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Variable selection is of increasing importance to address the difficulties of high dimensionality in many scientific
areas. In this paper, we demonstrate a property for distance covariance, which is incorporated in a novel
feature screening procedure together with the use of distance correlation. The approach makes no distributional
assumptions for the variables and does not require the specification of a regression model, and hence is especially
attractive in variable selection given an enormous number of candidate attributes without much information about
the true model with the response. The method is applied to two genetic risk problems, where issues including
uncertainty of variable selection via cross validation, subgroup of hard-to-classify cases and the application of a
reject option are discussed.

Keywords: distance correlation, variable selection, SVM with reject option, TCGA ovarian cancer data,
penalized Bernoulli likelihood

1. Introduction

The idea of feature screening came along as high dimensional data were collected in modern technology. It was aimed
at dealing with the challenges of computational expediency, statistical accuracy and algorithmic stability due to high
dimensionality. Fan and Lv proposed the sure independence screening (SIS) [1] and showed that the Pearson correlation
ranking procedure possessed a sure screening property for linear regression with Gaussian predictors and responses. A new
feature screening procedure for high dimensional data based on distance correlation [2], named DC-SIS, was presented
in [3]. DC-SIS retained the sure screening property of the SIS, and additionally possessed new advantages of handling
grouped predictors and multivariate responses by using distance correlation. Moreover, since distance correlation was
applicable to arbitrary distributions, DC-SIS could also be used for screening features without specifying a regression
model between the response and the predictors, and thus was robust to model mis-specification.
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However, both SIS and DC-SIS relied on a user-specified model size d which decided the number of predictors being
selected. Let the sample size be n, d was chosen to be multipliers of the integer part of n/ log n in [1] and [3] which
did not depend on any other characteristics of the data. As pointed out by a referee of [3], the choice of d was of great
importance in practical implementation and might influence the screening results significantly. Our study is aimed at fixing
this shortcoming by including an automatic stopping criteria for DC-SIS based on the property of distance covariance.

The screening procedures may fail if a feature is marginally uncorrelated, but jointly correlated with the response, or
in the reverse situation where a feature is jointly uncorrelated but has higher marginal correlation than some important
features. An iterative SIS was proposed in [1] to fix this problem. Current research interest involves dealing with this
drawback but this work is not related to this quest.

We demonstrate our improved method through two real examples. The small round blue cell tumors (SRBCT) data
were relatively easy to classify and had been studied extensively. The Cancer Genome Atlas (TCGA) ovarian cancer data,
however, were much more challenging due to the large number of genes and limited sample size. The target was to identify
the important genes that contribute to the sensitive or resistant status after receiving a particular chemotherapy treatment. A
substantial fraction of the population was difficult to classify and a “withholding decision” option is allowed in the support
vector machine with reject option model to adapt to this fact. A multiple cross validation is used to quantify uncertainty
given a humongous number of candidates, and we see a commonly observed dilemma that different variables are selected
by using different subsets of the data. Comparison between the results from the original data and those from the data
obtained by randomly permuting the response provide further justification on our conclusions. Furthermore, the multiple
cross validation on the permuted data discloses the existence of spuriously correlated variables in high dimensional data
and thus failure of variable selection and model building based on training data.

Some Preliminaries

Distance correlation

[2] proposed distance correlation as a measurement of dependence between two random vectors. The method has been
successfully applied to various problem, see [4] for example. To be specific, the authors defined the distance covariance
between X ∈ Rp and Y ∈ Rq to be

V2(X,Y ) =
1

cpcq

∫
Rp+q

|fX,Y (s, t)− fX(s)fY (t)|2

|s|1+pp |t|1+qq

dt ds

where fX,Y (s, t), fX(s), and fY (t) are the characteristic functions of (X,Y ), X , and Y respectively, and cp, cq are
constants chosen to produce scale free and rotation invariant measure that doesn’t go to zero for dependent variables.
The idea is originated from the property that the joint characteristic function factorizes under independence of the two
random vectors. This leads to the remarkable property that V 2(X,Y ) = 0 if and only if X and Y are independent.

The sample version of distance covariance and distance correlation involves pairwise distances. For a random sample
(X,Y ) = {(Xk, Yk) : k = 1, ..., n} of n i.i.d random vectors (X,Y ) from the joint distribution of random vectors X in
Rp and Y in Rq, the Euclidean distance matrices (aij) = (|Xi −Xj |p) and (bij) = (|Yi − Yj |q) with i, j = 1, . . . , n are
computed. Define the double centering distance matrices

Aij = aij − ai· − a·j + a··, i, j = 1, . . . , n,
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where

ai· =
1

n

n∑
j=1

aij , a·j =
1

n

n∑
i=1

aij , a·· =
1

n2

n∑
i,j=1

aij ,

similarly for Bij = bij − bi· − b·j + b··, i, j = 1, . . . , n. Then, the sample distance covariance Vn(X,Y ) is defined by

V 2
n (X,Y ) =

1

n2

n∑
i,j=1

AijBij .

The sample distance correlation Rn(X,Y ) is defined by

R2
n(X,Y ) =


V 2
n (X,Y )√

V 2
n (X)V 2

n (Y )
, V 2

n (X)V 2
n (Y ) > 0;

0, V 2
n (X)V 2

n (Y ) = 0,

where the sample distance variance is defined by

V 2
n (X) = V 2

n (X,X) =
1

n2

n∑
i,j=1

A2
ij .

Feature screening via distance correlation (DC-SIS)

[1] proposed sure independence screening (SIS) procedure based on the Pearson correlation for feature selection. The
distance correlation version of this technique (DC-SIS) was studied in [3]. With a user-specific model size d, the variables
whose distance correlations with the response ranking from 1st to dth in decreasing order were selected. The authors
explored the theoretic properties of the DC-SIS and proved that the DC-SIS kept the desired sure screening property
established in [1]. Moreover, due to the property of distance correlation, DC-SIS procedure was robust to model mis-
specification, which was demonstrated in their simulations.

Improving DC-SIS using distance covariance

Theorem 1 Suppose random vectors X,Z ∈ Rp and Y ∈ Rq, and assume Z is independent of (X,Y ), then

V 2(X + Z, Y ) ≤ V 2(X,Y ), (1)

where V is the population distance variance defined in [2].

Proof 1

V 2(X + Z, Y ) =‖ fX+Z,Y (t, s)− fX+Z(t)fY (s) ‖2

=
1

cpcq

∫
Rp+q

1

|t|1+pp |s|1+qq

|fX+Z,Y (t, s)− fX+Z(t)fY (s)|2dtds.
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The following fact follows from the definition of characteristic function and independence assumption.

|fX+Z,Y (t, s)− fX+Z(t)fY (s)|2

=|Eeit
T (X+Z)+isTY − Eeit

T (X+Z)Eeis
TY |2

=|Eeit
TX+isTY Eeit

TZ − Eeit
TXEeit

TZEeis
TY |2

=|fX,Y (t, s)fZ(t)− fX(t)fZ(t)fY (s)|2

=|fZ(t)|2|fX,Y (t, s)− fX(t)fY (s)|2,

Since |fZ(t)| ≤ 1 by the property of characteristic function†, we have

|fX+Z,Y (t, s)− fX+Z(t)fY (s)|2 ≤ |fX,Y (t, s)− fX(t)fY (s)|2,

which implies

V 2(X + Z, Y ) ≤ 1

cpcq

∫
Rp+q

1

|t|1+pp |s|1+qq

|fX,Y (t, s)− fX(t)fY (s)|2dtds

=‖ fX+Z,Y (t, s)− fX+Z(t)fY (s) ‖2

= V 2(X,Y ).

We know that if E|X|p <∞, E|X + Z|p <∞ and E|Y |p <∞, then almost surely

lim
n→∞

V 2
n (X + Z, Y ) = V 2(X + Z, Y ),

lim
n→∞

V 2
n (X,Y ) = V 2(X,Y ).

Thus, for the sample distance covariance, if n is large enough, we should have

V 2
n (X + Z, Y ) ≤ V 2

n (X,Y ),

under the assumption of independence between (X,Y ) and Z.
In the case where (X,Z) is of interest, which is the usual situation for variable selection setting, we could use the above

theorem by incorporating degenerated random vectors as follows. SupposeX ∈ Rp1 andZ ∈ Rp2 , then we augmentX and
Z to be X̃ = (X, 0p2) and Z̃ = (0p1 , Z) respectively. X̃ and Z̃ are therefore of the same dimension and X̃ + Z̃ = (X,Z).

We implemented the above theorem as a check for stopping for DC-SIS. For the original DC-SIS, it required a
user-specified model size d, which was always chosen as multipliers of the integer part of n/ log n. For our improved
screening procedure with distance correlation, we first ranked the importance of xi, i = 1, ..., p using the marginal distance
correlations with the response as DC-SIS did and initialized S as the singleton including the index of the top one variable.
Instead of selecting the top d variables, we kept adding variables to xS = {xi : i ∈ S} according to the ordered list of
variables until observing a decrease in the distance covariance between xS and y. The procedure took the following steps
and we denoted the procedure as DCOV method.

1. Calculate marginal distance correlations for xi, i = 1, ..., p with the response.

†In [5], the author obtained equality here which is incorrect.
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2. Rank the variables in decreasing order of the distance correlations. Denote the ordered variables as x(1), x(2), ..., x(p).
Start with xS = {x(1)}.

3. For i from 2 to p, keep adding x(i) to xS if V 2
n (xS , y) does not decrease. Stop otherwise.

Real application on SRBCT data

The small round blue cell tumors (SRBCTs) are 4 different childhood tumors named so because of their similar appearance
on routine histology, which makes correct clinical diagnosis extremely challenging. However, accurate diagnosis is
essential because the treatment options, responses to therapy and prognoses vary widely depending on the diagnosis.
They include Ewing’s family of tumors (EWS), neuroblastoma (NB), non-Hodgkin lymphoma (in our case Burkitt’s
lymphoma, BL) and rhabdomyosarcoma (RMS). The SRBCT data being published in [6] included the expression of
2308 genes measured on 63 samples (23 EWS, 8 BL, 12 NB and 20 RMS). This data are known as an easy-classified
example and have been studied by many. [7] using the multicategory SVM is one of several methods that have excellent
classification results on this data set. Hence, we focus more on the selected genes.

We applied our improved feature screening procedure on this dataset and compared our selection of genes with the 96
top genes reported in [6]. This is a multicategory classification and the genes were screened in a one-versus-rest fashion.
Specifically, for each of the four different types of tumors, we generated a response indicator vector taking value of 0 if
the sample came from the current interested type and 1 otherwise. This allowed us to implement our screening procedure
and obtained the genes which showed high distance correlation with the current type of tumor. The four groups of selected
genes were combined as a whole collection of in total 176 genes. 47 genes turned out to be in common for the DCOV
selection and the top 96 genes used in [6].

We further examined the power of these two groups of genes in differentiating the 4 types of tumors by presenting the
pairwise distances of the 63 samples (Figure 1). As shown in the plot, the samples were arranged in the order of EWS, BL,
NB and RMS. The pairwise distances resulted from the two selections of genes were scaled to maximum of 1 respectively
so that they shared the same magnitude. Both groups of genes could tell the 4 types of tumors apart. Compared with the
96 genes from [6], however, the 176 DCOV selected genes show better distinguishability and clearer contrast over the 4
classes. Moreover, the right panel almost missed the samples labeled from 57 to 62 in the class of RMS but the 176 DCOV
genes could recognize them with big differences between the in and out class pairwise distances. The dataset were known
to be easy for classification and both sets of genes were able to classify the testing set of 20 samples perfectly via k-nearest
neighbor method with k = 3.

Real application on TCGA ovarian cancer data

Data description

Ovarian cancer is the fifth-leading cause of cancer death among women in the United States; 22,240 new cases and 14,030
deaths were estimated to have occurred in 2013[8, 9]. The standard treatment for high-grade serous ovarian cancer is
aggressive surgery followed by chemotherapy. Despite treatment, a vast majority of ovarian cancer patients eventually
relapse and die of their disease with a major cause of chemotheraphy resistance [10]. Identification and prediction of
patients with chemoresistant thus become important for improving the outcome of ovarian cancer.
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Figure 1. Comparison of pairwise distances between the two selections of genes. Left and right panel present the pairwise distances of the 63 samples over the improved DC-SIS
selection of 176 genes and the 96 reported genes in [6] respectively.

The Cancer Genome Atlas (TCGA) collected high-quality, high-dimensional, and multi-modal genetic data from
women with ovarian cancer. There were 279 samples with explicit chemostatus and gene expression (Affymetrix HT-
HGU133a) data in the public set. among which 191 subjects were sensitive to chemotherapy and 88 were chemoresistant.
Expression data for 12042 genes after log transformation are used for analysis. The issue is to explore whether there are
genes whose expression pattern is strongly correlated with the response indicating chemotherapy status.

DCOV gene selection results based on all the observations

Our feature screening procedure on the gene expression data for the 279 patients selected 82 genes, among which 5
were reported to be related to ovarian cancer in the literature. IGFBP5 ranked as the 5th is one of the six members of
insulin-like growth factor-binding protein (IGFBP) family and is known to be important for cell growth control, induction
of apoptosis and other IGF-stimulated signaling pathways. IGFBP5 expression is shown to prevent tumor growth and
inhibited tumor vascularity in a xenograft model of human ovarian cancer and is suggested that IGFBP5 plays a role as
tumor suppressor by inhibiting angiogenesis [11]. GPR3, the 7th, is a member of a family of G-protein couple receptors
whose activation of PKA and subsequent increase of cyclic AMP level promotes meiotic arrest in the oocyte [12]. Mice
deficient in GPR3 display premature ovarian aging and loss of fertility [13]. MAPK4, the 18th, is a member of MAPK
signaling pathway. MAPK signal transduction cascade is dysregulated in a majority of human tumors [14]. It is suggested
playing an important role in molecular diagnostics and molecular therapeutics for lowgrade ovarian cancer [15]. FZD5
ranked as the 22th encodes Frizzled-5 protein, which is believed to be the receptor for the Wnt5A ligand [16]. The Wnt5A
ligand plays a context-dependent role in human cancers. It has been demonstrated that Wnt5a is expressed at significantly
lower levels in human Epithelial ovarian cancer (EOC) cell lines and in primary human EOCs compared with either
normal ovarian surface epithelium or fallopian tube epithelium [17]. FGF22, the 56th, is a member of Fibroblast Growth
Factors (FGFs) family, whose members possess broad mitogenic and cell survival activities, and are involved in a variety
of biological processes, including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and
invasion. The inhibition of FGFR2, which is a member of this family, has been found to increase cisplatin sensitivity in
ovarian cancer [18].
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Fitted Probabilities for Chemosensitive Subjects
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Figure 2. Fitted probabilities by penalized Bernoulli likelihood model with the 82 genes.

39 pathways were found to be associated with the 82 genes, among which 3 pathways are known to be important for
ovarian cancer. MAPK signaling pathway is suggested playing an important role in molecular diagnostics and molecular
therapeutics for lowgrade ovarian cancer [15]. Wnt signaling pathway is best known for its role in tumorigenesis. [15]
demonstrated the difference in Wnt signaling pathway between normal ovarian and cancer cell lines and between benign
tissue and ovarian cancer. They also pointed out that those differences implicate that Wnt signaling leads to ovarian cancer
development despite the fact that gene mutations are uncommon. [19] suggested that genetic variants in TGF-β signaling
pathway are associated with ovarian cancer risk and may facilitate the identification of high-risk subgroups in the general
population.

Support vector machine with reject option

We estimated the probabilities of being chemosensitive or chemoresistant by a penalized Bernoulli likelihood main effect
spline model using the R package gss[20]. Aside from the additive expression effects of the selected 82 genes, we also
included two more covariates, namely the cancer grade and cancer stage of the subjects. Cancer grade is an indicator for
grade 2 and grade 3. Cancer stage indicates whether the subject is in stages IIIC and IV or not. As shown in Figure 2, the
estimated probabilities have high density around small and large values for sensitive and resistant patients respectively,
with overlapping in the middle values. This suggested that we were less confident about the chemostatus for the patients
in the middle range and so we sought a principled approach which withholds decision for such cases.

[21, 22] investigated the support vector machines with a built-in reject option for binary classification where the results
of classification could be −1,+1 or withhold decision. Given a discriminant function f : X → R, the method only reports
sgn(f(x)) ∈ {−1, 1} if |f(x)| > δ and withholds decision if |f(x)| ≤ δ. Suppose that the cost of making a wrong decision
is 1 and that of rejecting to make a decision is d ∈ [0, 12 ], then an proper risk function is

Ld,δ(f) = Eld,δ(Y f(X)) = P{Y f(X) < −δ}+ dP (|Y f(X)| ≤ δ)
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with the discontinuous loss function

ld,δ(z) =


1, if z < −δ;

d, if |z| ≤ δ;

0, otherwise.

The classifier associated with the discriminant function

f∗d (x) =


−1, if η(x) < d;

0, if d ≤ η(x) ≤ 1− d;

+1, if η(x) > 1− d,

with η(x) = P{Y = +1|X = x} minimizes the risk Ld,δ(f) with

L∗d = Ld,δ(f
∗
d ) = Emin{η(X), 1− η(X), d}.

To avoid working with the discontinuous loss ld,δ, [21, 22] proposed a convex surrogate loss, which is the generalized
hinge loss,

φd(z) =


1− az, if z < 0;

1− z if 0 ≤ z < 1;

0, otherwise,

where a = (1− d)/d ≥ 1. It followed that f∗d also minimizes the risk associated with φd over all measurable f : X → R.
The discriminant functions f took the form fλ(x) =

∑M
j=1 λjfj(x) based on a set of known functions fj : X → R and

coefficients λj ∈ R, 1 ≤ j ≤M . The coefficients were chosen to minimize the empirical risk

R̂φ(fλ) =
1

n

n∑
i=1

φ(Yifλ(Xi)).

To reflect the preference for sparse solutions, which is desirable when M is large compared to the sample size n, an l1
type restriction ‖λ‖1 =

∑M
j=1 |λj | was incorporated in [21] and fλ is estimated by fλ̂r

, where

λ̂(r) = arg min
λ∈RM

R̂φ(fλ) + r‖λ‖1 (2)

and r > 0 is a tuning parameter. We followed [21] to call this model support vector machines with reject option(SVM-R).
The authors in [22] also showed that the choice of δ = 1/2 gives the optimal bound established by the excess risk of φd

on the excess risk Ld,δ − L∗d for any fixed d ∈ [0, 1/2) and measurable function f . For this reason, we fixed δ = 1/2 for
our practical use of the method. Furthermore, we took the set of known functions fj : X → R to be linear functions of the
log transformation on the 12024 genes. The optimization problem (2) was formulated into a linear programming task and
solved using MATLAB.

Figure 3 presents the 82 genes for the 279 subjects in groups according to the SVM-R classification results. The results
correspond to the particular choice of d = 1/4 and r = 4 to illustrate the benefits of SVM-R. As shown in the plot, there
is a big difference in the gene expression between the subjects assigned to be resistant and sensitive. The behavior of the
82 genes for those without a certain decision tends to be in-between.
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Figure 3. Gene expression data for the 82 selected genes and 279 subjects with SVM-R classification for d = 1/4 and r = 4. The subjects are grouped according to their assigned
decisions by the SVM with a reject option. The left group involves 15 patients (1 sensitive and 14 resistant) classified to be resistant. The middle group is assigned to be sensitive
and contains 123 sensitive and 8 resistant subjects. 67 sensitive patients and 66 resistant patients with a withhold decision are shown in the right group.

Five fold cross validation

In order to choose the tuning parameter in SVM-R, we need to hold aside a tuning set before selecting the genes. Leaving
out different observations leads to different gene selection results. Here we applied a five fold cross validation analysis to
examine the variations of selections of genes and SVM-R model fitting results across different partitions of the dataset.
The implementation followed the steps below.

1. Randomly partition the 279 subjects into 5 non-overlapping folds.
2. Select genes from the 12024 genes based on 4 folds as the training set.
3. Build SVM-R model with the selected genes and the two cancer status variables based on the training set.
4. Use the leaving-out fold as the tuning set to choose the tuning parameter for SVM-R with mean l−loss, defined

below, as the criteria.
5. Repeat 2.− 4. for the 5 folds.

The l−loss for a subject is 1 if a misclassification occurs, d if a withholding decision is made and 0 otherwise. The mean
l−loss is the average over the l−losses for all the subjects in a given set of data. We looked for tuning parameter values
minimizing the mean l−loss.

The above procedure produced 5 selections of genes before SVM-R, namely S1, . . . , S5. In addition, we also have the
82 genes selected from all the subjects previously. Table 1 presents the pairwise intersections of these 6 sets with each
other. The union of the 5 selections includes 211 genes, which covers 77 genes in the 82 genes. 73 out of 211 genes
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S1 S2 S3 S4 S5

S1 53
S2 16 77
S3 23 21 87
S4 18 16 15 33
S5 27 30 31 21 94

82 genes 38 38 44 28 50

Table 1. Pairwise intersections of S1, . . . , S5 and the 82 genes. The diagonal numbers are the numbers of selected genes
in each Si.

0

50

100

1 2 3 4 5
Frequency of selection

co
un

t

SVM_reject_option

0

1

>1

Figure 4. Frequency for the union of S1, · · · , S5, colored by frequencies after SVM-R for d = 1/5.

have frequency more than 1 where 63 of them appear in the 82 genes. After implementing SVM-R, the union of genes is
reduced to 98 genes. Figure 4 displays the histogram of these 211 genes colored by the frequency after SVM-R runs for
d = 1/5. The pink region denotes the parts further eliminated by SVM-R, which is consistent with the DCOV selection in
that SVM-R further rules out the genes with low frequency in the union.

Multiple cross validation

In order to consider uncertainty in variable selection and model building due to different partitions of the dataset, we further
extended the five fold cross validation to multiple cross validation (MCV) and assessed the prediction power through the
following procedure. The results were summarized in the upper part of Table 2.

1. Randomly partition 279 samples into a 1/5 tuning set, a 2/3× 4/5 = 8/15 training set and a 1/3× 4/5 = 4/15

testing set.
2. Select genes from the 12024 genes using the proposed method on the training set.
3. Build SVM-R model using the selected genes and the two cancer status variables based on the training set.
4. Use the tuning set to choose the tuning parameter for SVM-R with mean l−loss as the criteria.
5. Use the model with chosen parameter to predict labels for the testing set.
6. Repeat 1.− 5. for 50 times.

To understand more about the 50 models, we further explored the prediction results for d = 1/5. The prediction labels
from the 50 models were aggregated, following the idea of ensemble methods. The result for each individual was recorded
in a vector of three frequencies, namely the frequency of being classified as sensitive subjects, the frequency of obtaining

10
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num of reps mean training mean testing mean num training mean num test
d with decision accuracy(std) accuracy(std) with decision(std) with decision(std)

original
1/3 50 0.8319(0.0914) 0.6943(0.0544) 101.9400(27.8043) 49.1800(15.4295)
1/4 43 0.9371(0.0336) 0.7807(0.1250) 43.0698(27.0338) 20.1860(12.9638)
1/5 37 0.9420(0.0358) 0.8215(0.1460) 24.4595(21.3874) 11.4865(10.0626)

permute
1/3 49 0.7984(0.0078) 0.6910(0.0426) 112.1837(26.4352) 55.5918(13.9954)
1/4 28 0.9225(0.0023) 0.6867(0.0810) 56.9643(21.4346) 25.2857(10.4132)
1/5 9 0.9686(0.0015) 0.7071(0.1322) 53.4444(28.3333) 24.5556(13.0682)

Table 2. Results for the 50 individual replications for d = 1/3, 1/4 and 1/5. The upper and lower part are results for the
original and permuted data respectively. The third column shows the number of replications out of 50 with at least one
definite decision made on the testing set. The fourth and fifth columns of the table conclude the mean training and testing
accuracies with standard deviation in the parenthesis respectively restricted to the repetitions with decision made. The last
two columns display the mean and standard deviation for the number of patients assigned decisions for the training and

testing sets respectively given the replications with decision made.

a withholding and the frequency of being assigned to be resistant out of the 50 models. Let (si, wi, ri) be the vector for
the ith patient.

A finer analysis was conducted by looking at the strength of being sensitive or resistant according to (si, wi, ri).A voting
score vi was defined as (si − ri)/wi. Hence, a positive vi indicated a tendency of being sensitive whereas a negative vi
suggested more possibility of being resistant.

Table 3 (upper part) partitions the voting scores into 5 intervals and describes the distribution of vi’s as well as the
proportion of sensitive subjects within each range of vi, compared to the overall proportion of sensitive patients, i.e.
191/279, in the population. It turned out that the trend of being sensitive weakened monotonically as the voting score
decreased. The stratification specified a subgroup of 15 patients, who possessed the greatest voting scores, with very high
accuracy to be chemosensitive. The next highest voting score subgroup of 47 subjects also showed strong confidence of
being sensitive compared to the sample proportion. The conclusion from partitioning the voting scores was conservative
but led to more convincing and steady classification results.

voting score

(−0.1, 0] (0, 0.1] (0.1, 0.2] (0.2, 0.4] (0.4, 1.5]

original frequency 76 74 67 47 15
proportion 0.5658 0.6486 0.7164 0.8085 0.9333

permuted frequency 145 67 43 24 0
proportion 0.6759 0.6866 0.7209 0.6667 NA

Table 3. Frequency of voting score vi’s and proportion of sensitive subjects in each subinterval for d = 1/5. The upper
and lower parts correspond to the original and permuted data respectively.

Each replication of the 50 multiple cross validations gave rise to a different collection of selected genes. This issue is
common to selecting variables from a humongous number of candidates, in the not-low-hanging-fruit situation. The union
of the 50 gene selections before SVM-R consisted of 1245 genes and included all the 82 genes discussed previously. 34
out of 1245 genes were chosen at least 10 times, where 33 of them appeared in the 82 genes, but very few appeared in
more than 25 runs. The l1 penalty provided additional elimination, and for d = 1/5, 498 out of 1245 genes remained after
SVM-R runs. Figure 5 displays the histogram for the 1245 genes before SVM-R. We distinguished their frequency after
SVM-R by different colors. It is shown that a large number of genes with low frequency are further deleted by SVM-R
model, i.e. pink color.
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Figure 5. Frequency for 1245 genes being selected by DCOV method, colored by frequencies after SVM-R for d = 1/5.

Permutation of the response

Our method involved several components, including variable selection, SVM-R, MCV and the voting score, which were
interacting with each other, and led to 15 patients with over 93% accuracy to be sensitive for d = 1/5. To further understand
the mechanism and to demonstrate that the outcomes were not produced by noises, we randomly permuted the response
and went through the whole procedure to compare the results with those for the original data.

It followed that the DCOV method selected genes spuriously correlated with the permuted response based on the training
data in each replication of the 50 MCVs. The maximum distance correlation value of the selected genes in each repetition
was very close to that for the original data. The highly correlated genes appeared due to the high dimensionality of over
12000 genes and less than 200 training samples.

However, the MCV step played the role of a safeguard against the fake signals. As Table 2 depicted, the mean training
accuracies for the original and permuted data showed similar behavior for the original and permuted data, meaning that the
selected genes were indeed important for the training data. Thus, the chosen genes in the permutation set should provide
little prediction power for the tuning and testing data. Hence, the validation sets selected large tuning parameter values
driving all the patients with no decision for many of the 50 replications for d = 1/4 and 1/5. This did not happen for
d = 1/3 since the sample ratio 191/279 is slightly greater than 1/3. For the rest of the replications with decision making,
the mean testing accuracies for the permuted data remained at the level of the sample proportion of sensitive subjects for
all three values of d, which deviated much from the increasing pattern in the original data.

These suggested that the MCV procedure was able to provide double fail-secure for fake signals. On one hand, SVM-R
placed a cap on the conditional probability of misclassfication and eliminated the replications where the selected genes
could not produce results achieving the specified confidence on the validation set. On the other hand, the mean testing
accuracies on the replications passing through the safeguard of tuning sets would be no better than assigning everyone to
the sensitive class when there was no real signal.

Furthermore, the poor prediction performance of the 50 individual models ended up with unsurprisingly disappointing
voting score results for the permuted data, as shown in the lower part of Table 3. Many of the patients obtained a relatively
small value of the voting score and nobody got a score in the range where the original data had the highest accuracy,
meaning that the confidence was quite low. Moreover, the stratified ratios of sensitive subjects for different ranges of the
voting scores did not show anything insightful other than being around the sample proportion.
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Discussion

The paper introduced a new variable selection procedure based on the property of distance covariance and demonstrated
the application through two examples. The small round blue cell tumors data played a role of a toy example to show that
the performance of the proposed method worked well in easy cases. The TCGA ovarian cancer data, however, were much
more challenging to deal with due to the humongous number of variables and very limited sample size. The uncertainty
of variable selection was discussed through gene selection results using random subsets of the data. The support vector
machine with reject option was used to withhold decision for subjects who were difficult to classify. An ensemble method
of combining models built on random subsets of the data was implemented to assess the prediction performance. Although
we had applied these tools (DCOV, SVM-R, MCV) to biomedical data in the paper, we argue that they are quite portable
across disciplines.

As shown in Table 3, a small portion of the model building population got classified for d = 1/5. Is it worthwhile
to attempt the classification in such cases? It depends on the application, for example differential costs of two types of
misclassification, and subjective considerations including quality of life influenced by the treatment, therapy expense and
expected survival time.

Both the analysis of five fold cross validation and multiple cross validation showed the uncertainty of gene selection
results based on different subsets of the data. The large number of variables that appeared only in a small number of runs
suggested noises in the data and the difficulty caused by limited training sample size in the high dimensional scenario.
It could also suggest the conundrum that the “true” model consists of a large number of variables with modest effects of
which different subsets gives rise to roughly equal prediction ability. Options for further study in this and other difficult
problems include allowing the DCOV stopping criteria to be modified by some amount ε, and allowing the greedy variable
selection algorithm to be doubly greedy by testing the next best m of the remaining variables rather than just the next
variable. It remains to obtain theoretical results to guide exploration in alternate scenarios.

The analysis of random permutation on the response served as both a validation of our results and a discussion of
what one is likely to obtain without any true signal. If someone started with an entirely different data set having the same
proportions for the two classes with that in the original data but no real signal at all, as what one might get from scrambling,
and went through every step, and finally obtained a subgroup of patients with large voting score values, the result was no
better than just guessing that everyone was sensitive. This experiment was also a cautionary tale that if one had not held
out validation sets, the analyst could be easily fooled by spurious correlated variables and perfect training accuracy. Our
proposed multiple cross validation and analysis through the voting scores provided protection against finding fake signals.
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