0u×u 0u×q

0q×u Qθ


 . (11)

Now, if we let ABA ′ denote the full-rank spectral decomposition of [Cθ + λnQ̃θ], we know that

tr(Sλ) = tr(XθAB−1A′X′θ) = tr(AB−1A′Cθ); note that we define the full-rank spectral decompo-

sition by calculating the full spectral decomposition, and then setting to zero the eigenvalues

that are smaller than the first eigenvalue multiplied by machine epsilon. Furthermore, we have
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ACCEPTED MANUSCRIPT

‖(In − Sλ)y‖2 = ‖y‖2 − 2y′θz+ z′Cθz, whereyθ ≡ (yK; yθJ) is a (u+ q) × 1 vector andz ≡ AB−1A′yθ.

This implies that

GCV(λ) = n{‖y‖2 − 2y′θz+ z′Cθz}/{[n− tr(AB−1A′Cθ)]
2} (12)

can be used to evaluate the GCV score.

Below we outline the full algorithm. First, note smoothing is fully parameterized byλk = λθ−1
k

for k ∈ {1, . . . , s}. However, when estimating multiple smoothing parameters in SSANOVA mod-

els, it has proven useful to separate the overall level of smoothing (captured byλ) from the relative

smoothing of each subspace ofHc (captured by theθk’s), see Gu and Wahba (1991). As a result,

the below algorithm iterates between estimatingλ for a fixedθ, and then estimatingθ for a fixed

λ. In the below algorithm,ω denotes the maximum number of iterations, which is a user-provided

positive integer. In general, we have found that settingω = 5 works well (see Helwig, 2013).
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Fast SSANOVA Algorithm for Large Samples

I. Initializations:
1. DefineJ ≡ (J1, J2, . . . , Js) andQ ≡ (Q1,Q2, . . . ,Qs)
2. DefineyK ≡ K ′y, yJ ≡ J′y, CK ≡ K ′K , CKJ ≡ K ′J, andCJ ≡ J′J
3. Initializeθ = 1s, ε = 10−5, τ = 0,ω = 5, and GCV(λ0) = ‖y‖2

II. IterativeProcedure:
1. Updateλ for fixedθ

a. θ̃ = (θ̂ ⊗K Iq), Qθ = Qθ̃, yθJ = θ̃
′
yJ, Cθ

KJ = CKJθ̃, Cθ
J = θ̃

′
CJθ̃

b. Form theCθ andQ̃θ matrices from Equation (11)
c. Minimize the GCV score w.r.t.λ using Equation (12)

2. Updateθ for fixedλ
a. Given current̂λ, calculateλ̂n
b. Minimize the GCV score w.r.t.ξ = ln(θ) using Equation (12)

3. Check for Convergence
a. If [GCV(λ0) −GCV(λ̂)]/GCV(λ0) < ε, stop (algorithm converged)
b. Else ifτ = ω − 1, stop (iteration limit reached)
c. Else set GCV(λ0) = GCV(λ̂) andτ = τ + 1 and return to step 1

III. Estimate Parameters:
1. LetABA ′ denote the full-rank spectral decomposition of [Cθ + λnQ̃θ]

a. (d̂′, ĉ′) = y′θAB−1A′ and ŷ = Kd̂ + Jθĉ
b. σ̂2 = {‖y‖2 − 2(d̂′, ĉ′)yθ + (d̂′, ĉ′)Cθ(d̂′, ĉ′)′}/{n− tr(AB−1A′Cθ)}

For the minimization of the GCV score with respect toλ (in step 1c of the Iterative Procedure),

it is possible to use some Newton-type (or other optimization) method. However, given that each

GCV score evaluation is rather cheap using this algorithm, we prefer a brute-force search because

this provides a better chance of avoiding local optima. Consequently, throughout this paper, we

evaluate the GCV score forλ ∈ {10−k} for k ∈ {0,1, . . . , 9}. For the minimization of the GCV

score with respect toξ (in step 2b of the Iterative Procedure), we follow the suggestion of Kim

and Gu (2004) and use the quasi-Newton methods of Dennis and Schnabel (1996) through the R

functionnlm. Finally, note that we parameterize the problem in terms ofξ (instead ofθ) because

ξ is unconstrained (see Gu & Wahba, 1991).

3.3 Smart Starting Values

In the algorithm, theθk values are initialized to one, but this is arbitrary. When fitting an SSANOVA

using the standard parameterization, much better starting values for theθk parameters can be ob-
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tained by using Algorithm 3.2 from Gu and Wahba (1991), which will be briefly described. Sup-

pose that the true function can be written asη =
∑s

k=1 Pkη, wherePk is the projection operator

corresponding tok-th orthogonal subspace ofHc. In this case, it would be sensible to weight each

subspace according to‖Pkη‖2, so that the roughness penalties of the different subspaces are bal-

anced. So, ifη were known, one could defineθk = ‖Pkη‖2 for k ∈ {1, . . . , s}, and then minimize the

GCV score with respect toλ.

Clearly,η will be unknown in practice, so Gu and Wahba (1991) propose the following proce-

dure for initializingθk. First, setθk = tr(Qk)−1 for k ∈ {1, . . . , s}. Then, given theθk values, select

theλ that minimizes the GCV score (or some similar criterion), and letĉ denote the contrast space

function coefficient vector that corresponds to the optimalλ. Next, define the starting smooth-

ing parameter values aŝθk0 = θ2
kĉ
′Qkĉ for k ∈ {1, . . . , s}. Note that thêθk0 values are obtained

using the relationθk = ‖Pkη‖2 with the true projectionPkη replaced by the estimated projection

Pkηλ ≡ θk
∑q

t=1 ĉt[Pkρ(x̆t, ∙)].

When fitting an SSANOVA using the efficient reparameterization, Algorithm 3.2 from Gu and

Wahba (1991) cannot be used to initialize the smoothing parameters (because of the assumed

interdependencies between the smoothing parameters of the different subspaces). However, it

is possible to use a similar logic to initialize the smoothing parameters in this reparameterized

model. Assuming thatxi = (xi1, xi2) with xi j ∈ [0,1] for i ∈ {1, . . . , n} and j ∈ {1,2}, the contrast

space can be decomposed intos = 3 orthogonal subspaces, such asHc = H1 ⊕ H2 ⊕ H3, where

H1 ≡ Hc1 ⊗Hn2,H2 ≡ Hn1 ⊗Hc2, andH3 ≡ Hc1 ⊗Hc2. In this case, theγ1 andγ2 parameters can

be initialized using the following procedure.

First setθ̌k = tr(Qk), whereQk is the penalty matrix corresponding to the subspaceHk (for

k ∈ {1,2,3}), and defineγ1 = θ̌2/θ̌3 andγ2 = θ̌1/θ̌3. Then, givenθ = (θ1, θ2, θ3)′ with θ j ≡ γ j for

j ∈ {1,2} andθ3 ≡ γ1γ2, select theλ that minimizes the GCV score (or some similar criterion), and

let ĉ denote the contrast space function coefficient vector that corresponds to the optimalλ. Next,

defineθ̃k = θ2
kĉ
′Qkĉ for k ∈ {1,2,3}. Finally, define the starting smoothing parameter values as
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γ̂1 = θ̃3/θ̃2 andγ̂2 = θ̃3/θ̃1. Note that the ˆγk values are obtained using a similar logic to that used

by Algorithm 3.2 from Gu and Wahba (1991), with the additional assumption thatθ3 ≡ γ1γ2.

This modified starting algorithm can be extended to various other situations, e.g., different

types of predictors orp > 2 predictors. The general structure of the modified starting algorithm is

(1) initialize theγ j parameters so that the different subspaces have (approximately) equal influence,

(2) select theλ that minimizes the GCV score and letĉ denote the optimal contrast space function

coefficient vector, (3) definẽθk = θ2
kĉ
′Qkĉ for k ∈ {1, . . . , s}, and (4) initialize the ˆγ j values by

taking the appropriate ratio of thẽθk values; we recommend using theθ̃k values corresponding to

the highest-order interaction in the model.

4 Simulation Studies

Overview.We conducted two simulation studies. Simulation A compares our scalable algorithm to

Kim and Gu’s (2004) algorithm using the conventional SSANOVA parameterization. Simulation B

compares our efficient SSANOVA parameterization (in combination with the scalable algorithm)

to Wood’s (2004) GAM algorithm. See the supplementary online materials for R code that can be

used to replicate these simulations. Note: simulations were conducted in R (ver 3.0.3) on an iMac

(3.1 GHz Intel Core i5) using Apple’svecLib BLAS (see R documentation).

4.1 Simulation A

4.1.1 Simulation A: Design

Simulation A compares the scalable algorithm proposed in Section 3 to Kim and Gu’s (2004) al-

gorithm when using the conventional SSANOVA parameterization (see Section 2.1). The scalable

algorithm is implemented in Helwig’s (2014)bigssp.R function, and Kim and Gu’s algorithm is

implemented in Gu’s (2013a)ssanova.R function. As a part of Simulation A, we manipulated

two conditions relevant to the problem at hand: (a) the function type (4 levels: see Figure 1), and

(b) the number of observations (5 levels:n = 1000k for k ∈ {1,5,10,25,50}). Using cubic and
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nominal marginal splines forx1 and x2 (respectively), there ares = 4 smoothing parameters for

ηA andηB when using the conventional SSANOVA parameterization with the two-way interac-

tion included. In contrast, there ares = 5 smoothing parameters forηC andηD when using the

conventional SSANOVA parameterization with cubic marginals and the interaction included.

4.1.2 Simulation A: Analyses

For each combination ofη andn, we generatedyi by (a) independently samplingxi1 andxi2 from a

uniform distribution on the appropriate range for the givenη, see Figure 1, (b) independently sam-

pling ei from a N(0,9) distribution, and (c) defining the observed response asyi = η(xi1, xi2) + ei

for i ∈ {1, . . . , n}. Then, we fit a nonparametric regression model using four different methods:

Method 1 is our scalable SSANOVA algorithm with fully optimizedθk parameters, Method 2 is our

scalable algorithm with partially optimized (i.e., fixed after smart start)θk parameters, Method 3

is Kim and Gu’s (2004) SSANOVA algorithm with fully optimizedθk parameters, and Method 4

is Kim and Gu’s algorithm with partially optimizedθk parameters. In both thebigssp.R and

ssanova.R functions, the fully optimized smoothing parameters are obtained using the option

skip.iter=FALSE, whereas the partially optimized smoothing parameters are obtained using the

optionskip.iter=TRUE.

For each function and method, we fit a two-way SSANOVA model with an interaction term

included (syntaxy∼x1*x2). ForηA andηB, we (a) used cubic and nominal marginal splines forx1

andx2, respectively, and (b) examined the solution usingq = 30 basis function knots. In contrast,

for ηC andηD, we (a) used cubic marginal splines for bothx1 andx2, and (b) examined the solution

using q = 100 basis function knots. We used a bin-sampling approach to select knots spread

throughout the covariate domain (Helwig & Ma, prep), and we used the same knots for each of the

four methods. For each method, we selected the smoothing parameters that minimized the GCV

score. Given the optimal smoothing parameters, we calculated the fitted values, and then defined

the true mean-squared-error (TMSE) as

TMSE= (1/n)
n∑

i=1

(η(xi) − ŷi)
2 (13)
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whereη denotes the true function from Figure 1,xi denotes the predictor variable scores for the

i-th observation, and ˆyi is the fitted value for thei-th observation. Finally, we used 100 replications

of the above procedure within each cell of the simulation design.

4.1.3 Simulation A: Results

The log-TMSE for each combination of Simulation A conditions is plotted in Figure 2. First,

note that all of the methods performed reasonably well, and note that (as expected) the TMSE

approached zero asn increased for all examined conditions. Furthermore, as expected, the TMSE

values associated with the partially optimizedθk parameters (i.e., Methods 2 and 4) tended to be

larger than the TMSE values associated with the fully optimizedθk parameters (i.e., Methods 1 and

3); however the TMSE difference between the fully and partially optimized solutions was negligi-

ble. Comparing the TMSE values of Methods 1 and 2 to those of Methods 3 and 4, the effectiveness

of our approach is readily apparent: our scalable algorithm performed nearly identically to Kim

and Gu’s (2004) algorithm in all of the Simulation A conditions.

The only mentionable difference between the two algorithms occurs when analyzingηB with

n = 5×104 observations; in this case, Method 1 produced three poorer solutions (i.e., solutions with

larger TMSE values) that did not occur when using the other methods. For these three outlying

cases, Method 2 produced better solutions, suggesting that the three poorer results from Method 1

are due to a poor iterative update of the smoothing parameters. So, in some cases, it appears that

our scalable algorithm may be slightly more stable when using the partially optimizedθk param-

eters; however, for a vast majority of the simulation conditions, our scalable algorithm produced

TMSEs comparable to those of Kim and Gu’s (2004) classic algorithm.

The runtime for each combination of Simulation A conditions is also plotted in Figure 2. First,

note that (as expected) the runtimes increased asn increased for all methods. Furthermore, as

expected, the runtimes associated with the partially optimizedθk parameters (i.e., Methods 2 and

4) tended to be smaller than the runtimes associated with the fully optimizedθk parameters (i.e.,

Methods 1 and 3); the runtime difference between the fully and partially optimized solutions dif-
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fered depending on the algorithm andn. Comparing the runtimes of Methods 1 and 2 to those of

Methods 3 and 4, it is evident that our scalable algorithm saves a substantial amount of compu-

tation time when fitting SSANOVAs to large samples; the scalable algorithm was anywhere from

10 to 200 times more efficient than Kim and Gu’s (2004) algorithm, and the runtime difference

between the algorithms increased substantially asn increased.

4.2 Simulation B

4.2.1 Simulation B: Design

Simulation B compares our efficient SSANOVA reparameterization (see Section 2.2) in combina-

tion with our scalable SSANOVA algorithm (see Section 3) to Wood’s (2004) GAM algorithm.

Our efficient reparameterization and algorithm are implemented in Helwig’s (2014)bigssa.R

function, and Wood’s algorithm is implemented in Wood’s (2014)gam.R function. For compara-

bility, we use the same simulation conditions (i.e.,η’s andn’s) that were examined in Simulation A.

Note that the efficient reparameterization usess= 2 uniqueγ j parameters for each of the four sim-

ulation functions. ForηA andηB, the GAM essentially estimates a different function for each level

of the nominal predictor (assuming that the two-way interaction term is included), so there are

s = 3 unique smoothing parameters; in contrast, forηC andηD the GAM separately penalizes the

partial derivative of the estimated function with respect to each predictor, so there ares= 2 unique

smoothing parameters regardless of whether or not the two-way interaction term is included (see

Wood, 2006, 2014).

4.2.2 Simulation B: Analyses

We used the same data simulation procedure that was used in Simulation A. Then, we fit a non-

parametric regression model using four different methods: Method 1 is our scalable SSANOVA

algorithm with fully optimizedγ j parameters, Method 2 is our scalable algorithm with partially

optimized (i.e., fixed after smart start)γ j parameters, Method 3 is Wood’s (2014)gam.R function,

and Method 4 is Gu’s (2013a)ssanova.R function with partially optimizedθk parameters; note

that Method 4 in Simulation A is identical to Method 4 in Simulation B (to facilitate comparisons
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between the two simulations). For each function and method, we fit a two-way model with an

interaction. For thebigssa.R function the syntax is straightforward (y∼x1*x2). For thegam.R

function, the smooths function (s.R) is used (with theby=x2 option) for fittingηA andηB, whereas

the tensor product function (te.R) is needed for fittingηC andηD; see the online supplementary R

code for specific details and function syntax.

For all four methods, we used cubic marginal splines for the continuous variable(s). For Meth-

ods 1, 2, and 4 we used the same knots that were used in Simulation A; i.e.,q = 30 bin-sampled

knots forηA andηB, andq = 100 bin-sampled knots forηC andηD. For Method 3, we used the

defaultgam.R knot-selection algorithm, which places an equidistant grid of points throughout the

covariate domain (see Wood, 2014). The “cardinal” spline parameterization used by Wood’sgam.R

function is not directly comparable to the SSANOVA framework (see Wood, 2006, 2014), so it is

not possible to fit a GAM with an identical number of parameters. To allow for a fair comparison,

we used (a)k = 11 knots for each level ofx2 when fittingηA andηB, for a total of 33 basis function

coefficients, and (b)k = 11 knots for each marginal when fittingηC andηD, for a total of 121 basis

function coefficients. Finally, as in Simulation A, for each method we (a) selected the smoothing

parameters that minimized the GCV score, (b) used the TMSE to evaluate the quality of the so-

lutions, and (c) used 100 replications of the above procedure within each cell of the simulation

design.

4.2.3 Simulation B: Results

The log-TMSE for each combination of Simulation B conditions is plotted in Figure 3. Similar

to Simulation A, all of the methods in Simulation B performed reasonably well, and (as expected)

the TMSE approached zero asn increased for all examined conditions. Furthermore, as expected,

the TMSE values associated with the partially optimizedγ j parameters (i.e., Method 2) tended to

be larger than the TMSE values associated with the fully optimizedγ j parameters (i.e., Method 1);

however the TMSE difference between the fully and partially optimized solutions was negligible.

Comparing the TMSE values of Methods 1 and 2 to those of Methods 3 and 4, the effectiveness
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of our efficient reparameterization is obvious. In all of the examined conditions, our efficient repa-

rameterization (i.e., Methods 1 and 2) performed comparable to Wood’s GAM (Method 3) and the

conventional SSANOVA parameterization (Method 4) with respect to the observed TMSE values.

Furthermore, for a majority of the examined functions (i.e.,ηA, ηC, andηD), the GAM introduced

a noticeable bias (compared to the other methods) that increased withn; at the largest sample size

(n = 5× 104), the TMSEs associated with Method 3 tended to be about 50% larger than the TM-

SEs associated with the other three methods (forηA, ηC, andηD). So, for a majority of the function

shapes, an SSANOVA with bin-sampled knots outperformed the corresponding GAM with respect

to recovering the unknown true function.

The analysis runtime for each combination of simulation conditions is also plotted in Figure 3.

As expected, the runtimes (a) increased asn increased for all methods, (b) were slightly larger for

the fully optimizedγ j ’s (i.e., Method 1) compared to the partially optimizedγ j ’s (i.e., Method 2).

Furthermore, as expected, the runtimes for the efficient parameterization (with scalable algorithm)

were noticeably smaller than the corresponding runtimes for the conventional parameterization

(with scalable algorithm); for example, forηD the median runtimes for Methods 1 and 2 with

n = 5× 104 were (a) 6.6 and 2.4 seconds (respectively) in Simulation A, and (b) 2.2 and 1.8 sec-

onds (respectively) in Simulation B. In comparison, forηD with n = 5× 104, the median runtime

was 2.7 seconds for the GAM, 75.7 seconds for the partially optimized SSANOVA (with classic

algorithm), and 111.3 seconds for the fully optimized SSANOVA (with classic algorithm). Thus,

when smoothing large samples, a two-way SSANOVA model (using our efficient reparameteriza-

tion and scalable algorithm) can be fit more quickly than the corresponding GAM.

5 El Niño Example

5.1 Data

The data used in the example were obtained from Bache & Lichman (2013), but are originally

from the Tropical Atmosphere Ocean project (TAO; see NOAA, 2014). The TAO project col-

lects oceanographic data from approximately 70 buoys positioned throughout the equatorial Pacific
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Ocean (see Figure 4a). The TAO project monitors the El Niño and La Nĩna phenomena, which in-

volve unusually warm and cold equatorial ocean temperatures, respectively. For this example, we

analyzed ocean surface temperature data collected from January 1994 to May 1998, and we only

analyzed data from buoys east of 156◦ longitude. There weren = 86501 data points included in

the example; see the online supplementary R code for more specifics.

5.2 Analyses

We analyzed the ocean temperature data using a two-way SSANOVA where the first predictor was

the bidimensional space effect (i.e., longitude and latitude) and the second predictor was time effect

(in years). We used (a) a cubic thin-plate spline for the bidimensional space effect (see Appendix),

(b) a cubic smoothing spline for the time effect, and (c) a total ofq = 676 bin-sampled knots.

Finally, we fit the model using the efficient reparameterization (see Section 2) with partially opti-

mized smoothing parameters (skip.iter=TRUE in Helwig’s bigssa.R function) and the scalable

algorithm (see Section 3). We tried fitting the model both without and with the two-way interaction

between the space and time effects.

5.3 Results

The relevant fit statistics for the additive and interaction models are given in Table 1. From the fit

statistics in Table 1, there is clear evidence that the interaction model should be preferred; however,

the additive model can explain about 75% of the data variation, suggesting that the main effects

(from the interaction model) are worth examining. The temporal main effect plot (Figure 4b) re-

veals the intense 1995 La Niña event (i.e., drop in ocean temperatures) and the 1997 El Niño event

(i.e., increase in ocean temperatures). The spatial main effect plot (Figure 4c) reveals that the

equatorial ocean surface temperatures are generally warmer in the western Pacific and colder in

the southeastern Pacific.

The general trends in Figure 4 account for about 75% of the variation in the Pacific Ocean

surface temperatures. However, the space-time interaction effect accounts for approximately 20%

of the variation that is unexplained by the main effect trends. To visualize the significant interaction
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effect, it is helpful to examine the predicted ocean surface temperatures at different time points.

Selected ocean surface temperatures from January 1994 to May 1998 are plotted in Figure 5, and

an animation of the predicted temperatures can be found with the online supplementary material

accompanying this article. Note that the 1995 La Niña event is characterized by an unusually large

plume of cold water in the southeast Pacific in September, whereas the 1997 El Niño event has no

plume of cold water in the southeast Pacific in September. Furthermore, from the animation in the

online supplementary materials, note that the warmer waters of the western Pacific tend to move

eastward during the 1997 El Niño.

6 Discussion

Our results clearly reveal the benefits of our SSANOVA reparameterization and algorithm. Specif-

ically, Simulation A demonstrates that our scalable SSANOVA algorithm (a) produces TMSE val-

ues comparable to the classic SSANOVA algorithm, and (b) is much more computationally efficient

than the classic SSANOVA algorithm when analyzing large samples. Furthermore, Simulation B

reveals that SSANOVAs can (a) outperform GAMs when analyzing many different function shapes,

and (b) be fit more quickly than a GAM whenn is large. Also, comparing the results of the two

simulations, it is evident that our efficient reparameterization is effective under a wide variety of

different data situations; for example, the efficient reparameterization performed well when the

SSANOVA model was misspecified (i.e., fitting an interaction model toηA andηC) or correctly

specified (i.e., fitting an interaction model toηB andηD).

Our results also allow for an interesting comparison between Gu’s (2013) SSANOVA ap-

proach and Wood’s (2004, 2006) GAM approach. For a majority of the simulation functions,

the SSANOVA methods produced smaller TMSE values than the comparable (interaction) GAM;

this was particularly true for the functions with nonparametric effects of two continuous predictors

(i.e.,ηC andηD). However, the difference between the SSANOVA and GAM solutions was minor

(e.g., TMSE of GAM was .005 larger), and the GAM runtime was substantially smaller than the

classic SSANOVA runtime. So, Wood’sgam.R function seems to be a reasonable alternative to
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Gu’s ssanova.R function when fitting two-way SSANOVA models to large samples. Further-

more, Helwig’sbigssp.R andbigssa.R functions offer fast and accurate alternatives to Gu’s

ssanova.R function when fitting SSANOVAs to large samples.

Finally, our results also demonstrate the flexibility and potential of the SSANOVA approach

for analyzing real data. The El Niño data example demonstrates that SSANOVAs can provide a

powerful nonparametric framework for analyzing spatiotemporal data. And, using the reparame-

terization and algorithm developed in this paper, it is now possible to use the powerful SSANOVA

framework to analyze large spatiotemporal data sets. As a result, we suspect that SSANOVAs will

prove quite useful for discovering interesting functional relationships among large noisy data sets

in the physical and social sciences.

Appendix: Spline Types and Reproducing Kernels

The null and contrast space RKs for various different types of splines are given in Table 2. The

thin-plate spline RK is more complicated (see Gu, 2013b, for a thorough discussion). For practical

computation with a set of selected knots{x̆t}
q
t=1, the following procedure can be used to fit a cubic

thin-plate spline withxi ∈ Rd (assumingd ≤ 3).

First, defineΨ̆ ≡ {ψv(x̆t)}q×M for t ∈ {1, . . . , q} andv ∈ {0, . . . , d}, whereψ0(x̆t) ≡ 1,ψ j(x̆t) ≡ x̆t j

for j ∈ {1, . . . , d}, andM ≡ d+1. Next, letF1R denote the QR decomposition ofΨ̆ such thatF1 is a

q×M matrix of orthonormal columns with the first column proportional to a column of ones, andR

is aM×M upper triangular matrix. Also, letF2 denote aq×(q−M) matrix of orthonormal columns

that are orthogonal to the columns ofF1, so that the columns ofF ≡ (F1,F2) form an orthonormal

basis forRq. Given the knots{x̆t}
q
t=1, the null space RK isρn(xg, xh) =

∑M
v=1 φv(xg)φv(xh) where

φg ≡ {φ1(xg), . . . , φM(xg)}1×M is obtained using the relationφg =
√

qψgR
−1 with ψg ≡ {ψv(xg)}1×M.

For a cubic thin-plate spline, the RK of the contrast space has the form

ρc(xg, xh) = ξ(xg, xh) − q−1φgΦ̆
′
ξ̆h − q−1ξ̆

′
gΦ̆φ

′
h + q−2φgΦ̆

′
Ξ̆Φ̆φ′h
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whereΦ̆ ≡ {φv(x̆t)}q×M for t ∈ {1, . . . , q} andv ∈ {1, . . . ,M}, ξ̆g ≡ {ξ(x̆t, xg)}q×1 for t ∈ {1, . . . , q},

Ξ̆ ≡ {ξ(x̆t, x̆w)}q×q for t,w ∈ {1, . . . , q}, and the semi-kernel is given by

ξ(xg, xh) =





α‖xg − xh‖2 ln(‖xg − xh‖) if d = 2

β‖xg − xh‖4−dsign(2− d) if d ∈ {1,3}
(14)

whereα andβ are positive scalars that can be absorbed into the smoothing parameters by setting

α = β = 1 when defining the RK.

Note that the penalty matrixQ ≡ {ρc(x̆t, x̆w)}q×q for t,w ∈ {1, . . . , q} has the form

Q = Ξ̆ − q−1Φ̆Φ̆
′
Ξ̆ − q−1Ξ̆Φ̆Φ̆

′
+ q−2Φ̆Φ̆

′
Ξ̆Φ̆Φ̆

′

= (I − F1F′1)Ξ̆(I − F1F′1)

= F2F′2Ξ̆F2F′2

where the relation
√

qF1 = Φ̆ is used. Similarly, the basis function matrixJ ≡ {ρc(xi , x̆t)}n×q for

i ∈ {1, . . . , n} andt ∈ {1, . . . , q} has the form

J = Ξ − q−1ΦΦ̆
′
Ξ̆ − q−1ΞΦ̆Φ̆

′
+ q−2ΦΦ̆

′
Ξ̆Φ̆Φ̆

′

= Ξ(I − q−1Φ̆Φ̆
′
) − q−1ΦΦ̆

′
Ξ̆(I − q−1Φ̆Φ̆

′
)

= (Ξ −ΨR−1F′1Ξ̆)F2F′2

whereΞ ≡ {ξ(xi , x̆t)}n×q for i ∈ {1, . . . , n} andt ∈ {1, . . . , q}, Φ ≡ {φv(xi)}n×M for i ∈ {1, . . . , n} and

v ∈ {1, . . . ,M}, andΨ ≡ {ψv(xi)}n×M for i ∈ {1, . . . , n} andv ∈ {0, . . . , d}; the relation
√

qΨR−1 = Φ

is used.

It should be noted that SSANOVAs formed with marginal RKs from Table 2 will be scale

invariant in the sense that scale transformations of the covariates would not change the result.

This is because cubic and periodic smoothing splines assume that the observed data domain has

been transformed to the interval [0,1] as a preprocessing step, so the covariate scales are implicitly

removed before the formation of the tensor product space. In contrast, the thin-plate spline RK

retains the data scale; however, note that the thin-plate null space RKφg =
√

qψgR
−1 is scale free
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because the data inψg are post-multiplied byR−1, whereR contains the data scale. Furthermore,

assuming that thej-th predictor has a thin-plate spline marginal, note thatγ j is always attached

to the j-th predictor’s contrast space RK using our reparameterization; as a result the scale of the

thin-plate contrast space RK can be absorbed intoγ j, so the thin-plate RK is effectively scale free

using our efficient reparameterization.

Supplementary Materials

README (Overview): Summary of the other supplementary materials. (README.txt)

Simulation Functions Plot: R code for creating functions plot in Figure 1.(sim funplot.R)

Simulation A Script: R code for replicating Simulation A analyses and Figure 2.(simA script.R)

Simulation B Script: R code for replicating Simulation B analyses and Figure 3.(simB script.R)

El Ni ño Script: R code for replicating El Nĩno analyses, Figures 4–5, and movie.(elnino script.R)

El Ni ño Animation: An animation of the predicted equatorial Pacific Ocean surface temperatures

from January 1994 to May 1998. (ElNinoMovie.mp4)
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Table 1: Fit statistics for the two-way SSANOVA models fit to the El Niño data.
Model GCV R2 AIC BIC
Additive 0.93 0.75 239422.7 242027.9

Interaction 0.20 0.95 106029.6112383.3
Note. R2 is explained variation and AIC/BIC is Akaike’s/Bayesian Information Criterion.

Table 2: Marginal reproducing kernels for different spline types.
Spline Type ρn(xg, xh) ρc(xg, xh)
m-th Order Smoothing

∑m−1
v=0 κv(xg)κv(xh) κm(xg)κm(xh) + (−1)m−1κ2m(|xg − xh|)

m-th Order Periodic κ0(xg)κ0(xh) (−1)m−1κ2m(|xg − xh|)
Nominal 1/ f Ixg=xh − 1/ f

Note 1. Them-order splines assumex ∈ [0,1], and nominal spline assumesx ∈ {1, . . . , f }.
Note 2. For linear and cubic splines, the needed functions areκ0(x) ≡ 1, κ1(x) ≡ x − 0.5, κ2(x) ≡
0.5[κ2

1(x) − 1/12], andκ4(x) ≡ {κ4
1(x) − [κ2

1(x)/2] + 7/240}/24.
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Figure 1: Four simulation functions. See supplementary R code for function specifics.
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Figure 2: Simulation A log-TMSE (top) and runtime (bottom) boxplots. Within each sample size,
left (white) box is Method 1 (scalable algorithm, fully optimizedθk’s), left-middle (light gray)
box is Method 2 (scalable algorithm, partially optimizedθk’s), right-middle (dark gray) box is
Method 3 (classic algorithm, fully optimizedθk’s), and right (black) box is Method 4 (classic
algorithm, partially optimizedθk’s).
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Figure 3: Simulation B log-TMSE (top) and runtime (bottom) boxplots. Within each sample size,
left (white) box is Method 1 (scalable algorithm, fully optimizedγ j ’s), left-middle (light gray) box
is Method 2 (scalable algorithm, partially optimizedγ j ’s), right-middle (dark gray) box is Method 3
(Wood’s GAM algorithm), and right (black) box is Method 4 (classic algorithm, partially optimized
θk’s).
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Figure 4: (a) Approximate locations of the buoys in the example, (b) main effect of time variable,
and (c) main effect of space variable.
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Figure 5: Some predicted equatorial ocean surface temperatures from Jan. 1994 to May 1998. See
the online supplementary material for an animation of the predicted temperatures.
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