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a b s t r a c t

Distance correlation is extended to the problemof testing the independence of randomvec-
tors in high dimension. Distance correlation characterizes independence and determines a
test of multivariate independence for random vectors in arbitrary dimension. In this work,
amodified distance correlation statistic is proposed, such that under independence the dis-
tribution of a transformation of the statistic converges to Student t, as dimension tends to
infinity. Thuswe obtain a distance correlation t-test for independence of random vectors in
arbitrarily high dimension, applicable under standard conditions on the coordinates that
ensure the validity of certain limit theorems. This new test is based on an unbiased es-
timator of distance covariance, and the resulting t-test is unbiased for every sample size
greater than three and all significance levels. The transformed statistic is approximately
normal under independence for sample size greater than nine, providing an informative
sample coefficient that is easily interpretable for high dimensional data.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Many applications in genomics, medicine, engineering, etc. require analysis of high dimensional data. Time series data
can also be viewed as high dimensional data. Objects can be represented by their characteristics or features as vectors

X = (X1, . . . , Xp) ∈ Rp.

In this work, we consider the extension of distance correlation to the problem of testing independence of random vectors
in arbitrarily high, not necessarily equal dimensions, so the dimension p of the feature space of a random vector is typically
large.

1.1. Overview and background

Distance correlation (dCor) and distance covariance (dCov) (Székely, Rizzo, and Bakirov [19]; Székely and Rizzo [17,18])
measure all types of dependence between random vectors in arbitrary, not necessarily equal dimensions. (See Section 2
for definitions.) Distance correlation takes values in [0, 1] and is equal to zero if and only if independence holds. It is more
general than the classical Pearson product moment correlation, providing a scalar measure of multivariate independence
that characterizes independence of random vectors.
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Thedistance covariance test of independence is consistent against all dependent alternativeswith finite secondmoments.
In practice, however, researchers are often interested in interpreting the numerical value of distance correlation, without
a formal test. For example, given an array of distance correlation statistics, what can one learn about the strength of
dependence relations from the dCor statistics without a formal test? This is in fact, a difficult question, but a solution is
finally available for a large class of problems.

The present work was initially motivated by the observation that the bias of the dCor statistic increases with dimension.
We show that, with the help of an unbiased modification of the squared distance covariance, we can construct an unbiased
t-test of independence applicable in high dimension.

In our previous work, we have developed consistent tests for multivariate independence applicable in arbitrary
dimension based on the corresponding sample distance covariance. Generally in statistical inference, we consider that,
the dimensions of the random variables are fixed and investigate the effect of sample size on inference. In this work, we
restrict our attention to the situation where the dimensions of the random vectors are large, relative to the sample size.
With the help of a modified distance correlation, we obtain a distance correlation test statistic T that has an asymptotic
(with respect to dimension) Student t distribution under independence. Thus we obtain a distance correlation t test for
multivariate independence, applicable in high dimensions. Moreover, the degrees of freedom of the t statistic are such that
the statistic is approximately normal for sample size n ≥ 10. Themodified distance correlation statistic for high dimensional
data has a symmetric beta distribution, which is approximately normal for moderately large n, and thus we also obtain an
asymptotic (high dimension) Z-test for independence. Themodified distance correlation statisticR∗

n converges to the square
of population distance correlation (R2) stochastically. The computing formula and parameters of the t , beta, and normal
limit distributions are simple (linear combinations of Euclidean distances) and the tests are straightforward to apply.

The first high dimensional extension of distance covariance is Kosorok’s discussion [8] of Székely and Rizzo [17].
Lyons [10] extended distance covariance to all separable Hilbert spaces which makes our results applicable to functional
data. Recent papers that address the problem of testing independence in high dimension include Schott [15] who considers
multivariate normal data, Ledoit and Wolf [9] concerning tests for the covariance matrix, and Heer [6]. To date, we are
not aware of a test in the literature comparable to the test proposed in this paper, other than the related energy tests of
independence already developed by the authors [19,17,1]. A breakthrough in this work and our main result is that, for high
dimensional problems, we have derived a modified statistic Tn for independence that has a Student t distribution, so that
the statistic is immediately interpretable without any need for Monte Carlo methods. Our methodology also extends to high
dimensional problems where the coordinates are not necessarily exchangeable.

1.2. Preliminaries and notation

Suppose that we have random samples of observations

(Xi, Yi) ∈ Rp+q, i = 1, . . . , n,

where

Xi = (Xi,1, . . . , Xi,p), Yi = (Yi,1, . . . , Yi,q), i = 1, . . . , n.

That is, (Xi, Yi) ∈ Rp+q, i = 1, . . . , n, is a random sample from the joint distribution of (X, Y), where X and Y are assumed
to take values in Rp and Rq, respectively. Throughout this paper we assume that E|X|

2 < ∞ and E|Y|
2 < ∞.

We now summarize certain notation that appears throughout the remaining sections. Notation that is limited in scope to
proofs of statements is defined in the Appendix where it is first used. Definitions of dCov and dCor, and computing formulas
for statistics follow in Section 2.

A primed symbol denotes an independent copy of the unprimed symbol; that is,X andX′ are independent and identically
distributed. The characteristic function of a randomvectorX is denoted byφX , and the joint characteristic function of random
vectors X and Y is denoted by φX,Y . The empirical characteristic function of X is denoted by φn

X
.

The inner product is denoted with angle brackets and |X| = ⟨X,X⟩
1/2 is the Euclidean norm. If the argument of | · | is

complex, then | · | denotes the complex norm.
The following notation is used for distances, definitions, and computing formulas for the statistics:

aij = |Xi − Xj|, i, j = 1, . . . , n,

ai· =

n
k=1

aik, a·j =

n
k=1

akj, āi = āi· =
1
n
ai·,

a·· =

n
i,j=1

aij, ā =
1
n2

n
i,j=1

aij,

and the corresponding notation for distances bij = |Yi − Yj|, sums bi·, b·j, b··, and means b̄j, b̄ will be used for the second
sample. Define α = E|X − X′

| and β = E|Y − Y′
|.

Except for the distances aij, bij, we use upper case letters to denote random variables, and bold letters to denote vectors.
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Calligraphic symbols V, R are used for population dCov and dCor coefficients, and Vn, Rn denote the corresponding
sample coefficients as defined in [19,17]. Starred symbols such as V∗

n and R∗
n are reserved for the modified statistics

introduced in this paper.
The paper is organized as follows. Definitions andmotivation are covered in Section 2, and the distance correlation t-test

of independence is derived in Section 3. Empirical results are presented in Section 4, followed by a Summary in Section 5.
Proofs of statements are given in Appendix.

2. Definitions and motivation

For completeness, in Sections 2.1 and 2.2we restate some important definitions and properties of distance covariance and
distance correlation thatwere first introduced in [19];modified distance correlation is introduced and defined in Section 2.4.

2.1. Distance covariance and distance correlation coefficients

For all distributions with finite first moments, distance correlation R generalizes the idea of correlation, such that:

i. R(X, Y) is defined for X and Y in arbitrary dimensions.
ii. R(X, Y) = 0 if and only if X and Y are independent.
iii. 0 ≤ R(X, Y) ≤ 1.

Distance covariance (dCov) is defined in [19,17], as a measure of the distance between the joint characteristic function
φX,Y of X and Y and the product φX φY of the marginal characteristic functions of X and Y. In this paper, we focus on the
definition corresponding to Euclidean distance, although our results are valid for all powers of Euclidean distance in (0, 2).
The distance covariance coefficient (for the case of Euclidean distance) is defined by

V2(X, Y) = ∥φX,Y (t, s) − φX (t)φY (s)∥
2
w

=


Rp+q

|φX,Y (t, s) − φX (t)φY (s)|
2w(t, s) dt ds, (2.1)

where

w(t, s) = (cp cq |t|1+p
p |s|1+q

q )−1, (2.2)

cd =
π

1+d
2

Γ
 1+d

2

 ,
and Γ (·) is the complete gamma function. This definition is analogous to classical covariance, but with the important
property that V2(X, Y) = 0 if and only if X and Y are independent.

A standardized version of V(X, Y) is distance correlation, defined as the non-negative square root of

R2(X, Y) =
V2(X, Y)
V2(X)V2(Y)

. (2.3)

2.2. Distance covariance and distance correlation statistics

The statistics corresponding to the population distance covariance and distance correlation are defined by substituting
the empirical characteristic functions in (2.1). Although numerical evaluation of the integral (2.4) appears to be difficult, in
fact it can be shown that the resulting statistics are given by an explicit computing formula (2.5) derived in Székely, et al.
[19, Theorem1]. Ifφn

X
, φn

Y
, andφn

X,Y
are the empirical characteristic functions ofX, Y, and (X, Y), respectively, then the sample

distance covariance of X, Y is defined by setting

V2
n (X, Y) = ∥φn

X,Y
(t, s) − φn

X
(t)φn

Y
(s)∥2

w, (2.4)

where

∥φn
X,Y

(t, s) − φn
X
(t)φn

Y
(s)∥2

w =


Rp+q

|φn
X,Y

(t, s) − φn
X
(t)φn

Y
(s)|2w(t, s) dt ds,

and the weight function w(t, s) is defined by (2.2). Our original definition [19,17] of the sample distance covariance is the
non-negative square root of

dCov2n(X, Y) =
1
n2

n
i,j

Ai,jBi,j, (2.5)
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where

Ai,j = |Xi − Xj| −
1
n

n
k=1

|Xk − Xj| −
1
n

n
l=1

|Xi − Xl| +
1
n2

n
k,l=1

|Xk − Xl|,

Bi,j = |Yi − Yj| −
1
n

n
k=1

|Yk − Yj| −
1
n

n
l=1

|Yi − Yl| +
1
n2

n
k,l=1

|Yk − Yl|,

i, j = 1, . . . , n, and | · | denotes the Euclidean norm. Thus

Ai,j = aij − āi − āj + ā; Bi,j = bij − b̄i − b̄j + b̄,

for i, j = 1, . . . , n. Theorem 1 [19] establishes the identity V2
n (X, Y) = dCov2n(X, Y). Sample distance correlation is defined

by

R2
n(X, Y) =

V2
n (X, Y)

V2
n (X,X) · V2

n (Y, Y)
. (2.6)

For independent random vectors X and Y with finite first moments (in fixed dimensions), nV2
n (X, Y) converges in

distribution to a quadratic form of centered Gaussian random variables
∞
i=1

λiZ2
i ,

as sample size n tends to infinity [19, Theorem 5], where Zi are iid standard normal random variables and λi are positive
constants that depend on the distributions of X and Y.

In this work, we prove a corresponding limit theorem as dimension tends to infinity; this limit is obtained for a related,
modified version of distance correlation defined in Section 2.4.

2.3. Motivation

First, let us see why a modified version of sample distance covariance and distance correlation is advantageous in high
dimension. We begin by observing that, although dCor characterizes independence in arbitrary dimension, the numerical
value of the (original) corresponding statistic can be difficult to interpret in high dimension without a formal test.

Recall that, α = E|X − X′
| and β = E|Y − Y′

|. It is easy to see that for any fixed n,

E[Ai,j] =


α

n
, i ≠ j;

α

n
− α, i = j;

E[Bi,j] =


β

n
, i ≠ j;

β

n
− β, i = j.

It can be shown (see Appendix A.1) that for an important class of distributions including independent standardmultivariate
normal X and Y, for fixed n each of the statistics

V2
n (X, Y)

αβ
,

V2
n (X,X)

α2
,

V2
n (Y, Y)

β2

converges to (n − 1)/n2 as dimensions p, q tend to infinity. Thus, for sample distance correlation, it follows that

R2
n(X, Y) =

V2
n (X, Y)

V2
n (X,X) · V2

n (Y, Y)
−−−−→
p,q→∞

1, (2.7)

even though X and Y are independent.
Here we see that, although distance correlation characterizes independence, and the dCov test of independence is valid

for X, Y in arbitrary dimensions, interpretation of the size of the sample distance correlation coefficient without a formal
test becomes more difficult for X and Y in high dimensions. See Example 1 for an illustration of how the corrected statistics
and t-test address this issue.

We propose a modified distance covariance statistic such that under independence, a transformation of the correspond-
ing distance correlation statistic converges (as p, q → ∞) to a Student t distribution, which is approximately normal for
p, q > n ≥ 10, providing an easily interpretable sample coefficient.
Numerical illustration. Table 1 illustrates the original and modified distance correlation statistics with a numerical example.
We generated independent samples with iid Uniform(0,1) coordinates and computed R2

n , modified distance correlation R∗
n

(Section 2.4), and the corresponding t and Z statistics (Section 3). Each row of the table reports values for one pair of samples
for dimension p = q and n = 30. The numerical value ofR2

n approaches 1 as dimension increases, even under independence.
Without our dCov test, numerical interpretation of original R2

n is difficult. In contrast, we see that themodified statistics R∗
n

in the table are centered close to zero and stable with respect to dimension.
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2.4. Modified distance covariance statistics

Amodified version of the statistic V2
n (X, Y) that avoids (2.7) can be defined starting with corrected Ai,j and Bi,j. Note that

in the original formulation, E[Ai,j] = α/n if i ≠ j and E[Ai,i] = α/n − α. Thus in high dimension the difference α between
the diagonal and off-diagonal entries of A (and B) can be large. The modified versions A∗

i,j, B
∗

i,j of Ai,j and Bi,j are defined by

A∗

i,j =


n

n − 1


Ai,j −

aij
n


, i ≠ j;

n
n − 1

(āi − ā), i = j,
B∗

i,j =


n

n − 1


Bi,j −

bij
n


, i ≠ j;

n
n − 1

(b̄i − b̄), i = j.

One can easily see that E[A∗

i,j] = E[B∗

i,j] = 0 for all i, j.
We now define modified distance covariance and modified distance correlation statistics using the corrected terms A∗

i,j
and B∗

i,j. Let

U∗

n(X, Y) =


i≠j

A∗

i,jB
∗

i,j −
2

n − 2

n
i=1

A∗

i,iB
∗

i,i. (2.8)

Definition 1. The modified distance covariance statistic is

V∗

n (X, Y) =
U∗

n(X, Y)

n(n − 3)
=

1
n(n − 3)


n

i,j=1

A∗

i,jB
∗

i,j −
n

n − 2

n
i=1

A∗

i,iB
∗

i,i


. (2.9)

It can be shown that E[U∗
n(X, Y)] = n(n − 3)V2(X, Y) (see Proposition 2 below), therefore V∗

n (X, Y) is an unbiased
estimator of the squared population distance covariance.

In Lemma 3 it is proved that U∗
n(X,X) ≥ 0 and U∗

n(Y, Y) ≥ 0, so that


V∗
n (X,X)V∗

n (Y, Y) is always a real number for
n ≥ 3.

Definition 2. The modified distance correlation statistic is

R∗

n(X, Y) =
V∗

n (X, Y)
V∗

n (X,X)V∗
n (Y, Y)

, (2.10)

if V∗
n (X,X)V∗

n (Y, Y) > 0, and otherwise R∗
n(X, Y) = 0.

While the original Rn statistic is between 0 and 1, R∗
n can take negative values; the Cauchy–Schwartz inequality implies

that |R∗
n| ≤ 1. Later we will see that R∗

n converges to R2 stochastically. In the next section, we derive the limit distribution
of R∗

n .
In the following, we exclude |R∗

n| = 1, corresponding to the case when the X sample is a linear transformation of the Y
sample.1

3. The t-test for independence in high dimension

Our main result is that as p, q tend to infinity, under the independence hypothesis,

Tn =
√

ν − 1 ·
R∗

n
1 − (R∗

n)
2

converges in distribution to Student t with ν − 1 degrees of freedom, where ν =
n(n−3)

2 . Thus for n ≥ 10 this limit is
approximately standard normal. The t-test of independence is unbiased for every n ≥ 4 and any significance level. As a
corollary to our main result Theorem 1, it follows that (R∗

n + 1)/2 has a symmetric beta distribution. We also obtain as a
corollary to Theorem 1 that

√
ν − 1R∗

n

is asymptotically standard normal.
Our procedure for testing independence applies distances |Xi − Xj|, and E|Xi|

2 < ∞, so without loss of generality we
can assume that E[Xi] = 0.

1 To be more precise, |R∗
n | = 1 implies that, the linear spaces spanned by the sample observations X and Y, respectively, have the same dimension; thus

we can represent the two samples in the same linear space, and in this common space the Y sample is a linear function of the X sample.
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Table 1
Numerical illustration (n = 30) of distance correlation Rn and modified distance
correlation R∗

n statistics in high dimension. The modified statistic R∗
n is based on an

unbiased estimator of the squared population distance covariance. Each row of the table
reports statistics for one sample (X, Y), where X and Y each have iid standard uniform
coordinates. The t statistic Tn and Z statistic introduced in Section 3 are also reported.

p, q Rn R∗
n Tn Z

1 0.4302668 0.0248998 0.5006350 0.5004797
2 0.6443883 0.1181823 2.3921989 2.3754341
4 0.7103136 −0.0098916 −0.1988283 −0.1988186
8 0.8373288 0.0367129 0.7384188 0.7379210

16 0.8922197 −0.0675606 −1.3610616 −1.3579518
32 0.9428649 −0.0768243 −1.5487268 −1.5441497
64 0.9702281 −0.1110683 −2.2463438 −2.2324451

128 0.9864912 −0.0016547 −0.0332595 −0.0332595
256 0.9931836 0.0517415 1.0413867 1.0399917
512 0.9963244 −0.0158947 −0.3195190 −0.3194787

1024 0.9983706 0.0542560 1.0921411 1.0905325
2048 0.9991116 −0.0076502 −0.1537715 −0.1537670
4096 0.9995349 −0.0863294 −1.7417010 −1.7351986
8192 0.9997596 −0.0754827 −1.5215235 −1.5171827

16384 0.9999032 0.0277193 0.5573647 0.5571505

For simplicity we suppose in the main proof that random vectors X and Y have iid coordinates with finite variance. It
will be clear from the proofs that much weaker conditions are also sufficient, because what we really need is that for partial
sums of squared coordinates certain limit theorems, like the Weak Law of Large Numbers and Central Limit Theorem (CLT)
hold. Corollary 2 below deals with the case when the coordinates are exchangeable. For times series even this condition is
too strong. For typical strongly stationary time series we can apply Proposition 3.

The following related statistics will be used in deriving our main result. Let

Wn(X, Y) =
2n − 1

n3

n
i,j=1

aijbij − āb̄ +
2

n2 − 2n

n
i=1

(āi − ā)(b̄i − b̄), (3.1)

and define

Un(X, Y)
def
= V2

n (X, Y) −
Wn(X, Y)

n
. (3.2)

Lemma 1. The following claims hold:

i. For all X and all n ≥ 3, Wn(X,X) ≥ 0.
ii. For all X and all n ≥ 3, Un(X,X) ≥ 0.
iii. If E|Xi|

2 < ∞, E|Yi|
2 < ∞, i = 1, 2, then for any fixed p and q,

Wn(X, Y)
P

−−−→
n→∞

2E|X − X′
||Y − Y′

| − E|X − X′
| E|Y − Y′

|.

iv. If E|X|
2 < ∞, E|Y|

2 < ∞ and X and Y are independent, then for any fixed p and q,

Wn(X, Y)
P

−−−→
n→∞

αβ.

Proof of Lemma 1 is given in Appendix A.2.

Remark 1. Formula (3.2) and Lemma 1 (iii) imply that

V2
n (X, Y) = Un(X, Y) + oP(1), n → ∞,

where oP(1) is a term that converges to zero in probability as n → ∞. ThereforeUn(X, Y) really can be viewed as amodified
distance covariance and Un(X,X) can be viewed as a modified distance variance.

Lemma 2. The following identity holds:

n2Un(X, Y) =
(n − 1)2

n2
· U∗

n(X, Y). (3.3)

Proof of Lemma 2 is given in Appendix A.3.
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Thus the following decomposition holds for all n ≥ 3:

n2V2
n (X,X) =


1 −

1
n

2

· U∗

n(X,X) + nWn(X,X),

where U∗
n(X,X) ≥ 0, Wn(X,X) ≥ 0.

Recall that X′ denotes an independent copy of X. In what follows, (X, Y), (X′, Y′), and (X′′, Y′′) are independent and
identically distributed.

Proposition 1. If X and Y have finite second moments, then
i.

V2(X, Y) = E|X − X′
∥Y − Y′

| + E|X − X′
|E|Y − Y′

| − 2E|X − X′
∥Y − Y′′

|.

ii. If X and Y are independent, then

E[V2
n (X, Y)] =

n − 1
n2


E|X − X′

|E|Y − Y′
|

.

iii. If X and Y are independent, then E[V∗
n (X, Y)] = 0.

See Appendix A.6 for proof of Proposition 1.

Proposition 2. For all n, p, q, themodified distance covariance statistic V∗
n (X, Y) is an unbiased estimator of the squared distance

covariance V2(X, Y), and

E[V2
n (X, Y)] =

(n − 1)
n3


(n − 2)2V2(X, Y) + 2(n − 1)µ − (n − 2)αβ


,

E[Wn(X, Y)] =
n − 1
n2

[(2n − 1)µ − (n − 3)αβ − 2δ] ,

E[Un(X, Y)] =
(n − 1)2(n − 3)

n3
V2(X, Y),

E[U∗

n(X, Y)] =
n4

(n − 1)2
E[Un(X, Y)] = n(n − 3)V2(X, Y),

where µ = E|X − X′
||Y − Y′

|, α = E|X − X′
|, β = E|Y − Y′

|, and δ = E|X − X′
||Y − Y′′

|.

See Appendix A.7 for proof of Proposition 2.

Lemma 3. If the coordinates of X and Y are iid, 0 < E|X|
2 < ∞, 0 < E|Y|

2 < ∞, and X and Y are independent, then for fixed
n there exist independent random variables Ωi,j, Ψi,j, such that

(i) U∗

n(X,X) −−−→
p→∞


i≠j

Ω2
i,j

D
= 2σ 2

X χ2
ν , (3.4)

(ii) U∗

n(Y, Y) −−−→
q→∞


i≠j

Ψ 2
i,j

D
= 2σ 2

Y χ2
ν , (3.5)

(iii) U∗

n(X, Y) −−−−→
p,q→∞


i≠j

Ωi,jΨi,j, (3.6)

where ν =
n(n−3)

2 , χ2
ν denotes the distribution of a chisquare random variable with ν degrees of freedom,

σ 2
X =

E⟨X,X′
⟩
2

2E|X|2
, σ 2

Y =
E⟨Y, Y′

⟩
2

2E|Y|2
,

Ωij are iid Normal (0, σ 2
X ), and Ψij are iid Normal (0, σ 2

Y ).

See Appendix A.4 for the proof of Lemma 3. The variables Ωi,j and Ψi,j are defined in the proof by Eqs. (A.11) and (A.12).
For the corresponding correlation coefficient we have

R∗

n =
U∗

n(X, Y)
U∗

n(X,X)U∗
n(Y, Y)

−−−−→
p,q→∞


i≠j

Ωi,jΨi,j
i≠j

Ω2
i,j

i≠j

Ψ 2
i,j

.

Define the test statistic

Tn =
√

ν − 1 ·
R∗

n
1 − (R∗

n)
2
. (3.7)
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Theorem 1. If the coordinates of X and Y are iid with positive finite variance, for fixed sample size n ≥ 4 the following hold.
(i) Under independence of X and Y,

P{Tn < t} −−−−→
p,q→∞

P{tν−1 < t},

where Tn is the statistic (3.7) and ν =
n(n−3)

2 .
(ii) Let cα = t−1

ν−1(1 − α) denote the (1 − α) quantile of a Student t distribution with ν − 1 degrees of freedom. The t-test of
independence at significance level α that rejects the independence hypothesis whenever Tn > cα is unbiased.

The t-test of independence rejects the null hypothesis at level α if Tn > cα , where cα = t−1
ν−1(1−α) is the (1−α) quantile

of a Student t distribution with ν − 1 degrees of freedom. By Theorem 1(i), the test has level α. See Appendix A.8 for the
proof of Theorem 1.

We also obtain a Z-test of independence in high dimension:

Corollary 1. Under independence of X and Y, if the coordinates of X and Y are iid with positive finite variance, then the limit
distribution of (1 + R∗

n)/2 is a symmetric beta distribution with shape parameter (ν − 1)/2. It follows that, in high dimension
the large sample distribution of

√
ν − 1R∗

n is approximately standard normal.

Corollary 1 follows from Theorem 1 and well known distributional results relating Student t , beta, and normal
distributions.

Corollary 2. Theorem 1 and Corollary 1 hold for random vectors with exchangeable coordinates and finite variance.

Infinite sequences of random variables are known to be conditionally iid with respect to the sigma algebra of symmetric
events (de Finetti [4]). If the series is finite, one can refer to Kerns and Székely [7] and Diaconis and Freedman [5]. Further,
if we assume that the variance of each of the variables is finite, then in the Corollary we can assume that conditionally
with respect to the sigma algebra of symmetric events, the CLT holds. The only factor that might change depending on the
condition is the variance of the normal limit. However, in R∗

n this variance factor cancels, hence R∗
n (and therefore Tn) has

the same distribution with or without this condition.

Example 1. To illustrate the application of the t-test of independence in Theorem 1, we revisit an example of the type
discussed in Section 2.3. Recall that, in Appendix A.1 it was shown that as dimension tends to infinity, the (uncorrected)
distance correlation approaches 1. Let us now apply the corrected statistics and t-test for independent standardmultivariate
normal X ∈ R30, Y ∈ R30, with sample size n = 30. The result of our t-test, coded in R, is summarized below.

> highdim.ttest(X, Y)

dcor t-test of independence

data: X and Y
T = 0.8774, p-value = 0.1904
sample estimates:

R*
0.0436113

Here the corrected statistic is R∗
n = 0.0436 and Tn = 0.8774, with 404 degrees of freedom, which is easily interpreted as

non-significant without reference to a table or software.
In a simulation of 1000 tests, the Type 1 error ratewas 0.100 at 10% significance, and 0.046 at 5% significance. A probability

histogram of the replicates is shown in Fig. 1(a).
We repeated the example with a slight modification so that X and Y are linearly dependent with Y = X + ε, where ε is

Gaussian with mean zero and covariance 2I . In this simulation the null hypothesis is rejected for all 1000 samples at level
0.05. The histogram of the simulated test statistics is shown in Fig. 1(b).

4. Application to time series

In this section, we discuss the application of the distance correlation t statistic to test independence of two time series.
Let {X(t), Y (t)} be a strongly stationary times series where for simplicity both X(t) and Y (t) are real valued. Strong

stationarity guarantees that if we take a sample of p consecutive observations from {X(t), Y (t)}, then their joint distribution
and thus their dependence structure do not depend on the starting point. On the other hand, strong stationarity is not
enough to guarantee CLT for partial sums, not even conditionally with respect to a sigma algebra. (The extra condition of
m-dependence of {X(t), Y (t)} would be enough by a classical theorem of Hoeffding, but this condition is too strong.)

In order to apply our t-test; we need the conditional validity of CLT, conditioned on a sigma algebra. Then the variance
of the normal limit becomes a random variable and the possible limits are scale mixtures of normals. Many of these
distributions are heavy tailed, which is important in financial applications.

Let us summarize briefly, conditions for CLT that are relevant in this context.
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Fig. 1. Simulated sampling distribution of Tn in Example 1 (n = 30, p = q = 30) for standard multivariate normal X, Y (a) under independence, with
limiting t density, and (b) under linear dependence.

i. If our observations are exchangeable then de Finetti [4] (or in the finite case Kerns and Székely [7]) applies and if the
(conditional) variances are finite then the conditional CLT follows. See also Diaconis and Freedman [5].

ii. For strongly stationary sequences we can refer to Ibragimov’s conjecture from the 1960’s, and to Peligrad [11] (1985) for
a proof of a somewhat weaker claim. (For strongly stationary sequences with finite variance such that Var(Sn) tends to
infinity, the CLT does not always follow, not even the conditional CLT; thus in general some extra conditions are needed.)

iii. Stein type of dependence was introduced by Charles Stein [16], who first obtained in 1972 a bound between the
distribution of a sum of an m-dependent sequence of random variables and a standard normal distribution in the
Kolmogorov (uniform) metric, and hence proved not only a central limit theorem, but also bounds on the rates of
convergence for the given metric.

In order to apply our t-test we also need iid observations at least conditionally with respect to a sigma algebra. Typically,
for time series, only one realization of each series is available for analysis. A random sample of iid observations is obtained
(at least conditionally iid) for analysis by the application of the following proposition.

Proposition 3. Fix p < N and let T1, T2, . . . , Tn be integers in {1, . . . ,N − p + 1}. Define Xj to be the subsequence of length p
starting with X(Tj), and similarly define Yj; that is,

Xj = {X(Tj), X(Tj + 1), . . . , X(Tj + p − 1)}, j = 1, . . . , n,
Yj = {Y (Tj), Y (Tj + 1), . . . , Y (Tj + p − 1)}, j = 1, . . . , n.

If X ∈ Rd, then X(Tj) ∈ Rd and Xj is a vector in Rpd; that is, Xj = {X(Tj)1, . . . , X(Tj)d, X(Tj + 1)1, . . . , X(Tj + 1)d, . . . , X(Tj +
p − 1)d}. If Tj are drawn at random with equal probability from {1, . . . ,N − p + 1}, these vectors {Xj} are exchangeable; thus,
conditional with respect to the sigma algebra of symmetric events, they are iid observations. Similarly, the vectors {Yj} are also
conditionally iid, and thus if the variances are finite, we can apply the t-test of independence conditioned on the sigma algebra of
symmetric events. Hence the t-test of independence is applicable unconditionally.

Corollary 2 and Proposition 3 imply that conditional with respect to a sigma algebra (to the sigma algebra of symmetric
events), these vectors are iid with finite variances. Thus, we can apply the t-test of independence conditioned on this sigma
algebra. The variance here is random (thus we can have heavy tailed distributions) but in the formula for t the variance
cancels hence the t-test of independence is applicable unconditionally.

In summary, our method is applicable for financial time series if we suppose that the differences of the logarithms of our
observations (or other suitable transformation) form a strongly stationary sequence whose partial sums conditionally with
respect to a sigma algebra tend to normal.

The implementation of the t-test of independence is straightforward, and all empirical results presented below were
performed using R software [12]. See the energy package for R [14] for an implementation of our methods available under
general public license.

Example 2 (AR(1) Series). To illustrate the t-test of independence implementation using the randomization method of
Proposition 3, we applied the test to pairs of AR(1) (autoregressive model order 1) time series. The AR(1) data with total
length N = 2500 was generated from the model Xt = AXt−1 + et , where Xt is a vector of length 2, A is a matrix of
autoregressive coefficients, and et ∈ R2 is a noise vector with mean 0.2 The bivariate AR(1) model parameters used in

2 Here for simplicity et is Gaussian, but the method is applicable for non-normal error distributions as well.
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Fig. 2. Proportion of significant tests of independence on dependent AR(1) series. The AR parameter is 0.25 and error correlation is r .

this simulation are

A =


0.25 0
0 0.25


; Cov(e) =


1 r
r 1


,

and the length of subsequences is p = 100. The estimates of power for varying r are shown in Fig. 2, with error bars at ±2
standard errors. These estimates are computed as the proportion of significant t-tests of independence in 2000 replications
(significance level 10%). Fig. 2 summarizes the simulation results for two cases: sample size n = 25 and n = 50. (The length
N = 2500 for this example was chosen to match approximately the length of the DJIA data in Example 4). One can observe
that, the empirical power of the test is higher for larger sample size.

Example 3 (Assessing Type 1 Error Rate). To assess the Type 1 error rate of this procedure, we compared two white noise
series using the same parameters N = 2520, p = 100 and n = 50, as in the DJIA series in Example 4. (Here the white
noise is Gaussian; the same experiment with symmetric uniform noise had similar results, not shown.) The results of 2000
Monte Carlo replications are summarized in Fig. 3(a) and (b), with error bars at ±2 standard errors. The results of the
simulation indicate that the t-tests on the simulated data have an achieved significance level that is controlled at the nominal
significance level of the test, within ±2 standard errors, for all cases except when total number sampled np is large relative
to N . As part of the same simulation, we also computed estimates of Type 1 error for the Z-test based on

√
ν − 1R∗

n and
found that, the results were essentially identical to those summarized in Fig. 3(a) and (b). We have also repeated the entire
study testing individual stocks of the DJIA vs white noise for independence, and the results were essentially the same as
those reported in Fig. 3(a) and (b).

Example 4 (Dow Jones Industrial Index). The time series data for this example are the daily returns of the 30 stocks of the
Dow Jones Industrial Index (DJIA), from August 30, 1993 through August 29, 2003. In this example, pairs of stocks are tested
for independence. The 30 stocks correspond to the composition of the index on September 1, 2003. The DJIA closing prices
data is provided by Daniyarov [3] with the source attributed to www.nasdaq.com. Each series is identified by a stock ticker
symbol; see the VaR package [3] for the corresponding list of company names. The time series analyzed are log(returns);
that is, the sequence of differences of the logarithms of prices. A plot of log(returns) (not shown) suggests that the data
approximately satisfy the strong stationarity condition.

The data has 2521 daily prices for each of the 30 stocks, so there are 2520 values of log(returns). For this example we
set p = 100 and n = 50 (see Proposition 3). Thus the t statistics (Tn) here are approximately standard normal under the
independence hypothesis, and a statistic greater than 1.645 is significant at the 5% level, indicating dependence. Most of the
pairs of stocks had significant t statistics in this example. The statistics for 20 pairs of stocks are shown in Table 2. Significant
values of Tn are in the upper tail of the corresponding Student t distribution; large positive values of Tn are significant.

Tabular description of the complete set of 435 statistics is less informative than a graphical summary, so we have utilized
a dendrogram to summarize the 435 R∗ statistics in Fig. 4. To obtain this cluster dendrogram, we computed dissimilarities
between pairs of stocks as 1 − C ′

= 1 − (R∗
+ 1)/2. Recall that under independence of stock returns, C ′ has a symmetric

beta distribution with shape parameter (ν − 1)/2. With this dissimilarity matrix, we applied hierarchical cluster analysis
using complete linkage. In Fig. 4, the clusters that are merged at a lower height are more similar (dependent) than clusters

http://www.nasdaq.com
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Fig. 3. Empirical Type 1 error rates: proportion of significant tests of independence on white noise series, using the same parameters as applied in the
DJIA examples. In (a) the length (dimension) of subsequence p is on the horizontal axis while n = 50 and N = 2520 are fixed. In (b) the total length of the
observed series N is on the horizontal axis while n = 50 and p = 100 are fixed.

that merge at greater height. One can observe, for example, that the financial stocks (AXP, C, JPM) cluster together, and the
technology stocks (HPC, IBM, INTC, MSFT) also cluster together, but these two clusters are well separated and not merged
until the second to last step when there are three clusters. One can also observe that, five manufacturers (AA, CAT, DD,
GM, IP) cluster together, as do two retail industry (HD, WMT), two drug (JNJ, MRK), and two telecommunications stocks
(SBC, T).

Our examples illustrate our theoretical results derived for high dimensional problems. The empirical results above
demonstrate that the t-test of independence (or the corresponding Z-test of independence) can be applied to stationary
time series using the methodology of Proposition 3.

5. Summary

The problem of testing independence between random vectors in high dimension is increasingly important as more and
more applications arise that do not admit classical analysis. Distance based procedures have the advantage of applicability
in arbitrarily high dimension, and distance correlation characterizes independence. In this paper, we addressed the issue
that even though original dCov provides a consistent test of independence in arbitrary dimension, nevertheless, the sample
dCor coefficient approaches 1 as dimension tends to infinity for fixed sample sizes under independence, making numerical
interpretation of the dCor statistic difficult. We have proposed a modified distance correlation statistic and transformation
of the modified high dimensional dCor to a t statistic.

We proved that under independence, the t-transformation of modified dCor converges in distribution to Student t as
dimension of the random vectors approaches infinity, under standard conditions on the coordinates.3 This deep theoretical
result leads to a quite practical solution to the problem of testing and measuring dependence in high dimensions. Like
the original dCor, our modified statistic for high dimension can be evaluated by an explicit computing formula in terms
of averages of pairwise Euclidean distances. Our t (and Z) limit theorems provide a test and scalar statistic that is easy
to interpret in high dimensional problems, while retaining the good statistical properties of the distance covariance
test.

An important application, testing independence of time series, is developed and implemented. This methodology was
illustrated for simulated autoregressive time series, and the closing prices of stocks in the Dow Jones Industrials Index.
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Table 2
Selected pairs of stocks of the Dow Jones Industrials Index with largest t-statistics
indicating that log(returns) are highly dependent, are shown on the right. Examples
of pairs of stocks in the index with non-significant Tn statistics are shown on the left.

X Y Tn p-value X Y Tn p-value

INTC JNJ −1.45 0.93 DD IP 11.83 0.00
INTC PG −1.42 0.92 AA HON 11.97 0.00
IBM MCD −0.42 0.66 DIS GE 12.07 0.00
GM T −0.39 0.65 GE JPM 13.42 0.00
EK MO −0.21 0.58 AXP GE 13.51 0.00
IBM IP −0.00 0.50 HON UTX 13.82 0.00
GM JNJ 0.09 0.46 AXP JPM 14.18 0.00
IBM JNJ 0.19 0.42 AXP C 14.21 0.00
MO WMT 0.25 0.40 INTC MSFT 15.22 0.00
DD T 0.26 0.40 C JPM 16.16 0.00

Fig. 4. Cluster dendrogram representing the dependence between daily returns of the 30 stocks of the Dow Jones Industrials Index, 1993–2003, as
measured by the modified distance correlation statistic for independence.

Appendix. Proofs of statements

A.1. On the bias of distance correlation

In this section, we show that for important special cases including standard multivariate normal X and Y, distance
correlation of vectors X, Y can approach one as dimensions p and q tend to infinity even though X and Y are independent.

The following algebraic identity for the distance covariance statistic was established in [19].

V2
n (X, Y) =

1
n2

n
i,j=1

AijBij =
1
n2

n
i,j=1

aijbij + ab −
2
n3

n
i,j,k=1

aijbik. (A.1)

Hence,

V2
n (X, Y)

αβ
=

1
n2

n
i,j=1

aijbij
αβ

+
1
n4

n
i,j=1

aij
α

n
k,ℓ=1

bkℓ
β

−
2
n3

n
i,j,k=1

aij
α

bik
β

, (A.2)

and

V2
n (X)

α2
=

1
n2

n
i,j=1

a2ij
α2

+


1
n2

n
i,j=1

aij
α

2

−
2
n3

n
i,j,k=1

aijaik
α2

. (A.3)

Thus, in (A.2) and (A.3), each nonzero term aij or bij, i ≠ j, is divided by its expected value α = E|X − X′
| or β = E|Y − Y′

|,
respectively.
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Suppose that, X ∈ Rp and Y ∈ Rq are independent, the coordinates of X and Y are iid, and the second moments of X and
Y exist. Then Xi1, Xi2, . . . , Xip are iid observations from the distribution of Xi1, and

1
p

p
t=1

(X1t − X2t)
2

=
1
p

p
t=1

X2
1t − X

2
1 +

1
p

p
t=1

X2
2t − X

2
2 −

2
p

p
t=1

X1tX2t + 2X1X2 + X
2
1 − 2X1X2 + X

2
2

= Var(X11) +Var(X21) − 2Cov(X11, X21) + (X1 − X2)
2,

where

X i =
1
p

p
t=1

Xit , Var(Xi1) =
1
p

p
t=1

X2
it − X

2
i , i = 1, 2,

and Cov(X11, X21) =
1
p

p
t=1

(X1tX2t) − X1X2.

Hence 1
p

p
t=1(X1t − X2t)

2 converges to 2θ2 as p tends to infinity, where θ2
= Var(X11) < ∞. It follows that a12/

√
p

and α/
√
p each converges almost surely to

√
2θ as p tends to infinity, and limp→∞ aij/α = 1, i ≠ j. Similarly for

i ≠ j, limq→∞ bij/
√
q =

√
2ζ , where ζ 2

= Var(Y11) < ∞, and limq→∞ bij/β = 1 with probability one. Therefore

lim
p,q→∞

1
n2

n
i,j=1

aijbij
αβ

=
n − 1
n

,

lim
p,q→∞


1
n4

n
i,j=1

aij
α

n
k,ℓ=1

bkℓ
β


=

(n − 1)2

n2
,

and

lim
p,q→∞

2
n3

n
i,j,k=1

aijbik
αβ

=
2n(n − 1)

n3
+

2n(n − 1)(n − 2)
n3

=
2(n − 1)2

n2
.

Substituting these limits in (A.2) and simplifying yields

lim
p,q→∞

V2
n (X, Y)

αβ
=

n − 1
n2

.

By similar steps, substituting limits in (A.3) and simplifying, we obtain

lim
p→∞

V2
n (X)

α2
=

n − 1
n2

, lim
q→∞

V2
n (Y)

β2
=

n − 1
n2

.

Hence for this class of independent random vectors each of the statistics

V2
n (X, Y)

αβ
,

V2
n (X)

α2
,

V2
n (Y)

β2

converges almost surely to (n − 1)/n2 as dimensions p, q tend to infinity, and consequently for each fixed n the distance
correlation R(X, Y) has limit one as p, q tend to infinity.

A.2. Proof of Lemma 1

Proof. (i) Observe that

Wn(X,X) ≥
1
n2

n
i,j=1

|Xi − Xj|
2
− ā2 ≥ 0,

where the last inequality is the Cauchy–Bunyakovski inequality (also known as the Cauchy–Schwartz inequality). See the
end of the proof of Lemma 3 for a proof of statement (ii). Statement (iii) follows from the Law of Large Numbers (LLN) for
U-statistics, and (iv) follows from (iii) under independence. �
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A.3. Proof of Lemma 2

Lemma 2 establishes the identity:

n2Un(X, Y) =
(n − 1)2

n2
· U∗

n(X, Y). (A.4)

Proof. Denote

u =
2

n − 2

n
i=1

(āi − ā)(b̄i − b̄).

Then

(n − 1)2

n2
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
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·


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n

2
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i,jB
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i,i
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1
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−

2
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Now

−Ai,i = 2āi − ā = 2(āi − ā) + ā, −Bi,i = 2b̄i − b̄ = 2(b̄i − b̄) + b̄,

thus
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n
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On the other hand,
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and similarly,
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Thus the right hand side (A.5) equals
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n (X, Y) − nWn(X, Y) = n2Un. �
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A.4. Proof of Lemma 3

For the remaining proofs, we introduce the following notation.
For p-dimensional samples Xi = (Xi1, . . . , Xip), i = 1, . . . , n, define

τ = 2E|Xi|
2

= 2
p

k=1

E(X2
ik),

Ti(p) =
|Xi|

2
− E|Xi|

2

2
√

τ
=

1
2
√

τ

p
k=1


(Xik)

2
− E(X2

ik)

, i = 1, . . . , n,

Ci,j(p) =


⟨Xi,Xj⟩

√
τ

=
1

√
τ

p
k=1

XikXjk, i ≠ j;

0, i = j,

where ⟨Xi,Xj⟩ is the dot product in Rp. We denote the weak limits, as p → ∞ of Ti(p) and Ci,j(p), by Ti and Ci,j, respectively.
Note that, the weak limits Ci,j are Gaussian.

Proof. Lemma 3 (i) asserts that if E|Xi|
2 < ∞, then there exist Ωi,j and σX > 0 such that for a fixed n

U∗

n(X,X) −−−→
p→∞


i≠j

Ω2
i,j

D
= 2σ 2

X χ2
ν ,

where ν =
n(n−3)

2 and χ2
ν denotes the distribution of a chisquare random variable with ν degrees of freedom.

Observe that, in distribution, the Taylor expansion of the square root implies that we have the limit

Si,j(p) = |Xi − Xj| − E|Xi − Xj| −−−→
p→∞

Si,j = Ti + Tj − Ci,j. (A.6)

To see this, observe that by Taylor’s Theorem we have
|Xi − Xj|

2 =
√

τ


1 +

|Xi − Xj|
2

τ
− 1

=
√

τ


1 +

1
2


|Xi − Xj|

2

τ
− 1


+ op(1)


,

and

E


|Xi − Xj|
2 =

√
τE


1 +

|Xi − Xj|
2

τ
− 1

=
√

τ


1 +

1
2


E|Xi − Xj|

2

τ
− 1


+ op(1)


Thus

|Xi − Xj| − E|Xi − Xj|
√

τ
=

|Xi − Xj|
2
− E|Xi − Xj|

2

2τ
+ oP(1).

Hence (A.6) is true.
Using (A.6) it can be shown that (in the limit, as p → ∞)

U∗

n(X,X) =


i≠j

[Ci,j − C i − C j + C]
2
+ λ

n
i=1

(C i − C)2, (A.7)

where λ = −2/(n − 2), and

C i =
1

n − 1

n
j=1

Ci,j, C =
1

n2 − n

n
i,j=1

Ci,j =
1
n

n
i=1

C i.

(The identity (A.7) is derived separately below in Appendix A.5.) For finite p, replace C by S(p), with corresponding subscripts
and bars, throughout.
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Let us prove now that (A.7) is non-negative (this also completes the proof of Lemma 1). Indeed, for any constant γ

Q (γ )
def
=


i≠j

[(Ci,j − C) − γ (C i − C) − γ (C j − C)]2

=


i≠j

[(Ci,j − C)2 + γ 2(C i − C)2 + γ 2(C j − C)2

− 2γ (Ci,j − C)(C i − C) − 2γ (Ci,j − C)(C j − C) + 2γ 2(C i − C)(C j − C)]

=


i≠j

(Ci,j − C)2 −

(n − 1)(4γ − 2γ 2) + 2γ 2 n

i=1

(C i − C)2.

So the right hand side in (A.7) equals

Q (1) + λ

n
i=1

(C i − C)2 =


i≠j

(Ci,j − C)2 −


2n +

2
n − 2

 n
i=1

(C i − C)2

= Q (γ ) ≥ 0, for γ =
n − 1
n − 2

. (A.8)

We have proved thatU∗
n(X,X) ≥ 0. To complete the proof of Lemma3,we need the following Cochran decomposition [2]

type lemma. Let χ2
n be a chi-square random variable with n degrees of freedom.

Lemma 4. Let Z be a Gaussian random vector with zero mean and

Q = Q1 + Q2, (A.9)

where Q ,Q1, and Q2 are non-negative quadratic forms of the coordinates of Z , and

i. Q D
= χ2

n ;

ii. Q1
D
= χ2

m,m ≤ n.

Then Q2 is independent of Q1, and Q2
D
= χ2

n−m.

For a proof apply e.g. Rao [13, 3b.4, pp. 185–187]: statement (i) (Fisher–Cochran Theorem) and statement (iv).
Set Q2 equal to the right hand side of (A.8), let

Q1 =


2n +

2
n − 2

 n
i=1

(C i − C)2,

and

Q =


i≠j

(Ci,j − C)2.

We proved that Q = Q1 + Q2. The matrix ∥Ci,j∥
n
i,j=1 is symmetric with Ci,i = 0, for all i and

Q = 2

i<j

(Ci,j − C)2,

with

C =
1

n2 − n


i≠j

Ci,j =
2

n2 − n


i<j

Ci,j.

Thus the quadratic form Q has rank (n2
− n)/2 − 1.

From classical statistics we know that, if X1, X2, . . . , XN are iid Normal(0, σ 2
X ), then for X =

1
N

N
k=1 Xk

N
k=1

(Xk − X)2
D
= σ 2

X χ2
N−1.

Therefore, for N = (n2
− n)/2,

Q D
= 2σ 2

X χ2
N−1,

where σ 2
X = E(C1,2)

2.
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Consider now the quadratic form

n − 2
2(n − 1)2

· Q1 =

n
i=1

(C i − C)2, (A.10)

whose rank is n − 1 because there is one single linear relationship between the vectors C i − C, i = 1, 2, . . . , n. Here the
quadratic form (A.10) is the square of the Euclidean norm of the vector

(C1 − C, C2 − C, . . . , Cn − C)

with covariance matrix

Σ =


d c · · · c
c d · · · c
...

...
. . .

...
c c · · · d

 .

The moments of C i and C are

E[(C i)
2
] =

σ 2
X

n − 1
, E[C iC j] =

σ 2
X

(n − 1)2
,

E[C iC] =
1
n

n
j=1

E[C iC j] =
2σ 2

X

n(n − 1)
, E[C

2
] =

1
n

n
j=1

E[C iC] =
2σ 2

X

n(n − 1)
,

where σ 2
X = E(C1,2)

2. Therefore

d = E(C1 − C)2 = E(C1)
2
− 2E(C1C) + E(C)2 =

σ 2
X (n − 2)
n(n − 1)

,

c = E(C1 − C)(C2 − C) = −
σ 2
X (n − 2)

n(n − 1)2
,

and d + (n − 1)c = 0. The matrix Σ has the characteristic polynomial

f (λ) = det(Σ − λI) = (d − λ + (n − 1)c)(d − λ − c)n−1
= −λ(d − c − λ)n−1,

so one eigenvalue of Σ equals 0 and all other eigenvalues equal

d − c =
σ 2
X (n − 2)
(n − 1)2

.

Therefore

Q1
D
=

2(n − 1)2

n − 2
(d − c)χ2

n−1 = 2σ 2
X χ2

n−1.

Applying Lemma 4 we obtain

Q2
D
= 2σ 2

X χ2
ν

where ν =
n2−n

2 − n =
n(n−3)

2 . Set m = (n − 1)/(n − 2) and

Ωi,j = Ci,j − C − m(C i − C) − m(C j − C). (A.11)

Then

U∗

n(X,X) −−−→
p→∞


i≠j

Ω2
i,j

D
= 2σ 2

X χ2
ν .

This completes the proof of Lemma 3(i).
Similarly, for the second sample, let

τ1 = 2E|Yi|
2

= 2
q

k=1

E(Yik)
2



210 G.J. Székely, M.L. Rizzo / Journal of Multivariate Analysis 117 (2013) 193–213

and define

Di,j(q) =


⟨Yi, Yj⟩
√

τ1
=

1
√

τ1

q
k=1

YikYjk, i ≠ j;

0, i = j.

Denote the weak limits of Di,j(q) as q → ∞ by Di,j, σ
2
Y = E(D1,2)

2, and

Di =
1

n − 1

n
j=1

Dij, D =
1
n

n
i=1

Di.

If

Ψi,j = Di,j − D − m(Di − D) − m(Dj − D), (A.12)

then, by similar arguments as in the proof of Lemma 3 (i), we obtain Lemma 3 (ii) and (iii):

U∗

n(Y, Y) −−−→
q→∞


i≠j

Ψ 2
i,j

D
= 2σ 2

Y χ2
ν , U∗

n(X, Y) −−−−→
p,q→∞


i≠j

Ωi,jΨi,j,

where

Ωi,j


are defined by (A.11) and


Ψi,j

are defined by (A.12). �

A.5. Proof of identity (A.7) in the proof of Lemma 3

We have from (A.6) that Si,j = Ti + Tj − Ci,j. Notice that Si,i = 0, Si,j = Sj,i, and E[Si,j] = 0, for all i, j. Denote

S i =
1

n − 1

n
j=1

Si,j, S =
1

n2 − n

n
i,j=1

Si,j =
1
n

n
i=1

S i, T =
1
n

n
i=1

Ti.

Using (A.6) rewrite

S i =
1

n − 1


j:j≠i

(Ti + Tj − Ci,j) =
(n − 1)Ti + nT − Ti

n − 1
− C i

=
nT

n − 1
+

n − 2
n − 1

Ti − C i,

S =
1

n2 − n


i≠j

(Ti + Tj − Ci,j) =
1

n2 − n


i≠j

(Ti + Tj) − C

=
2n2T − 2nT

n2 − n
− C = 2T − C .

Since aij = Sij + α, we have

A∗

i,j =

aij −
n

n − 1


āi − āj + ā


= Si,j − S i − S j + S, i ≠ j;

n
n − 1

(ai − α − (a − α)) = S i − S, i = j.

Hence, for i ≠ j,

A∗

i,j = Si,j − S i − S j + S

= Ti + Tj − Ci,j −


nT

n − 1
+

n − 2
n − 1

Ti − C̄i


−


nT

n − 1
+

n − 2
n − 1

Tj − C j


+ 2T − C

=
Ti − T
n − 1

+
Tj − T
n − 1

− [Ci,j − C i − C j + C],

with 
j:j≠i

[Ci,j − C i − C j + C] = C i − C,
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and for i = j we have

A∗

i,i = S i − S = 2T − C −


nT

n − 1
+

n − 2
n − 1

Ti − C i



= C i − C −
n − 2
n − 1

(Ti − T ).

Therefore, setting λ = −2/(n − 2) we obtain

U∗

n(X,X) =


i≠j

A∗
2

i,j + λ

n
i=1

A∗
2

i,j

=


i≠j

[Ci,j − C i − C j + C]
2
+ λ

n
i=1

(C i − C)2 −


4

n − 1
+ 2λ ×

n − 2
n − 1

 n
i=1

(C i − C)(Ti − T )



+


2 ×

(n − 2)
(n − 1)2

+ λ


n − 2
n − 1

2


n
i=1

(Ti − T )2

=


i≠j

[Ci,j − C i − C j + C]
2
+ λ

n
i=1

(C i − C)2. �

A.6. Proof of Proposition 1

Proof. (i): The identity

V2(X, Y) = E[|X − X′
||Y − Y′

|] + E|X − X′
| E|Y − Y′

| − 2E[|X − X′
||Y − Y′′

|]

is obtained in [19, Remark 3] by applying [19, Lemma 1] and Fubini’s theorem.
(ii): The result is obtained by evaluating the expected value of V2

n (X, Y) using the equivalent computing formula in
identity (A.1). Under independence, we have

E


1
n2

n
i,j=1

aijbij


=

n − 1
n

αβ, E

a b


=


n − 1
n

2

αβ.

Similarly, evaluate the expected values of each term in (A.1) under independence and simplify. The resulting expression
contains the term V2(X, Y) (applying (i)), which is zero under independence, and the result follows.

(iii): Again, using identity (A.1) we evaluate the expectation of nUn(X, Y) = nV2
n (X, Y) − Wn(X, Y), first combining

the terms of nV2
n (X, Y) and Wn(X, Y) that involve aijbij and ab. Under independence, the linear combination of expected

values in the resulting expression sum to zero. Now, from Lemma 2 we have that n2Un(X, Y) =
(n−1)2

n2
· U∗

n(X, Y), where
Un(X, Y) = V2

n (X, Y) − Wn(X, Y)/n. It follows that E[U∗
n(X, Y)] = 0 under independence of X and Y, and therefore

E[V∗
n (X, Y)] = 0 for independent X, Y. �

A.7. Proof of Proposition 2

As in the proof of Proposition 1(ii), the expected values of V2
n (X, Y) and Wn(X, Y) are obtained by applying identity (A.1),

expanding the sums and products in the statistics, and combining the terms that have equal expected values. The expected
values of Un(X, Y), U∗

n(X, Y), and V∗
n (X, Y) then follow by definition.

A.8. Proof of Theorem 1

Introduce

Zi,j =
Ψi,j
i≠j

Ψ 2
i,j

,

i≠j

Z2
i,j = 1.

Under the independence hypothesis the random variables {Zi,j} do not depend on {Ωi,j}, and for ϑ =


i≠j Ωi,jZi,j we have
i≠j

Ω2
i,j − ϑ2

=


i≠j


Ωi,j − Zi,jϑ

2
.



212 G.J. Székely, M.L. Rizzo / Journal of Multivariate Analysis 117 (2013) 193–213

Now Rank(ϑ2) = 1 and

Rank


i≠j


Ωi,j − Zi,jϑ

2
= Rank


i≠j

Ω2
i,j


− 1,

so we found one more linear relationship:
i≠j

Zi,j(Ωi,j − Zi,jϑ) = 0.

By Cochran’s theorem, ϑ2 D
= 2σ 2

X χ2
1 , and

i≠j


Ωi,j − Zi,jϑ

2 D
= 2σ 2

X χ2
ν−1,

which does not depend on ϑ .
For any fixed {Zi,j},

P

Tn < x

{Zi,j}ni,j=1


= P


ϑ

1
ν−1


i≠j


Ωi,j − Zi,jϑ

2 < x
{Zi,j}ni,j=1


= P{tν−1 < x},

where the random variable tν−1 has the Student’s distribution with ν − 1 degrees of freedom. Therefore

P{Tn < x} = E

P

Tn < x

{Zi,j}ni,j=1


= P{tν−1 < x}.

This proves statement (i) of Theorem 1.
Statement (ii) follows by first observing that E[U∗

n(X, Y)] = 0 under independence, and E[U∗
n(X, Y)] > 0 under a

dependent alternative (see Proposition 2). The test criterion is to reject the null hypothesis at level α if Tn > cα , where
P(Tn > cα) = α under the null. If Tn > 0 it is equivalent to reject H0 if

(R∗

n)
2 >

c2α
ν − 1 + c2α

.

Since V∗
n (X)V∗

n (Y) is the same under the null or alternative hypothesis, an equivalent criterion is to reject H0 if

V∗

n (X, Y) >


c2α

ν − 1 + c2α
V∗

n (X)V∗
n (Y), (A.13)

or equivalently if

U∗

n(X, Y) >


c2α

ν − 1 + c2α
U∗

n(X) U∗
n(Y), (A.14)

where E[U∗
n(X, Y)] = n(n − 3)V2(X, Y).

Now following the proof of part (i) one can show that in (3.6) of Lemma 3(iii)

U∗

n(X, Y) −−−−→
p,q→∞


i≠j

Ωi,jΨi,j,

the random variables (Ωi,j, Ψi,j) are bivariate normal, have zero expected value, and under the alternative hypothesis their
correlation is positive because we have just shown that E[U∗

n(X, Y)] is a positive constant multiple of V2(X, Y).
All we need to show is that if (Ω, Ψ ) are bivariate normal with zero expected value and correlation ρ > 0, then

P(ΩΨ > c) is a monotone increasing function of ρ. We can assume that, the variances of Ω and Ψ are equal to 1. To
see the monotonicity, notice that if a2 + b2 = 1, 2ab = ρ and X, Y are iid standard normal random variables, then for
U = aX + bY , V = bX + aY we have Var(U) = Var(V ) = 1, and the covariance of U and V is E(UV ) = 2ab = ρ. Thus
(U, V ) has the same distribution as (Ω, Ψ ), and

UV = ab(X2
+ Y 2) + (a2 + b2)XY = ρ

X2
+ Y 2

2
+ XY .

Thus P(UV > c) is always a monotone increasing function of ρ. This proves the unbiasedness of our t-test of
independence. �
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