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In many applications the graph structure in a network arises from two sources: intrinsic connections and connections due to external effects.
We introduce a sparse estimation procedure for graphical models that is capable of isolating the intrinsic connections by removing the
external effects. Technically, this is formulated as a conditional graphical model, in which the external effects are modeled as predictors, and
the graph is determined by the conditional precision matrix. We introduce two sparse estimators of this matrix using the reproduced kernel
Hilbert space combined with lasso and adaptive lasso. We establish the sparsity, variable selection consistency, oracle property, and the
asymptotic distributions of the proposed estimators. We also develop their convergence rate when the dimension of the conditional precision
matrix goes to infinity. The methods are compared with sparse estimators for unconditional graphical models, and with the constrained
maximum likelihood estimate that assumes a known graph structure. The methods are applied to a genetic data set to construct a gene
network conditioning on single-nucleotide polymorphisms.

KEY WORDS: Conditional random field; Gaussian graphical models; Lasso and adaptive lasso; Oracle property; Reproducing kernel
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1. INTRODUCTION

Sparse estimation of the Gaussian graphical models has un-
dergone intense development during the recent years, partly due
to their wide applications in such fields as information retrieval
and genomics, and partly due to the increasing maturity of sta-
tistical theories and techniques surrounding sparse estimation.
See, for example, Meinshausen and Buhlmann (2006), Yuan
and Lin (2007), Bickel and Levina (2008), Peng et al. (2009),
Guo et al. (2009), and Lam and Fan (2009). The precursor of
this line of work is the Gaussian graphical model in which the
graph structure is assumed to be known; see Dempster (1972)
and Lauritzen (1996).

Let Y = (Y 1, . . . , Y p)T be a random vector, � = {1, . . . , p},
and E ⊆ � × �. Let G = (�,E) be the graph with its vertices
in � and edges in E. We say that Y follows a Gaussian graphical
model (GGM) with respect to G (Lauritzen 1996) if Y has a
multivariate normal distribution and

Y i �Y j |Y−(i,j ), (i, j ) ∈ Ec, (1)

where A�B|C means A and B are independent given C, and
Y−(i,j ) denotes the set {Y 1, . . . , Y p} \ {Y i, Y j }. Let ωij be the
(i, j )th entry of [var(Y)]−1. Then, Y i �Y j |Y−(i,j ) if and only
if ωij = 0. Thus, estimating E is equivalent to estimating the
set {(i, j ) ∈ � × � : ωij = 0}. Conventional Gaussian graphical
models focus on maximum likelihood estimation of ωij given
the knowledge of E. In sparse estimation of graphical models,
however, E is itself estimated by sparse regularization, such as
lasso and adaptive lasso (Tibshirani 1996; Zou 2006).

Bing Li is Professor of Statistics, The Pennsylvania State University, 326
Thomas Building, University Park, PA 16802 (E-mail: bing@stat.psu.edu).
Bing Li’s research was supported in part by NSF grants DMS-0704621, DMS-
0806058, and DMS-1106815. Hyonho Chun is Assistant Professor of Statis-
tics, Purdue University, 250 N. University Street, West Lafayette, IN 47907
(E-mail: chunh@purdue.edu). Hyonho Chun’s research was supported in part
by NSF grant DMS-1107025. Hongyu Zhao is Professor of Biostatistics, Yale
University, Suite 503, 300 George Street, New Haven, CT 06510 (E-mail:
hongyu.zhao@yale.edu). Hongyu Zhao’s research was supported in part by
NSF grants DMS-0714817 and DMS-1106738 and NIH grants R01 GM59507
and P30 DA018343.

The conditional graphical model, with which we are con-
cerned, is motivated by the analysis of gene networks and
the regulating effects of DNA markers. Let X1, . . . , Xq rep-
resent the genetic markers at q locations in a genome, and let
Y 1, . . . , Y p represent the expression levels of p genes. The ob-
jective is to infer how the q genetic markers affect the expression
levels of the p genes and how these p genes affect each other.
Since some markers may have regulating effects on more than
one gene, the connections among the genes are of two kinds:
the connections due to shared regulation by the same marker,
and the innate connections among the genes aside from their
shared regulators. In this setting, we are interested in identify-
ing the network of genes after removing the effects from shared
regulations by the markers.

The situation is illustrated by Figure 1, in which X represents
a single marker, and Y 1, Y 2, Y 3 represent the expressions of
three genes. If we consider the marginal distribution of the ran-
dom vector (Y 1, Y 2, Y 3), then there are two (undirected) edges
in the unconditional graphical model: 1 ↔ 2 and 2 ↔ 3, as rep-
resented by the solid and the dotted line segments. However, if
we condition on the marker and consider the conditional dis-
tribution of Y 1, Y 2, Y 3|X, then there is only one (undirected)
edge, 2 ↔ 3, in the conditional graphical model, as represented
by the solid line segment.

In mathematical terms, a conditional graphical model can be
represented by

Y i �Y j |{Y−(i,j ),X} for (i, j ) /∈ E, (2)

where X = (X1, . . . , Xq)T. Compared with the unconditional
graphical model, here we have an additional random vector
X, whose effects we would like to remove when constructing
the network for Y 1, . . . , Y p. The conditional graphical model
(2) was introduced by Lafferty, McCallum, and Pereira (2001)
under the name “conditional random field.” However, in that
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Figure 1. Unconditional and conditional graphical models.

article, the graphG = (�,E) was assumed known and maximum
likelihood was used to estimate the relevant parameters.

Our strategy for estimating the conditional graphical model
(2) is as follows. In the first step, we propose a class of flexi-
ble and easy-to-implement initial (nonsparse) estimators for the
conditional variance matrix � = var(Y | X), based on a condi-
tional variance operator between the reproducing kernel Hilbert
spaces (RKHS) of X and Y. In the second step, we incorporate
the nonsparse estimators with two types of sparse penalties, the
lasso and the adaptive lasso, to obtain sparse estimators of the
conditional precision matrix �−1.

We have chosen RKHS as our method to estimate � for
several reasons. First, it does not require a rigid regression model
for Y versus X. Second, the dimension of X only appears through
a kernel function, so that the dimension of the largest matrix we
need to invert is the sample size n, regardless of the dimension
of X. This feature is particularly attractive when we deal with
a large number of predictors. Finally, RKHS provides a natural
mechanism to impose regularization on regression. Here, it is
important to realize that our problem involves two kinds of
regularization: one for the components of var(Y | X) and the
other for the regression of Y on X. Considering the nature of
our problem, the former must be sparse, but the latter need not
be. Indeed, since estimating the regression parameter is not our
purpose, it seems more natural to introduce the regularization
for regression through RKHS than to try to parameterize the
regression and then regularize the parameters.

The rest of the article is organized as follows. In Section 2,
we introduce a conditional variance operator in RKHS and de-
scribe its relation with the conditional gaussian graphical model.
In Section 3, we derive two RKHS-based estimators of condi-
tional variance �. In Section 4, we subject the RKHS estimators
to sparse penalties to estimate the conditional precision matrix
� = �−1. In Sections 5, 6, and 7, we establish the asymptotic
properties of the sparse estimators for a fixed dimension p. In
Section 8, we derive the convergence rate of the sparse estima-
tors when p goes to infinity with the sample size. In Section 9,
we discuss some issues involved in implementation. In Sections

10 and 11, we investigate and explore the performance of the
proposed methods through simulation and data analysis.

2. CONDITIONAL VARIANCE OPERATOR IN RKHS

We begin with a formal definition of the conditional Gaussian
graphical model. Throughout this article, we use E to denote
expectation to avoid confusion with the edge set E. We use P to
denote probability measures.

Definition 1. We say that (X,Y) follows a conditional Gaus-
sian graphical model (CGGM) with respect to a graph G =
(�,E) if

1. relation (2) holds;
2. Y | X ∼ N (E(Y | X),�) for some nonrandom, positive-

definite matrix �.

Note that we do not assume a regression model for Y versus
X. However, we do require that Y | X is multivariate normal
with a constant conditional variance, which is satisfied if Y =
f (X) + ε, ε �X, and ε ∼ N (0,�) for an arbitrary f .

Let �X ⊆ R
q and �Y ⊆ R

p be the support of X and Y. Let
κX : �X ×�X → R, κY : �Y ×�Y → R be positive-definite
kernels and HX and HY be their corresponding RKHS’s. For
further information about RKHS and the choices of kernels, see
Aronszajn (1950) and Vapnik (1998). For two Hilbert spaces
H1 and H2, and a bounded bilinear form b : H1 × H2 → R,
there uniquely exist bounded linear operatorsA : H1 → H2 and
B : H2 → H1 such that 〈f,Bg〉H1 = 〈Af, g〉H2 = b(f, g) for
any f ∈ H1 and g ∈ H2. Applying this fact to the bounded
bilinear forms

cov[f1(X), f2(X)], cov[g1(Y), g2(Y)], cov[f (X), g(Y)],

we obtain three bounded linear operators

�XX : HX → HX, �YY : HY → HY ,

�XY : HY → HX. (3)

Furthermore, �XY can be factorized as �
1
2
XXRXY�

1
2
YY , where

RXY : HY → HX is a uniquely defined bounded linear operator.
The conditional variance operator of Y, given X, is then defined
as the bounded operator from HY to HY :

�YY |X = �YY −�
1
2
YYRYXRXY�

1
2
YY .

This construction is due to Fukumizu, Bach, and Jordan (2009).
LetL2(PX) denote the class of functions of X that are squared

integrable with respect to PX, HX + R denote the set of func-
tions {h+ c : h ∈ HX, c ∈ R}, and cl(·) denote the closure of a
set in L2(PX). The next theorem describes how the conditional
operator �YY |X uniquely determines the CGGM, and suggests
a way to estimate �.

Theorem 1. Suppose

1. HX ⊆ L2(PX) and, for each i = 1, . . . , p, E(Y i |X) ∈
cl(HX + R);

2. κY is the linear kernel: κY (a,b) = 1 + aTb, where a,b ∈
R
p.

Then,

� = {〈yr,�YY |Xys〉HY
: r, s = 1, . . . , p}. (4)
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The assumption HX ⊆ L2(PX) is satisfied if the function
κX(x, x) belongs to L2(PX), which is a mild requirement.

Proof. By assumption 2, any member of HY can be written as
αTy for some α ∈ R

p. Hence, by Proposition 2 of Fukumizu
et al. (2009),

〈αTy, �YY |X(αTy)〉HY
= inf

f∈HX+R

var[αTY − f (X)]

= E[var(αTY|X)] + inf
f∈HX+R

var{E[(αTY|X) − f (X)]}.

By assumption 1, for any ε > 0, there is an f ∈ HX + R such
that var{E[(αTY | X) − f (X)]} < ε. So, the second term on the
right-hand side above is 0, and we have

〈αTy,�YY |X(αTy)〉HY
= E[var(αTY|X)]. (5)

In the meantime, we note that

〈yi + yj ,�YY |X(yi + yj )〉HY
− 〈yi − yj ,�YY |X(yi − yj )〉HY

= 4〈yi,�YY |Xyj 〉HY
,E[var(Y i + Y j |X)]

− E[var(Y i − Y j |X)] = 4E[cov(Y i, Y j |X)].

Applying Equation (5) to the left-hand sides of the above equa-
tions, we obtain

〈yi,�YY |Xyj 〉HY
= E[cov(Y i, Y j |X)] = cov(Y i, Y j |X),

as desired. �
Condition 1 in the theorem can be replaced by the stronger

assumption that HX + R is a dense subset of L2(PX), which
is satisfied by some well known kernels, such as the Gaussian
radial kernel. See Fukumizu et al. (2009).

3. TWO RKHS ESTIMATORS OF CONDITIONAL
COVARIANCE

To construct a sample estimate of Equation (4), we need to
represent operators as matrices in a finite-dimensional space.
To this end, we first introduce a coordinate notation system,
adopted from Horn and Johnson (1985, p. 31) with slight
modifications. Let H be a finite-dimensional Hilbert space and
B = {b1, . . . ,bm} ⊆ H be a set of functions that span H but
may not be linearly independent. We refer to B as a spanning
system (as opposed to a basis). Any f ∈ H can be written as
α1b1 + · · · + αmbm for some α = (α1, . . . , αm)T ∈ R

m. This
vector is denoted by [f ]B, and is called aB-coordinate of f . Note
that [f ]B is not unique unless b1, . . . ,bm are linearly indepen-
dent. However, this does not matter because

∑m
i=1([f ]B)ibi is

unique regardless of the form of [f ]B. The same reasoning also
applies to the nonuniqueness of coordinates below.

Let H1 and H2 be finite-dimensional Hilbert spaces
with spanning systems B1 = {b11, . . . , b1m1} and B2 =
{b21, . . . ,b2m2}. Let T : H1 → H2 be a linear operator. The
(B1,B2)-representation of T , denoted by B2 [T ]B1 , is the m2 ×
m1 matrix

{([T b1i]B2 )j : j = 1, . . . , m2, i = 1, . . . , m1}.
Then, (B2 [T ]B1 )[f ]B1 is a B2-coordinate of Tf . We write this
relation as

[Tf ]B2 = (B2 [T ]B1 )[f ]B1 . (6)

Let H3 be another finite-dimensional Hilbert space with a span-
ning system B3. Let T1 : H1 → H2 and T2 : H2 → H3 be linear

operators. Then,

B3 [T2T1]B1 = (B3 [T2]B2 )(B2 [T1]B1 ). (7)

The equality means the right-hand side is a (B1,B3)-
representation of T2T1. Finally, if H is a finite-dimensional
Hilbert space with a spanning system B and T : H → H is
a self-adjoint and positive-semidefinite linear operator, then, for
any c > 0,

B[T c]B = (B[T ]B)c. (8)

Let (X1,Y1), . . . , (Xn,Yn) be independent copies of (X,Y),
Pn be the empirical measure based on this sample, and En be
the integral with respect to Pn. Let

ĤX = span{κX(·,Xi) − EnκX(·,X) : i = 1, . . . , n},
ĤY = span{κY (·,Yi) − EnκY (·,Y) : i = 1, . . . , n}, (9)

where, for example, EnκX(·,X) stands for the function x �→
EnκX(x,X). We center the functions κX(·,Xi) because constants
do not play a role in our development. Let �̂XX, �̂YY , and
�̂XY be as defined in the last section but with HX, HY replaced
by ĤX, ĤY , and cov replaced by the sample covariance. Let
BX and BY denote the spanning systems in Equation (9). Let
KX and KY represent then× n kernel matrices {κX(Xi ,Xj )} and
{κY (Yi ,Yj )}. For a symmetric matrix, A, let A† represent its
Moore-Penrose inverse. Let Qn = In − n−1Jn, In is the n×
n identity matrix, and Jn be the n× n matrix whose entries
are 1. To simplify notation, we abbreviate Qn by Q throughout
the rest of the article. The following lemma crystallizes some
known results, which can be proved by coordinate manipulation
via formulas (6), (7), and (8).

Lemma 1. The following relations hold:

1. BX [�̂XX]BX = n−1QKXQ, BY [�̂YY ]BY = n−1QKYQ;
2. BY [�̂YX]BX = n−1QKXQ, BX [�̂XY ]BY = n−1QKYQ;
3. BY [�̂YY |X]BY = n−1[QKYQ − (QKXQ)(QKXQ)†

(QKYQ)].

When the dimension q of X is large relative to n, it is
beneficial to use regularized version of (QKXQ)†. Here, we
employ two types of regularization: the principal-component
(PC) regularization and the ridge-regression (RR) regulariza-
tion. Let A be a positive-semidefinite matrix with eigenvalues
λ1, . . . , λn and eigen-vectors v1, . . . , vn. Let ε ≥ 0. We call
the matrix (A)†ε = ∑n

i=1 λ
−1
i vivT

i I (λi > ε) the PC-inverse of A.
Note that (A)†0 = A†. We call the matrix (A)‡ε = (A + εIn)−1 the
RR-inverse of A. The following result can be verified by simple
calculation.

Lemma 2. For any f1, f2 ∈ ĤY , we have 〈f1, f2〉ĤY
=

([f1]BY )TQKYQ[f2]BY .

We now derive the sample estimate of the conditional co-
variance matrix � = var(Y | X). Let DY denote the matrix
(Y1, . . . ,Yn)T.

Theorem 2. Let �̂YY |X : ĤY → ĤY be defined by the coor-
dinate representation

BY [�̂YY |X]BY
= n−1

[
QKYQ − (

QKXQ
)
(QKXQ)∗εn(QKYQ)

]
, (10)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

is
co

ns
in

 -
 M

ad
is

on
] 

at
 1

0:
18

 2
8 

Ju
ly

 2
01

4 



Li, Chun, and Zhao: Sparse Estimation of Conditional Graphical Models 155

where ∗ can be either † or ‡, KY is the linear kernel matrix, and
{εn} is a sequence of nonnegative numbers. Then

{〈yi, �̂YY |Xyj 〉ĤY
}

= n−1
[
DT

Y
QDY − DT

Y
Q
(
QKXQ

)
(QKXQ)∗εnQDY

]
. (11)

Despite its appearance, the matrix (QKXQ)(QKXQ)∗ε is actu-
ally a symmetric matrix. One can also show that Equation (11)
is a positive-semidefinite matrix. We denote the matrix (11) as
�̂PC(εn) if ∗ = †, and as �̂RR(εn) if ∗ = ‡. In the following,
ei represents a p-dimensional vector whose ith entry is 1 and
other entries are 0. For an expression that represents a vector,
such as [f ]BY , let ([f ]BY )i denote its ith entry.

Proof of Theorem 1. Note that, for an f ∈ HY , [f ]BY is any
vector a ∈ R

p such that f (y) = aTQDYy. Because yi = eT
i y =

eT
i (DT

Y
QDY )−1DT

Y
QDYy, we have

[yi]BY = DY

(
DT

Y
QDY

)−1
ei .

Then, by Lemma 2,

〈yi, �̂YY |Xyj 〉HY

= eT
i

(
DT

Y
QDY

)−1
DT

Y
QKYQ(BY [�̂YY |X]BY )DY

(
DT

Y
QDY

)−1
ej .

When κY is the linear kernel, KY = DYDT
Y
. Hence, the right-hand

side reduces to

eT
i DT

Y
Q(BY [�̂YY |X]BY )DY

(
DT

Y
QDY

)−1
ej .

Now substitute Equation (10) into the above expression to com-
plete the proof. ��

4. INTRODUCING SPARSE PENALTY

Let �̂ denote either of the RKHS estimators given by Equation
(11). We are interested in the sparse estimation of � = �−1. Let

Ln(�) = − log det(�) + tr(��̂). (12)

This objective function has the same form as that used in uncon-
ditional Gaussian graphical models, such as those considered by
Lauritzen (1996), Yuan and Lin (2007), and Friedman, Hastie,
and Tibshirani (2008), except that the sample covariance ma-
trix therein is replaced by the RKHS estimate of conditional
covariance matrix.

To achieve sparsity in �, we introduce two types of penalized
versions of the objective function (12):

lasso: ϒn(�) = Ln(�) + λn
∑
i �=j

|θij |, (13)

adaptive lasso: �n(�) = Ln(�) + λn
∑
i �=j

|θ̃ij |−γ |θij |, (14)

where, in Equation (14), γ is a positive number and {θ̃ij } is a√
n-consistent, nonsparse estimate of
. For more details about

the development of these two types of penalty functions; see
Tibshirani (1996), Zou (2006), Zhao and Yu (2006), and Zou
and Li (2008). Yuan and Lin (2007) used lasso and nonnegative
garrote (Breiman 1995) penalty functions for the unconditional
graphical model, the latter of which is similar to adaptive lasso

with γ = 1. In the following, we will write

Pn(�) = λn
∑
i �=j

|θij |, �n(�) = λn
∑
i �=j

|θ̃ij |−γ |θij |.

5. VON MISES EXPANSIONS OF THE RKHS
ESTIMATORS

The sparse and oracle properties of the estimators introduced
in Section 4 depend heavily on the asymptotic properties of
the RKHS estimators �̂PC(εn) and �̂RR(εn). In this section, we
derive their von Mises expansions (von Mises 1947). For sim-
plicity, we base our asymptotic development on the polynomial
kernel. That is, we let

κX(a,b) = (aTb + 1)r , r = 1, 2, . . . . (15)

For a matrix A and an integer k ≥ 2, let A⊗k be the k-
fold Kronecker product A⊗ · · · ⊗ A. For k = 1, we adopt the
convention A⊗1 = A. For a k-dimensional array B = {bi1···ik :
i1, . . . , ik = 1, . . . , q}, we define the “vec half” operator as

vech(B) = {bi1···ik : 1 ≤ ik ≤ · · · ≤ i1 ≤ q}.
This is a generalization of the vech operator for matrices in-
troduced by Henderson and Searle (1979). It can be shown
that there exists a matrix Gk,q , of full column rank, such that
vec(B) = Gk,q vech(B). The specific form of Gk,q is not im-
portant to us. For k = 1, we adopt the convention vech(B) =
B, G1,q = Iq . Let

U =

⎛
⎜⎜⎝

vech(X⊗1)
...

vech(X⊗r )

⎞
⎟⎟⎠,

Ui =

⎛
⎜⎜⎝

vech(X⊗1
i )

...

vech(X⊗r
i )

⎞
⎟⎟⎠, and DU = (U1, . . . ,Un)

T.

The estimators �̂PC(εn) and �̂RR(εn) involve n× n matrices
QKXQ and (QKXQ)∗εn , which are difficult to handle asymp-
totically because their dimensions grow with n. We now give
an asymptotically equivalent expression which only involves
matrices of fixed dimensions. Let

�̃ = n−1
[
DT

Y
QDY − DT

Y
QDU

(
DT

U
QDU

)−1
DT

U
QDY

]
. (16)

Lemma 3. Suppose κX is the polynomial kernel (15) and
var(U) is positive definite.

1. If εn = o(n), then, with probability tending to 1,
�̂PC(εn) = �̃;

2. If εn = o(n
1
2 ), then �̂RR(εn) = �̃ + oP (n− 1

2 ).

It is interesting to note that different choices of inversion
requires different convergence rates for εn.

Proof. By simple computation, we find

(
XT
i Xj+1

)r =1+
r∑
k=1

(
r

k

) [
vech

(
X⊗k
i

)]T
GT
k,qGk,qvech

(
X⊗k
i

)
.
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Hence, KX = Jn + DUCDT
U

where C = diag(
(
r

1

)
GT

1,qG1,q , . . . ,(
r

r

)
GT
r,qGr,q). So,

QKXQ = QDUCDT
U
Q. (17)

Let s be the dimension of U. Then, rank(QKXQ) = s. Let
λ1 ≥ · · · ≥ λs > 0 be the nonzero eigenvalues and v1, . . . , vs be
the corresponding vectors of this matrix. Since λ1, . . . , λs are
also eigenvalues of n(n−1C

1
2 DT

U
QDUC

1
2 ), which converges in

probability to the positive-definite matrix C
1
2 var(U)C

1
2 , we have

λs = nc + oP (n) for some c > 0. This, together with εn = o(n),
implies (QKXQ)†εn = (QDUCDT

U
Q)† with probability tending to

1. Consequently, with probability tending to 1,

�̂PC(εn) = n−1[DT
Y
QDY

− DT
Y
Q
(
QDUCDT

U
Q
)(

QDUCDT
U
Q
)†

QDY

]
. (18)

Now it is easy to verify that if B ∈ R
s×t is a matrix of full

column rank and A ∈ R
t×t is a positive-definite matrix, then

(BABT)(BABT)† = B(BTB)−1BT. (19)

Thus, the right-hand side of Equation (18) is �̃, which proves
part 1. To prove part 2, we first note that

(QKXQ)(QKXQ)‡εn

=
(

QKXQ −
s∑
i=1

λiεn

λi + εn
vivT

i

)
(QKXQ)†. (20)

Since the function −εn/(εn + λ) is increasing for λ > 0, we
have

− εn

λs + εn
(QKXQ)(QKXQ)† ≤ (QKXQ)(QKXQ)‡εn

− (QKXQ)(QKXQ)† ≤ 0.

Hence,

0 ≥ n−1DT
Y
Q
[
(QKXQ)(QKXQ)‡εn − (QKXQ)(QKXQ)†

]
QDY

≥ − εn

λs + εn
n−1DT

Y
Q(QKXQ)(QKXQ)†QDY , (21)

By Equation (19),

n−1DT
Y
Q(QKXQ)(QKXQ)†QDY

= (
n−1DT

Y
QDU

)(
n−1DT

U
QDU

)−1
(n−1DUQDY )

P→ cov(Y,U)[var(U)]−1cov(U,Y).

Hence, the right-hand side of Equation (21) is of the order
oP (n− 1

2 ). In other words,

�̂RR(εn)

= n−1
[
DT

Y
QDY − DT

Y
Q(QDUCDT

U
Q)(QDUCDT

U
Q)†QDY

]
+ oP

(
n− 1

2
)
.

Here, we evoke Equation (19) again to complete the proof. �

Note that when r = 1 andp < n, and εn = 0, �̂PC(εn) reduces
to

n−1
[
DT

Y
QDY − DYQDX

(
DT

X
QDX

)−1
DXQDY

]
= varn(Y) − covn(Y,X)[varn(X)]−1covn(X,Y),

where varn(·) and covn(·, ·) denote the sample variance and
covariance matrices. This is exactly the sample estimate of the
residual variance for linear regression.

Lemma 3 allows us to derive the asymptotic expansions of
�̂PC(εn) and �̂RR(εn) from that of �̃, which is a (matrix-valued)
function of sample moments. Let F be a convex family of
probability measures defined on �XY that contains all the em-
pirical distributions Pn and the true distribution P0 of (X,Y).
Let T : F → R

p×p be the following statistical functional:

P �→ varP(Y) − covP(Y,U)[varP(U)]−1covP(U,Y). (22)

In this notation, �̃ = T (Pn). In the following, we use var and
cov to denote the variance and covariance under P0. For the poly-
nomial kernel (15), the evaluation T (P0) has a special meaning,
as described in the next lemma. Its proof is standard, and is
omitted.

Lemma 4. Suppose:

1. Entries of E(Y | X) are polynomials in X1, . . . , Xq of de-
grees no more than r;

2. Y | X ∼ N (E(Y | X),�), where � is a nonrandom matrix.

Then, T (P0) = �.

Let Pα = (1 − α)P0 + αPn, where α ∈ [0, 1]. LetDα denote
the differential operator ∂/∂α, and letDα=0 denote the operation
of taking derivative with respect to α and then evaluating the
derivative at α = 0. It is well known that if T is Hadamard
differentiable with respect to the norm ‖ · ‖∞ in F , then

T (Pn) = T (P0) +Dα=0T (Pα) + oP
(
n− 1

2
)
. (23)

Since the functional T in our case is a smooth function of sam-
ple moments, it is Hadamard differentiable under very general
conditions. See, for example, Reeds (1976), Fernholz (1983),
Bickel et al. (1993), and Ren and Sen (1991). The next lemma
can be verified by straightforward computation.

Lemma 5. Let V1 and V2 be square-integrable random vec-
tors. Then,

Dα=0[covPα
(V1,V2)] = Enq(V1,V2) − E q(V1,V2),

where q(V1,V2) = (V1 − EV1)(V2 − EV2)T.

We will adopt the following notational system:

µY = E(Y), µU = E(U), VY = var(Y), VU = var(U),

VUY = cov(U,Y).

The next theorem gives the first-order von-Mises expansion
of �̃.

Theorem 3. Suppose the functional in Equation (22) is
Hadamard differentiable, and the conditions in Lemma 4 hold.
Then,

�̃ = � + EnM + oP
(
n− 1

2
)
, (24)

where M = M0 − EM0 and

M0 = [
Y − µY − VYUV−1

U
(U − µU )

]
× [

Y − µY − VYUV−1
U

(U − µU )
]T
.
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Proof. We have

DαT (Pα) = Dα[varPα
(Y)] −Dα{covPα

(Y,U)

× [varPα
(U)]−1covPα

(U,Y)}.
We now apply Lemma 5 to obtain

Dα=0{covPα
(Y,U)[varPα

(U)]−1covPα
(U,Y)}

= [Enq(Y,U) − Eq(Y,U)]V−1
U

VUY + VYUDα=0

×{[varPα
(U)]−1}VUY + VYUV−1

U
[Enq(U,Y) − Eq(U,Y)].

By the chain rule for differentiation and Lemma 5,

Dα=0{[varPα
(U)]−1} = −V−1

U
[Enq(U,U) − Eq(U,U)]V−1

U
.

Hence,

Dα=0T (Pα) = [Enq(Y,Y) − Eq(Y,Y)]

− [Enq(Y,U)T − Eq(Y,U)]V−1
U

VUY

+ VYUV−1
U

[Enq(U,U) − Eq(U,U)]V−1
U

VUY

− VYUV−1
U

[Enq(U,Y) − Eq(U,Y)].

This can be rewritten as EnM0 − EM0, where M0 is the matrix
in the theorem. �

Using this expansion, we can write down the asymptotic dis-
tribution of �̃.

Corollary 1. Suppose the functional in Equation (22) is
Hadamard differentiable. Then,

√
nvec(�̃ − �)

D→ N (0,�), (25)

where

� = (
Ip,−VYUV−1

U

)⊗2
var

[(
Y − µY

U − µU

)

⊗
(

Y − µY

U − µU

)](
Ip

−V−1
U

VUY

)⊗2

.

By Lemma 3, Theorem 3, and Slutsky’s theorem, we arrive
at the following von Mises expansions for the two RKHS esti-
mators �̂PC(εn) and �̂RR(εn) of the conditional variance �.

Corollary 2. Suppose the functional in Equation (22) is
Hadamard differentiable, and the conditions in Lemma 4 hold.

1. If εn = o(n
1
2 ), then �̂RR(εn) has expansion (24).

2. If εn = o(n), then �̂PC(εn) has expansion (24).

Although in this article we have only studied the asymptotic
distribution for the polynomial kernel, the basic formulation and
analysis could potentially be extended to other kernels under
some regularity conditions. We leave this to future research.

6. SPARSITY AND ASYMPTOTIC DISTRIBUTION:
THE LASSO

In this section, we study the asymptotic properties of the
sparse estimator based on the objective functionϒn(
) in Equa-
tion (13). Let S

p×p denote the class of all p × p symmetric
matrices. For a matrix A ∈ S

p×p, let σi(A) be the ith eigenvalue
of A. Note that, for any integer r, we have

tr(Ar ) =
p∑
i=1

σ ri (A). (26)

Let En be the sample estimate of E; that is, En = {(i, j ) : θ̂ij �=
0}, where �̂ = {θ̂ij } is the minimizer of Equation (13). Fol-
lowing Lauritzen (1996), for a matrix A = {aij } and a graph
G = (�,E), let A(G) denote the matrix that sets aij to 0 when-
ever (i, j ) /∈ E. Let

R
p×p(G) = {A(G) : A ∈ R

p×p}, S
p×p(G)

= {A(G) : A ∈ S
p×p}.

We define a bivariate sign function as follows. For any numbers
a, b, let

sign(a, b) = sign(a)I (a �= 0) + sign(b)I (a = 0).

The following lemma will prove useful. Its proof is omitted.

Lemma 6. The bivariate sign function sign(a, b) has the fol-
lowing properties:

1. For any c1 > 0, c2 > 0, sign(c1a, c2b) = sign(a, b);
2. For sufficiently small |b|, |a + b| − |a| = sign(a, b)b.

The next theorem generalizes Theorem 1 of Yuan and Lin
(2007). It applies to any random matrix �̂ with expansion (24),
including �̂PC(εn) and �̂RR(εn).

Theorem 4. Suppose (X,Y) follows CGGM with respect to
a graph (�,E). Let 
̂ be the minimizer of Equation (13), where√
nλn → λ0 > 0 and �̂ having the expansion (24). Let W ∈

R
p×p be a random matrix such that vec(W) is distributed as

N [0, var(vec(M))]. Then, the following assertions hold.

1. 0 < limn→∞ P(En = E) < 1;
2. For any ε > 0, there is a λ0 > 0 such that limn→∞ P(En =
E) > 1 − ε;

3.
√
n(�̂ − �0)

D→ argmin{�(�,W) : � ∈ S
p×p}, where

�(�,W) = tr(����/2 + �W)

+ λ0

∑
i �=j

sign(θ0,ij , δij )δij .

The inequality limn→∞ P(En = E) > 0 implies that, as n →
∞, there is a positive probability to estimate a parameter as 0
when it is 0. A stronger property is that this probability tends
to 1. For clarity, we refer to the former property as sparsity,
and the latter as sparsistency (see Fan and Li 2001; Lam and
Fan 2009). According to this definition, the two inequalities in
part 1 mean that lasso is sparse but not sparsistent. Note that the
unconstrained maximum likelihood estimate—and indeed any
regular estimate—is not sparse. Part 2 means that, even though
lasso is not sparsistent, we can make it as close to sparsistent
as we wish by choosing a sufficiently large λ0. Part 3 gives the
asymptotic distribution of

√
n(�̂ − �0). It is not the same as that

of the maximum likelihood estimate under the constraint θij =
0 for (i, j ) ∈ Ec. That is, it does not have the oracle property.
The proof of part 3 is similar to that of Theorem 1 in Yuan and
Lin (2007) in the context of GGM. However, to our knowledge
there were no previous results parallel to parts 1 and 2 for
GGM. Knight and Fu (2000) contains some basic ideas for the
asymptotics for lasso-type estimators.

Proof of Theorem 2. We prove the three assertions in the
order 3, 1, 2.
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3. Let �0 be the true value of �, and let

�n(�) = n[ϒn(�0 + n−1/2�) −ϒn(�0)].

By an argument similar to Yuan and Lin ( 2007, Theorem 1), it
can be shown that

n[Ln(�0 + n−1/2�) − Ln(�0)]

= tr(����)/2 + n1/2tr(�EnM),

n[Pn(�0 + n−1/2�) − Pn(�0)]

= λ0

∑
i �=j

sign(θ0,ij , δij )δij + o(1).

Since n1/2
EnM

D→ W, we have

�n(�)
D→ tr(����/2 + �W) + λ0

∑
i �=j

sign(θ0,ij , δij )δij

= �(�,W).

Both �n(�) and �(�,W) are strictly convex with probability
1. Applying Theorem 4.4 of Geyer (1994) we see that

argmin{�n(�) : � ∈ S
p×p} D→ argmin{�(�,W) : � ∈ S

p×p}.
However, by construction, if �̂ is the (almost surely unique)
minimizer of �n(�), then �̂ = n1/2(�̂ − �0). This proves
part 3.

1. For a generic function f (t) defined on t ∈ R
s , let ∂Lti and

∂Rti be the left and right partial derivatives with respect to the
ith component of t. When f is differentiable with respect to
ti , we write ∂ti = ∂Lti = ∂Rti . Note that En = E if and only if
�(�,W) is minimized within S

p×p(G). This happens if and
only if

∂Lδij�(�,W) ≤ 0 ≤ ∂Rδij�(�,W), (i, j ) ∈ � × �, i ≥ j,

and � ∈ S
p×p(G). (27)

Here, we only consider the cases i ≥ j because � is a symmetric
matrix. Let

L(�,W) = tr(����/2 + �W),

P (�,W) = λ0

∑
i �=j

sign(θ0,ij , δij )δij .

Then, ∂L(�,W)/∂� = ��� + W. For (i, j ) ∈ E, P (�,W)
is differentiable with respect to δij and ∂δij P (�,W) =
λ0sign(θ0,ij ). For (i, j ) ∈ Ec, P (�,W) is not differentiable
with respect to δij , but has left and right derivatives, given by
∂Lδij P (�,W) = −λ0 and ∂Rδij P (�,W) = λ0. Condition (27) now
reduces to{

(���)ij + wij + sij = 0, if (i, j ) ∈ E, i ≥ j,

(���)ij + wij ∈ [−λ0, λ0], if (i, j ) ∈ Ec, i ≥ j,
(28)

where � ∈ S
p×p(G), sij = λ0sign(θ0,ij ) if (i, j ) ∈ E and i �=

j and sij = 0 if i = j .
Now consider the event

G = {{wij : i ≥ j} : Equation (28) is satisfied for some

� ∈ S
p×p(G)}.

We need to show that P(G) > 1. Since � belongs to S
p×p(G),

it has as many free parameters as there are equations in the
first line of Equation (28). Since � is a nonsingular matrix,

for any {wij : i ≥ j, (i, j ) ∈ E}, there exists a unique � that
satisfies the first line of Equation (28) and it is a linear function
of {wij : (i, j ) ∈ E, i ≥ j}. Writing this function as �({wij :
(i, j ) ∈ E, i ≥ j}), we see that Equation (28) is satisfied if and
only if

[��({wµν : (µ, ν) ∈ E,µ ≥ ν})�]ij + wij ∈ [−λ0, λ0],

for i ≥ j, (i, j ) ∈ Ec.
Since the mapping

τ : {wij : i ≥ j} �→ {2[��({wµν : (µ, ν) ∈ E,µ ≥ ν})�]ij
+ 2wij : i ≥ j, (i, j ) ∈ Ec}

from R
p(p+1) to R

card(Ec)/2 is continuous, the set
τ−1[(−λ0, λ0)card(Ec)/2] is open in R

p(p+1)/2. Furthermore,
this open set is nonempty because if we let

wij = −[��({wµν : (µ, ν) ∈ E,µ ≥ ν})�]ij ,

for (i, j ) ∈ Ec, i ≥ j,

then τ ({wij : i ≥ j}) = 0. Because {wij : i ≥ j} has a multi-
variate normal distribution with a nonsingular covariance ma-
trix, any nonempty open set in R

p(p+1)/2 has positive probability.
This proves limn→∞ P(En = E) > 0.

Similarly, the set τ−1[(λ0, 3λ0)card(Ec)/2] is open in R
p(p+1)/2,

and if we let

wij = −[��({wµν : (µ, ν) ∈ E,µ ≥ ν})�]ij + 2λ0,

for (i, j ) ∈ Ec, i ≥ j,

then τ ({wij : i ≥ j}) = (2λ0, . . . , 2λ0)T ∈ (λ0, 3λ0)card(Ec)/2.
Hence, the W-probability of τ−1[(λ0, 3λ0)card(Ec)/2] is positive,
implying limn→∞ P(En = E) < 1.

2. For each (i, j ) ∈ Ec, i ≥ j , Let Uij = [��({wµν :
(µ, ν) ∈ E,µ ≥ ν})�]ij + wij . Then, for any η > 0, there is
a λ

ij

0 > 0 such that P(Uij ∈ [−λij0 , λij0 ]) > 1 − η. Let λ0 =
max{λij0 : (i, j ) ∈ Ec, i ≥ j}. Then, P(Uij ∈ [−λ0, λ0]) > 1 −
η. Hence,

lim
n→∞ P(En = E) = P(Uij ∈ [−λ0, λ0], (i, j ) ∈ Ec, i ≥ j )

≥ 1 −
∑

(i,j )∈Ec,i≥j

{
1 − P

(
Uij ∈ [−λ0, λ0]

)}
≥ 1 − card(Ec)η/2.

This proves part 2 because η can be arbitrarily small. ��

7. SPARSISTENCY AND ORACLE PROPERTY: THE
ADAPTIVE LASSO

We now turn to the adaptive lasso based on Equation (14).
We still use �̂ = {θ̂ij } to denote the minimizer of Equation
(14). For a matrix � = {δij } ∈ S

p×p, and a set C ∈ � × �, let
δC = {δij : (i, j ) ∈ C, i ≥ j}, which is to be interpreted as a
vector where index i moves first, followed by index j.

Theorem 5. Suppose that (X,Y) follows CGGM with respect
to a graph (�,E). Let �̂ be the minimizer of Equation (14),
where �̂ has expansion (24), and

lim
n→∞ n

1/2λn = 0, lim
n→∞ n

(1+γ )/2λn = ∞.

Suppose �̃ in Equation (14) is a
√
n-consistent estimate of

�0 with P(θ̃ij �= 0) = 1 for (i, j ) ∈ Ec. Then,
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1. limn→∞ P(En = E) = 1;

2.
√
n (�̂ − �0)

D→ argmin{L(�,G) : � ∈ S
p×p(G)}.

Part 1 asserts that the adaptive lasso is sparsistent; part 2
asserts that it is asymptotically equivalent to the minimizer of
L(�,G) when E is known. In this sense �̂ is oracle. The con-
dition P (θ̃ij �= 0) = 1 means that θ̃ij is not sparse, which guar-
antees that |θ̃ij |−γ is well defined. For example, we can use the
inverse of one of the RKHS estimates as �̃.

Proof. Let � ∈ S
p×p and �n(�) = n[�n(�0 + n−1/2�) −

�n(�0)]. Consider the difference

n[�n(�0 + n−1/2�) −�n(�0)]

= λnn
∑
i �=j

|θ̃ij |−γ (|θ0,ij + n−1/2δij | − |θ0,ij |).

By Lemma 6, for large enough n, the right-hand side can be
rewritten as∑

i �=j
n1/2λn|θ̃ij |−γ sign(θ0,ij , n

−1/2δij )δij . (29)

If (i, j ) ∈ E, then |θ̃ij |−γ = OP (1). Because n1/2λn → 0, the
summand for such (i, j ) converges to 0 in probability. Hence,
Equation (29) reduces to∑
(i,j )∈Ec

n1/2λn|θ̃ij |−γ sign(δij )δij + oP (1)

=
∑

(i,j )∈Ec
n1/2λn|θ̃ij |−γ |δij | + oP (1). (30)

If (i, j ) /∈ E, then θ̃ij = OP (n−1/2), and hence

n1/2λn|θ̃ij |−γ = λnn
(1+γ )/2|n1/2θ̃ij |−γ = λnn

(1+γ )/2

OP (1)
P→ ∞.

From this, we see that Equation (30) converges in probability to
∞ unless δEc = 0, in which case it converges in probability to
0. In other words,

n[�n(�0 + n−1/2�) −�n(�0)]
P→
{

0, δEc = 0,

∞, δEc �= 0,

This implies that

�n(�)
D→ �(�,G), where �(�,G) =

{
L(�,G), δEc = 0,

∞, δEc �= 0.

Since both �n(�) and �(�,G) are convex and �(�,G) has
a unique minimum, by the epi-convergence results of Geyer
(1994), we have

argmin{�n(�) : � ∈ S
p×p} D→ argmin{�(�,G) : � ∈ S

p×p}.
This proves part 2 because the right-hand side is, in fact,
argmin{L(�,G) : � ∈ S

p×p(G)}, and the left-hand side is√
n(�̂ − �0).
The function �(�,W) is always minimized in a region of

� in which it is not ∞. As a consequence, if � minimizes
�(�,W) over S

p×p, then δEc = 0. Hence, P(En ⊇ E) → 1.
In the meantime, since �̂ − �0 = OP (n− 1

2 ), we have θ̂ij =
θ0,ij +OP (n− 1

2 ). If (i, j ) ∈ E, then θ0,ij �= 0. Thus, we see that
P(En ⊆ E) → 1. This proves part 1. �

We now derive the explicit expression of the asymptotic distri-
bution of �̂. Let G be the unique matrix in R

p2×[card(E)+p]/2 such
that for any � ∈ S

p×p(G), vec(�) = GδE . For example, if p =
3 and E = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (1, 3), (3, 1)},
then δE = (δ11, δ21, δ31, δ22, δ33)T, and G is defined by

GT =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0

0 0 1 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠.

Corollary 3. Under the assumptions of Theorem 5,

√
n vec(�̂ − �0)

D→ N (0,V),

where

V = G[GT(�2 ⊗ Ip)G]−1GT�G[GT(�2 ⊗ Ip)G]−1GT.

(31)

Proof. Note that

tr(����) = vecT(��)vec(��) = vecT(�)(�2 ⊗ Ip)vec(�)

tr(�W) = vecT(W)vec(�).

Hence,

L(�,W) = δT
EGT(�2 ⊗ Ip)GδE/2 + vecT(W)GδE.

This is a quadratic function minimized by δE = −[GT(�2 ⊗
Ip)G]−1GTvec(W). In terms of �, the minimizer is vec(�) =
−G[GT(�2 ⊗ Ip)G]−1GTvec(W). The corollary now follows
from Theorem 5. �

The asymptotic variance of
√
n(�̂ − �0) can be estimated

by replacing the moments in Equation (25) and (31) by their
sample estimates.

8. CONVERGENCE RATE FOR HIGH-DIMENSIONAL
GRAPH

In the last two sections, we have studied the asymptotic prop-
erties of our sparse CGGM estimators with the number of nodes
p in the graph G held fixed. We now investigate the case where
p = pn tends to infinity. Due to the limited space, we shall
focus on the lasso-penalized RKHS estimator with PC regu-
larization. That is, the minimizer of ϒn(�) with �̂ in Equa-
tion (12) is taken to be the RKHS estimator �̂PC(εn) based on
κX(a,b) = (1 + aTb)r . Throughout this section, �̂ denotes this
estimator. The large-pn convergence rate for the lasso estimator
of the (unconditional) GGM has been studied by Rothman et al.
(2008).

In this case, �, �, and Y should in principle be written as
�(n), �(n), and Y(n) because they now depend on n. However, to
avoid complicated notation, we still use �, �, and Y, keeping in
mind their dependence on n. Following Rothman et al. (2008),
we develop the convergence rate in Frobenius norm. Let ‖ · ‖1,
‖ · ‖F , and ‖ · ‖∞ be the L1-norm, Frobenius norm, and the
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L∞-norm of a matrix A ∈ R
d1×d2 :

‖A‖1 =
d1∑
i=1

d2∑
j=1

|aij |, ‖A‖F =
⎛
⎝ d1∑
i=1

d2∑
j=1

a2
ij

⎞
⎠1/2

,

‖A‖∞ = max |aij |,
where aij denotes the (i, j )th entry of A. Let ρ(A) denote the
number of nonzero entries of A. For easy reference, we list some
properties of these matrix functions in the following proposition.

Proposition 1. Let A ∈ R
d1×d2 , B ∈ R

d2×d3 . Then,

‖AB‖∞ ≤ d2‖A‖∞‖B‖∞, |tr(AB)| ≤ ‖A‖1‖B‖∞,
‖A‖1 ≤

√
ρ(A)‖A‖F .

The first inequality follows from the definition of ‖ · ‖∞; the
second from Hölder’s inequality; the third from the Cauchy-
Schwarz inequality. The last two inequalities were used in
Rothman et al. (2008). Let N = {1, 2, . . .}. Consider the ar-
ray of random matrices: {A(n)

i : i = 1, . . . , n, n ∈ N}, where
A(n) ∈ R

pn×q , pn may depend on n but q is fixed. Let (A(n))rs de-
note the (r, s)th entry of A(n).

Lemma 7. Let {A(n)
i : i = 1, . . . , n, n ∈ N} be an array of

random matrices in R
pn×q , each of whose rows is an iid sample

of a random matrix A(n). Suppose that the moment generating
functions of (A(n))st , say φnst , are finite on an interval (−δ, δ),
and their second derivatives are uniformly bounded over this
interval for all s = 1, . . . , pn, t = 1, . . . , q, n ∈ N. If pn → ∞,
then ‖En(A(n)) − E(A(n))‖∞ = OP (logpn/

√
n).

Proof. Let µnst = E(A(n))st . Since |µnst | ≤ 1 + φ′′
nst (0), there

is C > 0 such that |µnst | ≤ C for all s, t, n. Let (B(n))st =
(A(n))st − µnst , and ψnst be the moment generating function
of (B(n))st . Then, ψnst (τ ) = e−µnst τ φnst (τ ). For any a > 0,

P
(√
n
(
En

(
B(n)

)
st

)
> a

) = P
(
e
√
nEn(B(n))st > ea

)
≤ e−a

[
ψnst

(
n−1/2

)]n
.

By Taylor’s theorem and noticing that ψ ′
nst (0) = 0, we have

ψnst (n
−1/2) = 1 + ψ ′′

nst (ξnst )/(2n) ≤ 1 + eCφ′′
nst (ξnst )/(2n)

for some 0 ≤ ξnst ≤ n−1/2. By assumption, there isC1 > 0 such
that lim supn→∞ φ

′′(ξnst ) ≤ C1 for all s = 1, . . . , pn and t =
1, . . . , q. Hence,

[ψnst (n
−1/2)]n ≤ [1 + eCC1/(2n)]n → ee

CC1/2 ≡ C2.

Thus, we have lim supn→∞ P (
√
nEn(B(n))st > a) ≤ e−aC2.

By the same argument, we can show that
lim supn→∞ P (

√
nEn(B(n))st < −a) ≤ e−aC2. Therefore,

lim sup
n→∞

P
(√
n|En

(
B(n)

)
st
| > a

) ≤ 2e−aC2.

It follows that

lim sup
n→∞

P
(‖En

(
B(n)

)‖∞ > cn
)

≤ lim sup
n→∞

pn∑
s=1

q∑
t=1

P
(√
n|En

[(
A(n)

)
st
| > √

ncn
)

≤ 2qC2e
−√

ncn+logpn .

In particular,

lim sup
n→∞

P
(‖En

(
B(n)

)‖∞ > 2 logpn/
√
n
) ≤ qC2/pn → 0,

which implies the desired result. �

In the following, we call any array of random matrices
satisfying the conditions in Lemma 7 a standard array. We
now establish the convergence rate of ‖�̂ − �0‖F . Let sn de-
note the number of nonzero off-diagonal entries of �0. Let
Z = Y − µY − E(Y | X). LetXt and Y s denote the components
of X and Y. Their powers are denoted by (Xt )r and (Y s)r . For a
symmetric matrix A, let σmax(A) and σmin(A) denote the maxi-
mum and minimum eigenvalues of A.

Theorem 6. Let �̂ be the sparse estimator defined in the
first paragraph of this section with λn ∼ (logpn/n)1/2, εn =
o(n), and κ(a,b) = (1 + aTb)r . Suppose that (X,Y) follows a
CGGM, and satisfies the following additional assumptions:

1. Y, YUT, and ZUT are standard arrays of random matrices;
2. for all n ∈ N, σmax(�) < ∞ and σmin(�) > 0;
3. pn → ∞ and pn(pn + sn)1/2(logpn)5/2 = o(n3/2);
4. the fixed-dimensional matrix VU = var(U) is nonsingular;
5. each component of E(Y | X = x) is a polynomial in
x1, . . . , xq of at most rth order.

Then, ‖�̂ − �0‖F = OP ([(pn + sn) logpn/n]1/2).

Note that we can allow pn(pn + sn)1/2 to get arbitrarily close
ton3/2. This condition is slightly stronger than the corresponding
condition in Rothman et al. (2008) for the unconditional case,
which requires (pn + sn) logpn = o(n1/2). Also note that ‖�̂ −
�0‖F is the sum, instead of average, of p2

n elements (roughly
pn + sn nonzero elements). With this in mind, the convergence
rate [(pn + sn) logpn/n]1/2 is quite fast. This is the same rate as
that given in Rothman et al. (2008) for the unconditional GGM.

Proof of Theorem 3. Let rn = [(pn + sn) logpn/n]1/2, and
Dn = {� ∈ S

pn×pn : ‖�‖2 = Mrn} for some M > 0. Let,

Gn(�) = ϒn(�0 + �) −ϒn(�0),

where

ϒn(�) = − log det(�) + tr(��̂PC(εn)) + λn
∑
i �=j

|θij |. (32)

Then, �̂ minimizesL(�) if and only if �̂ = �̂ − �0 minimizes
Gn(�). As argued by Rothman et al. (2008), since Gn(�) is
convex in � and Gn(�̂) ≤ 0, the minimizer �̂ resides within
the sphere Dn ifGn(�) is positive and bounded away from 0 on
this sphere. That is, it suffices to show

P (inf{Gn(�) : � ∈ Dn} > 0) → 1.

The proof of Lemma 3 shows, in the context of fixed p,
that (QKXQ)†εn = (QDUCDT

U
Q)† with probability tending to 1

if εn = o(n). This result still holds here because the dimen-
sion q of X remains fixed. Consequently P(�̂PC(εn) = �̃) → 1,
where �̃ is as defined in Equation (16) but now its dimension
increases with n. Thus, we can replace the �̂PC(εn) in Equation
(32) by �̃. Let

µ̂U = En(U), V̂YU = n−1DT
Y
QDU , V̂U = n−1DT

U
QDU .
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Let µ̂Y |U = V̂YUV̂−1
U

(U − µ̂U ), and µY |U = E(Y | X) =
VYUV−1

U
(U − µU ). Then,

�̃ = En(Z + µY |U − µ̂Y |U + µY − µ̂Y )(Z + µY |U − µ̂Y |U

+µY − µ̂Y )
T.

The term µY |U − µ̂Y |U can be further decomposed as ZI + ZII +
ZIII , where

ZI = −(V̂YU − VYU )V̂−1
U

(U − µ̂U ),

ZII = VYU [V−1
U

(U − µU ) − V̂−1
U

(U − µ̂U )],

ZIII = µY − µ̂Y .

The function Gn(�) can now be rewritten as

Gn(�) = L∗
n(�0 + �) − L∗

n(�0) +
∑

ν∈{I,II,III }
tr
(
�En

(
ZZT

ν

))
+

∑
ν∈{I,II,III }

tr(�En(ZνZT))

+
∑

ν∈{I,II,III }

∑
τ∈{I,II,III }

tr
(
�En

(
ZνZT

τ

))
,

where L∗
n(�) = tr(�En(ZZT)) − log det(�) + λn

∑
i �=j |θij |.

Since Z ∼ N (0,�), we can use the same argument in the proof
of Theorem 1 in Rothman et al. (2008) to show that

P
(
inf{L∗

n(�0 + �) − L∗
n(�0) : � ∈ Dn} > 0

) → 1.

Thus, our theorem will be proved if we can show that

sup{|tr(�En(A))| : � ∈ Dn} = oP (1)

for A being any one of the following eight random matrices

ZZT
ν , ZνZT, ZνZT

τ , ν, τ = I, II, III. (33)

By Proposition 1, inequalities (2) and (3), we have, for � ∈
Dn,

tr(�En(A))| ≤ ‖En(A)‖∞ ‖�‖1 ≤ ‖En(A)‖∞
√
ρ(�)‖�‖2

≤ M‖En(A)‖∞ pnrn.

Thus, it suffices to show that,

‖En(A)‖∞ pn(pn + sn)
1/2(logpn)

1/2n−1/2 = oP (1). (34)

Since ‖En(A)‖∞ = ‖En(AT)‖∞, we only need to consider the
following A:

ZZT
I
,ZZT

II
,ZZT

III
,ZIZT

I
,ZIZT

II
,ZIZT

III
,ZIIZT

II
,ZIIZT

III
,ZIIIZT

III
.

From the definitions of Z and ZI , we have

En

(
ZZT

I

) = −En[Z(U − µU )T]V̂−1
U

(V̂UY − VUY )

− µ̂Z(µU − µ̂U )TV̂−1
U

(V̂UY − VUY ), (35)

where µ̂Z = En(Z). By the first inequality of Proposition 1,

‖En

(
ZZT

I

)‖∞ ≤ q2‖En[Z(U − µU )T]‖∞
×‖V̂−1

U
‖∞‖V̂UY − VUY‖∞ + q2‖µ̂Z‖∞‖(µU − µ̂U )T‖∞

×‖V̂−1
U

‖∞‖V̂UY − VUY‖∞. (36)

Since Z�X, we have E[Z(U − µU )T] = 0. Hence, by Lemma
7,

‖En[Z(U − µU )T]‖∞ = OP (n− 1
2 logpn). (37)

Similarly,

‖En[(Y − µY )(U − µU )T − VYU ]‖∞ = OP (n− 1
2 logpn),

‖µ̂Y − µY‖∞ = OP (n− 1
2 logpn). (38)

Since µ̂U − µU has a fixed-dimension finite-variance matrix, by
the central limit theorem,

‖µ̂U − µU‖∞ = OP (n−1/2). (39)

By definition,

V̂YU − VYU = En[(Y − µY )(U − µU )T − VYU ]

− (µ̂Y − µY )(µ̂U − µU )T.

By Proposition 1, first inequality,

‖V̂YU − VYU‖∞ ≤ ‖En[(Y − µY )(U − µU ) − VYU ]‖∞
+‖µ̂Y − µY‖∞‖µ̂U − µU‖∞.

Substituting Equations (38) and (39) into the above inequality,
we find

‖V̂YU − VYU‖∞ = OP (n− 1
2 logpn). (40)

Since Z is multivariate normal whose components have means
0 and bounded variance, it is a standard array. Hence,

‖µ̂Z‖∞ = OP (n− 1
2 logpn). (41)

Since the dimension of V̂U is fixed, its entries have finite vari-
ances, and VU is nonsingular, we have, by the central limit
theorem,

‖V̂−1
U

‖∞ = OP (1). (42)

Substituting Equations (37), (39), (40), (41), and (42) into Equa-
tion (36), we find that

‖En

(
ZZT

I

)‖∞ = OP (n−1(logpn)
2),

which, by condition (3), satisfies Equation (34).
The order of magnitudes of the rest of the three terms can

be derived similarly. We present the results below, omitting the
details:

‖En

(
ZZT

II

)‖∞ = OP (n−1 logpn),

‖En

(
ZZT

III

)‖∞ = OP (n−1(logpn)
2),

‖En

(
ZIZT

I

)‖∞ = OP (n−1(logpn)
2),

‖En

(
ZIZT

II

)‖∞ = OP (n−1 logpn),

‖En

(
ZIZT

III

)‖∞ = OP (n−3/2(logpn)
2),

‖En

(
ZIIZT

II

)‖∞ = OP (n−1),

‖En

(
ZIIZT

III

)‖∞ = OP (n−3/2 logpn),

‖En

(
ZIIIZT

III

)‖∞ = OP (n−1(logpn)
2).

By condition (3), all of these terms satisfy the relation in
Equation (34). �

9. IMPLEMENTATION

In this section, we address two issues in implementation:
the choice of the tuning parameter and the minimization of the
objective functions (13) and (14). For the choice of the tuning
parameter, we use a BIC-type criterion (Schwarz 1978) similar
to that used in Yuan and Lin (2007). Let �̂(λ) = {θ̂ij (λ) : i,
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j ∈ �} be the lasso or the adaptive lasso estimate of �0 in the
conditional graphical model for a specific choice of λ of the
tuning parameter. Let En(λ) = {(i, j ) : θ̂ij (λ) �= 0}, and

BIC(λ)=−logdet[�̂(λ)]+tr[�̂(λ)�n]+log n
card[En(λ)]+p

2n
.

The tuning parameter is then chosen to be

λ̂BIC = argmin{BIC(λ) : λ ∈ (0,∞)}.

Practically, we evaluate this criterion on a grid of points in
(0,∞) and choose the minimizer among these points.

For the minimization of Equations (13) and (14), we fol-
low the graphical lasso procedure proposed by Friedman et al.
(2008), but with the sample covariance matrix therein replaced
by the RKHS estimates, �̂PC(εn) or �̂RR(εn), of the conditional
covariance matrix �. The graphical lasso (glasso) procedure is
available as a package in the R language.

10. SIMULATION STUDIES

In this section, we compare the sparse estimators for the
CGGM with the sparse estimators of the GGM, with the max-
imum likelihood estimators of the CGGM, and with two naive
estimators. We also explore several reproducing kernels and
investigate their performances for estimating the CGGM.

10.1 Comparison With Estimators for GGM

We use three criteria for this comparison:

1. False positive rate at λ̂BIC. This is defined as the percentage
of edges identified as belonging to E when they are not;
that is,

FP = card{(i, j ) : i > j, θ0,ij = 0, θ̂ij �= 0}/
card{(i, j ) : i > j, θ0,ij = 0}.

2. False negative rate at λ̂BIC. This is defined as the percent-
age of edges identified as belonging to Ec when they are
not; that is,

FN = card{(i, j ) : i > j, θ0,ij �= 0, θ̂ij = 0}/
card{(i, j ) : i > j, θ0,ij �= 0}.

3. Rate of correct paths. The above two criteria are both
specific to the tuning method (in our case, BIC). To assess
the potential capability of an estimator of E, independently
of the tuning methods used, we use the percentage of cases
where E belongs to the path {En(λ) : λ ∈ (0,∞)}, where
En(λ) is an estimator of E for a fixed λ. We write this
criterion as PATH.

Example 1. This is the example, illustrated in Figure 1, in
which p = 3, q = 1, and (X,Y) satisfies CGGM with E =
{(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)}. The conditional distribution
of Y | X is specified by

Y = βX + ε, (43)

where β = (β1, β2, 0)T, X ∼ N (0, 1), and ε ∼ N (0,�), X � ε,
and

�−1 = � =

⎛
⎜⎝ 5 0 0

0 4 2.53

0 2.53 2

⎞
⎟⎠.

For each simulated sample, β1 and β2 are generated, inde-
pendently, from the uniform distribution defined on the set
(−6,−3) ∪ (3, 6). We use two sample sizes n = 50, 100. The
linear kernel κX(a,b) = 1 + aTb is used for the initial RKHS
estimate. The results are presented in the first three rows of
Table 1. Entries in the table are the means calculated across 200
simulated samples.

The table indicates that the unconditional sparse estimators
have much higher false positive rate than false negative rate.
This is because they tend to pick up connections among the
components of Y that are due to X. In comparison, the con-
ditional sparse estimators (both lasso and adaptive lasso) can
successfully remove the edges effected by X, resulting in more
accurate identification of the graph.

Example 2. In this example, we consider three scenarios in
which the effect of an external source on the network varies in
degree, resulting in different amounts of gain achievable by a
conditional graphical model.

We still assume the linear regression model (43), but with
p = 5. The first scenario is shown in the top two panels in Figure
2, where all the components of β are nonzero and � diagonal.
In this case, the conditional graph is totally disconnected (left
panel); whereas the unconditional graph is a complete graph
(right panel). Specifically, the parameters are

� = � = I5, β = (0.656, 0.551, 0.757, 0.720, 0.801)T.

The panels in the third row of Figure 2 represent the other ex-
treme, where onlyY 1 is related to X, and eachY i for i �= 1 shares
an edge with Y 1 but has no other edges. In this case, the con-
ditional and unconditional graphs are identical. The parameters
are specified as follows. The first row (and first column) of
� is (6.020,−0.827,−1.443,−1.186,−0.922); the remaining
4 × 4 block is I4. The first entry of β is 0.656, and rest entries
are 0. Between these two extremes is scenario 2 (second row in
Figure 2), where the conditional and unconditional graphs differ
only by one edge: 1 ↔ 4. The parameters are

� =

⎛
⎜⎜⎜⎜⎜⎜⎝

4.487 −1.186 −1.443 0 0

−1.186 1.464 −0.668 0.752 −0.681

−1.443 −0.668 1.963 −1.084 0.981

0 0.752 −1.084 2.220 −1.105

0 −0.681 0.981 −1.105 1

⎞
⎟⎟⎟⎟⎟⎟⎠,

β =

⎛
⎜⎜⎜⎜⎜⎝

0.656
0.551

0

0.601

0

⎞
⎟⎟⎟⎟⎟⎠.

For each scenario, we generate 200 samples of sizes n =
50, 100 and compute the three criteria across the 200 samples.
The results are presented row 4 through row 12 of Table 1. We
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Table 1. Comparison of graph estimation accuracy among the lasso and the adaptive lasso estimators of GGM and CGGM for Example 1,
Example 2 (including three scenarios), and Example 3. “ALASSO” means adaptive lasso

n = 50 n = 100

LASSO ALASSO LASSO ALASSO

Example/scenario Criteria GGM CGGM GGM CGGM GGM CGGM GGM CGGM

FP 1 0.51 1 0.15 1 0.40 1 0.05
EX1 FN 0 0 0 0 0 0 0 0

PATH 0 1 0 1 1 1 0 1
FP 0.84 0.02 0.54 0.06 0.93 0.01 0.67 0.02

EX2-SC1 FN 0 0 0 0 0 0 0 0
PATH 0 1 0.01 0.63 0 1 0.98 1
FP 0.98 0.55 0.96 0.31 1 0.51 1 0.22

EX2-SC2 FN 0.06 0.01 0.15 0.02 0.02 0 0.08 0
PATH 0 0.57 0 0.71 0 0.79 0 0.98
FP 0.71 0.68 0.18 0.19 0.75 0.77 0.10 0.11

EX2-SC3 FN 0 0 0.01 0.02 0 0 0 0
PATH 0 0.43 0.80 0.52 0 0.56 1 0.87
FP 0.79 0.23 0.41 0.09 0.83 0.16 0.59 0.03

EX3 FN 0 0 0 0 0 0 0 0
PATH 0 0.94 0.95 0.99 0 1 1 1

see significant improvements of the rates of correct identification
of the graphical structure by the sparse estimator of CGGM
whenever the conditional graph differs from the unconditional
graph. Also note that, for scenario 3, where the two graphs are
the same, the adaptive lasso estimator for GGM performs better
than the adaptive lasso estimator for CGGM. This is because
the latter needs to estimate more parameters.

Example 3. In this example, we investigate a situation where
the edges in the unconditional graphical model have two external
sources. We use model (43) with p = 5, q = 2, X ∼ N (0, I2),

� =

⎛
⎜⎜⎜⎜⎜⎝

1.683 −0.827 0 0 0
−0.827 1 0 0 0

0 0 1.722 0.849 0

0 0 0.849 1 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠,

β =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.656 0

0 0.551

0.757 0

0 0.720

0 0.800

⎞
⎟⎟⎟⎟⎟⎟⎠.

The results are summarized in the last three rows of Table 1,
from which we can see similar improvements by the sparse
CGGM estimators.

10.2 Comparison With Maximum Likelihood Estimates
of CGGM

In Section 7, we showed that the adaptive lasso estimate for
the CGGM possesses oracle property; that is, its asymptotic vari-
ance reaches the lower bound among regular estimators when
the graphG is assumed known. Hence, it makes sense to compare
adaptive lasso estimate with the maximum likelihood estimate

of � under the constraints θij = 0, (i, j ) /∈ E, which is known
to be optimal among regular estimates. In this section, we make
such a comparison, using all three examples in Section 10.1.
As a benchmark, we also compare these two estimates with the
maximum likelihood estimate under the full model, which for
the linear kernel is [�̂PC(0)]†. For this comparison we use the
squared Frobenius norm ‖�̂ − �0‖2

F , which characterizes the
closeness of two precision matrices rather than that of graphs.

Table 2 shows that the adaptive lasso estimator is rather close
to the constrained MLE, with the unconstrained MLE trailing
noticeably behind. In three out of five cases, the constrained
MLE performs better than the adaptive lasso, which is not
surprising because, although the two estimators are equivalent
asymptotically, the former employs the true graphical structure
unavailable for adaptive lasso, making it more accurate for the
finite sample. When the errors of adaptive lasso are lower than
the constrained MLE, the differences are within the margins of
error.

Table 2. Comparison of parameter estimation accuracy among
adaptive lasso, and unconstrained and constrained MLE for CGGM.

Entries are of the form a ± b, where a is the mean, and b the standard
deviation, of criterion ‖�̂ − �0‖2

F
computed from 200 simulated

samples

MLE

Example/scenario ALASSO Unconstrained Constrained

EX1 1.458 ± 0.125 2.256 ± 0.171 1.575 ± 0.155
EX2-SC1 0.142 ± 0.008 0.400 ± 0.018 0.122 ± 0.007
EX2-SC2 1.858 ± 0.120 2.294 ± 0.148 1.663 ± 0.116
EX2-SC3 1.147 ± 0.071 2.139 ± 0.186 0.969 ± 0.081
EX3 0.303 ± 0.016 0.773 ± 0.555 0.327 ± 0.275
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Figure 2. Conditional and unconditional graphical models in Ex-
amples 2 and 3. Left panels: the conditional graphical models. Right
panels: the corresponding unconditional graphical models. Black nodes
indicate response variables; gray nodes are the predictors. Edges in the
conditional and unconditional graphs are indicated by black lines; re-
gression of Y on X is indicated by directed gray lines with arrows. (The
online version of this figure is in color.)

10.3 Exploring Different Reproducing Kernels

In this section, we explore three types of kernels for RKHS

polynomial (PN): κX(a,b) = (aTb + 1)r ,

Gauss radial basis (RB): κX(a,b) = exp(−γ ‖a − b‖2),

rational quadratic (RQ): κX(a,b) = 1 − ‖a − b‖2/

× (‖a − b‖2 + c), (44)

and investigate their performances as initial estimates for lasso
and adaptive lasso. These kernels are widely used for RKHS
(Genton 2001). For the CGGM, we use a nonlinear regression
model with four combinations of dimensions: q = 10, 20, p =

50, 100. The nonlinear regression model is specified by

Y i =

⎧⎪⎪⎨
⎪⎪⎩
(
βT

1 X + 1
)2 + εi, i = 1, 3, 6, 8, . . . , p − 4, p − 2,(

βT
2 X
)2 + εi, i = 2, 4, 5, 7, 9, 10, . . . ,

p − 3, p − 1, p,

(45)

where β1 and β2 are q-dimensional vectors

β1 = (1, . . . , 1︸ ︷︷ ︸
q/2

, 0, . . . , 0︸ ︷︷ ︸
q/2

)T,

β2 = (0, . . . , 0︸ ︷︷ ︸
q/2

, 1,−1, . . . , (−1)q/2+1︸ ︷︷ ︸
q/2

)T.

The distribution of (ε1, . . . , εp)T is multivariate normal with
mean 0 and precision matrix⎛

⎜⎝
	 0

. . .
0 	

⎞
⎟⎠

where each 	 is the precision matrix in Example 3.
The following specifications apply throughout the rest of Sec-

tion 10: γ = 1/(9q) for RB, c = 200 for RQ, and r = 2 for PN
(because the predictors in Equation (45) are quadratic poly-
nomials); the RKHS estimator �̂PC(εn) is used as the initial
estimator for lasso and adaptive lasso, where εn are chosen so
that the first 70 eigenvectors of QKXQ are retained. Ideally, the
kernel parameters γ , c, and εn should be chosen by data-driven
methods such as cross-validation. However, this is beyond the
scope of the present article and will be further developed in a
future study. Our choices are based on trial and error in pilot
runs. Our experience indicates that the sparse estimators per-
form well and are reasonably stable when εn is chosen so that
10% ∼ 30% of the eigenvectors of QKXQ are included. The
sample size is n = 100 and the simulation is based on 200 sam-
ples. To save computing time we use the BIC to optimize λn for
the first sample and use it for the rest 199 samples.

In Table 3, we compare the sparse estimators lasso and adap-
tive lasso, whose initial estimates are derived from kernels in
Equation (44), with the full and constrained MLEs. The full
MLE is computed using the knowledge that the predictor is a
quadratic polynomial of x1, . . . , xp. The constrained MLE uses,
in addition, the knowledge of the conditional graph G; that is,
the positions of the zero entries of the true conditional precision
matrix.

Table 3 shows that in all cases the sparse estimators per-
form substantially better than the full MLEs. For q = 10, the
adaptive lasso estimates based on all three kernels also perform
better than both the full and constrained MLEs; whereas the
accuracy of most of the lasso estimates are between the full and
the constrained MLEs. For q = 20, all sparse estimators per-
form substantially better than both the full and the constrained
MLEs. From these results, we can see the effects of two types
of regularization: the sparse regularization of the conditional
precision matrix and the kernel-PCA regularization for the pre-
dictor. The first regularization counteracts the increase in the
number of parameters in the conditional precision matrix as p
increases, and the second counteracts the increase in the number
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Table 3. Exploration of different reproducing kernels. Entries are ‖�̂ − �0‖2
F

averaged over 200 simulation samples

LASSO ALASSO MLE

p q PN RB RQ PN RB RQ Full Constrained

50 10 1.84 6.88 8.14 1.84 2.31 2.71 29.41 3.82
20 11.03 11.03 11.03 17.15 17.14 17.14 299.28 94.18

100 10 5.96 20.07 24.06 3.35 4.33 5.17 171.32 7.73
20 20.06 20.05 20.05 29.10 28.30 28.31 1787.32 186.39

of terms in a quadratic polynomial as q increases, both resulting
in substantially reduced estimation error.

10.4 Comparisons With Two Naive Estimators

We now compare our sparse RKHS estimators for the CGGM
with two simple methods: the linear regression and the simple
thresholding.

10.4.1 Naive Linear Regression. A simple estimate of
CGGM is to first apply multivariate linear regression of Y ver-
sus X, regardless of the true regression relation, and then apply
a sparse penalty to the residual variance matrix. To make a fair
comparison with linear regression, we consider the following
class of regression models:

Y = (1 − a)(βTX)2/4 + a(βTX) + ε, 0 ≤ a ≤ 1. (46)

This is a convex combination of a linear model and a quadratic
model: it is linear when a = 1, quadratic when a = 0, and a
mixture of both when 0 < a < 1. The distribution of ε is as
specified in Section 10.3. The fraction 1/4 in the quadratic term
in Equation (46) is introduced so that the linear and quadratic
terms have the similar signal-to-noise ratios. In Table 4, we
compare the estimation error of the CGGM based on Equation
(46) by sparse linear regression and by sparse RKHS estimator
using the adaptive lasso as penalty. We take q = 10,p = 50, and
n = 500. The Gauss radial basis is used for the kernel method,
with tuning parameters γ and εn being the same as specified in
Section 10.3.

We see that the sparse RKHS estimate performs substantially
better in all cases except a = 1, where Equation (46) is ex-
actly a linear model. This suggests that linear-regression sparse
estimate of CGGM is rather sensitive to nonlinearity: a slight
proportion of nonlinearity in the mixture would make the kernel
method favorable. In comparison, the sparse RKHS estimate is
stable and accurate for different types of regression relations.

10.4.2 Simple Thresholding. A naive approach to sparsity
is by dropping small entries of a matrix. For example, we

can estimate � by setting to zero the entries of �̂
−1
PC whose

absolute values are smaller than some τ > 0. Let �̃(τ ) de-
note this estimator. Using the example in Section 10.3 with

Table 4. Comparison with linear regression. Entries are
‖�̂ − �0‖2

F
averaged over 200 samples

a 0 0.2 0.4 0.6 0.8 1

Linear 10.49 10.48 10.48 10.42 10.10 0.75
Kernel 1.56 2.13 1.77 1.72 1.67 1.56

p = 50, q = 10, n = 500, we now compare the sparse RKHS
estimators with �̃(τ ). The curve in Figure 3 is the error
‖�̃(τ ) − �‖2

F
versus τ ∈ [0, 1]. Each point in the curve is the

error over 200 simulated samples. The estimate �̂PC is based on
the gauss radial basis, whose tuning parameters γ and εn are as
given in Section 10.3. The two horizontal lines in Figure 3 rep-
resent the errors for the lasso and the adaptive lasso estimators
based on �̂PC, which are read off from Table 3.

The figure shows that the simple thresholding estimate, even
for the best threshold, does not perform as well as either of
our sparse estimates. Note that in practice �0 is unknown, and
the optimal τ cannot be obtained by minimizing the curve in
Figure 3. With this in mind, we expect the actual gap between
the thresholding estimate and the sparse estimates to be even
greater than that shown in the figure.

11. NETWORK INFERENCE FROM EQTL DATA

In this section, we apply our CGGM sparse estimators to two
datasets to infer gene networks from expression quantitative
trait loci (eQTL) data. The dataset is collected from an F2
intercross between inbred lines C3H/HeJ and C57BL/6J
(Ghazalpour et al. 2006). It contains 3,421 transcripts and
1,065 markers from the liver tissues of 135 female mice

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

threshold

F
ro

be
ni

us
 d

is
ta

nc
e 

sq
ua

re
d

adaptive lasso

lasso

simple thresholding

Figure 3. Comparison of lasso, adaptive lasso, and simple
thresholding.
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(n = 135). The purpose of our analysis is to identify direct
gene interactions by fitting the CGGM to the eQTL dataset.
Although a gene network can be inferred from expression data
alone, such a network would contain edges due to confounders
such as shared genetic causal variants. The available marker
data in the eQTL dataset allow us to isolate the confounded
edges by conditioning on the genomic information.

We restrict our attention to subsets of genes, partly to accom-
modate the small sample size. In the eQTL analysis tradition,
subsets of genes can be identified by two methods: co mapping
and co expression. For co-mapping, each gene expression trait
is mapped to markers, and the transcripts that are mapped to the
same locus are grouped together. For co-expression, the highly
correlated gene expressions are grouped together.

We first consider the subset of genes identified by co-
mapping. It has been reported (Neto, Keller, Attie, and Yandell
2010) that 14 transcripts are mapped to a marker on chromo-
some 2 (at 55.95 cM). As this locus is linked to many transcripts,
it is called a hot-spot locus. It is evident that this marker should
be included as a covariate for CGGM. In addition, we include
a marker on chromosome 15 (at 76.65 cM) as a covariate, be-
cause it is significantly linked to gene Apbb1ip (permutation
p-value < 0.005), conditioning on the effect of the marker on
chromosome 2. The transcript mapping is performed using the
qtl package in R (Broman, Wu, Sen, and Churchill 2003).

The GGM detects 52 edges; the CGGM detects 34 edges, all
in the set detected by the GGM. The two graphs are presented in
the upper panel of Figure 4, where edges detected by both GGM
and CGGM are represented by black solid lines, and edges de-
tected by GGM alone are represented by blue dotted lines. In
the left panel of Table 5, we compare the connectivity of genes
of each graph. Among the 14 transcripts, Pscdbp contains the
hot spot locus within the ±100 kb boundaries of its location.
Interestingly, in CGGM, this cis transcript has the lowest con-
nectivity among the 14 genes, but one of the genes with which
it is associated (Apbb1ip) is a hub gene, connected with seven
other genes. In sharp contrast, GGM shows high connectivity of
Pscdbp itself.

We next study the subset identified by co-expression. We
use a hierarchical clustering approach in conjunction with the
average agglomeration procedure to partition the transcripts into
10 groups. The relevant dissimilarity measure is 1 − |ρij |, where
ρij is the Pearson correlation between transcripts i and j. Among
the 10 groups, we choose a group that contains 15 transcripts
with the mean absolute correlation equal to 0.78. Thirteen of the
15 transcripts have annotations, and they are used in our analysis.
Using the qtl package in R, each transcript is mapped to markers,
and seven markers on chromosome 2 are significantly linked to
transcripts (permutation p-value 0.005). Among those, we drop
two markers that are identical to the adjacent markers. We thus
use five markers (Chr2@100.18, Chr2@112.75, Chr2@115.95,
Chr2@120.72, Chr2@124.12) as covariates.

The GGM identifies 52 edges and the CGGM identifies 30
edges. Among these edges, 28 are shared by both methods.
The two graphs are presented in the lower panel of Figure 4,
where edges detected by both GGM and CGGM are represented
by black solid lines, edges detected by GGM alone are repre-
sented by blue dotted lines, and edges detected by CGGM alone
are represented by red broken lines. Among the 13 transcripts,
Dtwd1 is the closest to all markers (distances < 300 kbp). The

Il16

Frzb

Apbb1ip

Clec2

Riken

Il10rb

Myo1f

Aif1

Unc5a

Trpv2

Tnfsf6

Stat4Pscdbp

D13Ertd275e

Aqr

Nola3

AI648866

Zfp661

Myef2

Synpo2

Slc24a5

Nol5a

Sdh1

Dtwd1

B2m

Tmem87a

Zc3hdc8

Figure 4. Gene networks based on GGM and CGGM. Upper panel:
data based on co mapping selection. Lower panel: data based on coex-
pression selection. An edge from both GGM and CGGM is represented
by a solid line; an edge from the GGM alone is represented by a dotted
line; an edge from CGGM alone is represented by a broken line. (The
online version of this figure is in color.)

connectivity of each method is shown in the right panel of Table
5. The number of genes that are connected to Dtwd1 is reduced
by 5 by CGGM. Unlike in the co-mapping network, in the co-
expression network, CGGM detects two edges (Aqr–Zfp661,
Zfp661–Tmem87a) that are not detected by GGM. These ad-
ditional edges could be caused by the error in regression esti-
mation. For example, if the regression coefficients for some of
markers are 0, but are estimated to be nonzero, then spurious
correlations arise among residuals. This indicates that the accu-
rate identification of the correct covariates is more important in
the co-expression network.

As a summary, in the network inference from the transcripts
identified by co-mapping, we see that after conditioning on the
markers, the cis-regulated transcripts (Pscdbp) are connected to
relatively few genes of high connectivity. However, without
conditioning on the markers, they appear to have high
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Table 5. Connectivity of genes in the conditional and unconditional graphical models. The cis-regulated transcripts are indicated with boldface

Co-mapping Co-expression

Gene GGM CGGM Diff. Gene GGM CGGM Diff.

Il16 7 3 4 Aqr 7 6 1
Frzb 7 5 2 Nola3 8 2 6
Apbb1ip 8 7 1 AI648866 9 6 3
Clec2 6 4 2 Zfp661 8 5 3
Riken 6 4 2 Myef2 11 5 6
Il10rb 8 5 3 Synpo2 9 3 6
Myo1f 8 5 3 Slc24a5 6 5 1
Aif1 6 5 1 Nol5a 7 4 3
Unc5a 11 8 3 Sdh1 10 6 4
Trpv2 9 6 3 Dtwd1 9 4 5
Tnfsf6 9 4 5 B2m 8 6 2
Stat4 3 3 0 Tmem87a 6 3 3
Pscdbp 9 3 6 Zc3hdc8 6 5 1
D13Ertd275e 7 6 1

connectivity themselves. In other words, without conditioning
on markers, these cis-regulated transcripts might be misinter-
preted as hub-genes themselves. In the network inference from
the transcripts identified by co expression, we see that after con-
ditioning on the markers, a few edges are additionally detected,
which may result from inaccurate identification of covariates
for an individual transcript. Thus, including the correct set of
markers for an individual transcript can be important.

ACKNOWLEDGMENTS

We would like to thank three referees and an Associate Editor
for their many excellent suggestions, which lead to substantial
improvement on an earlier draft. Especially, the asymptotic de-
velopment in Section 8 is inspired by two reviewers’ comments.

[Received October 2010. Revised July 2011.]

REFERENCES

Aronszajn, N. (1950), “Theory of Reproducing Kernels,” Transactions of the
American Mathematical Society, 68, 337–404. [153]

Bickel, P. J., and Levina, E. (2008), “Covariance Regularization by Threshold-
ing,” The Annals of Statistics, 36, 2577–2604. [152]

Bickel, P. J., Ritov, Y., Klaassenn, C. A. J., and Wellner, J. A. (1993), Efficient
and Adaptive Estimation for Semiparametric Models. Baltimore, MD: The
Johns Hopkins University Press. [156]

Breiman, L. (1995), “Better Subset Regression Using the Nonnegative Garrote,”
Technometrics, 37, 373–384. [155]

Broman, K. W., Wu, H., Sen, S., and Churchill, G. A. (2003), “R/qtl: QTLMap-
ping in Experimental Crosses,” Bioinformatics, 19, 889–890. [166]

Dempster, A. P. (1972), “Covariance Selection,” Biometrika, 32, 95–108. [152]
Fan, J., and Li, R. (2001), “Variable Selection via Nonconcave Penalized Likeli-

hood and Its Oracle Properties,” Journal of American Statistical Association,
96, 1348–1360. [157]

Fernholz, L. T. (1983), “Von Mises Calculus for Statistical Functionals,” Lecture
Notes in Statistics, 19, New York: Springer. [156]

Friedman, J., Hastie, T., and Tibshirani, R. (2008), “Sparse Inverse Covariance
Estimation with the Graphical Lasso,” Biostatistics, 9, 432–441. [155,162]

Fukumizu, K., Bach, F. R., and Jordan, M. I. (2009), “Kernel Dimension Re-
duction in Regression,” The Annals of Statistics, 4, 1871–1905. [153,154]

Genton, M. G. (2001), “Classes of Kernels for Machine Learning: A Statistics
Perspective,” Journal of Machine Learning Research, 2, 299–312. [164]

Geyer, C. J. (1994), “On the Asymptotics of Constrained M-estimation,” The
Annals of Statistics, 22, 1998–2010. [158,159]

Ghazalpour, A., Doss, S., Zhang, B., Wang, S., Plaisier, C., Castellanos, R.,
Brozell, A., Shadt, E. E., Drake, T. A., Lusis, A. J., and Horvath, S. (2006),

“Integrating Genetic and Network Analysis to Characterize Gene Related
to Mouse Weight,” PLoS Genetics, 2, e130. [165]

Guo, J., Levina, E., Michailidis, G., and Zhu, J. (2009), “Joint Estima-
tion of Multiple Graphical Models,” unpublished manuscript available at
http://www.stat. lsa.umich.edu/gmichail/manuscript-jasa-09.pdf. [152]

Henderson, H. V., and Searle, S. R. (1979), “Vec and Vech Operators for Ma-
trices, with Some Uses in Jacobians and Multivariate Statistics,” Canadian
Journal of Statistics, 7, 65–81. [155]

Horn, R. A., and Johnson, C. R. (1985), Matrix Analysis, New York: Cambridge
University Press. [154]

Knight, K., and Fu, W. (2000), “Asymptotics for Lasso-Type Estimators,” The
Annals of Statistics, 28, 1356–1378. [157]

Lafferty, J., McCallum, A., and Pereira, F. (2001), “Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling Sequence Data,” in Pro-
ceedings of the Eighteenth International Conference on Machine Learning
(ICML 2001), 282–289. [152]

Lam, C., and Fan, J. (2009), “Sparsistency and Rates of Convergence in Large
Covariance Matrix Estimation,” The Annals of Statistics, 37, 4254–4278.
[152,157]

Lauritzen, S. L. (1996), Graphical Models, Oxford: Clarendon Press.
[152,155,157]
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