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1. Introduction

Energy statistics (£-statistics) are functions of distances between statistical observations. This concept is based on the
notion of Newton's gravitational potential energy which is a function of the distance between two bodies. The idea of energy
statistics is to consider statistical observations as heavenly bodies governed by a statistical potential energy, which is zero if
and only if an underlying statistical null hypothesis is true.

In this paper we present the foundational material, motivation, and unifying theory of energy statistics. Previously
unpublished results as well as an overview of several published applications in inference and multivariate analysis that
illustrate the power of this concept are discussed. We will see that energy statistics are extremely useful and are typically
more general and often more powerful against general alternatives than classical (non-energy type) statistics such as
correlation, F-statistics, etc. For historical background, see Section 9.

If the observations play a symmetric role, then it makes sense to suppose that energy statistics are symmetric functions
of distances between observations. Energy statistics in this paper are U-statistics or V-statistics based on distances; that is,
for a d-dimensional random sample X;,...,X,, and kernel function h : R x RILR,

1 n n
U=——— h(X;, X;
n n(n_l)i;% X, X;)
or
1 n n
Vo= ) > X hXiXp,
iZ1;=4

where h(X;,X;) = h(X;,X;) is a symmetric function of Euclidean distances |X;—X;| between sample elements. Here we use | - |4
or | -| (if dimension d is clear in context) to denote Euclidean norm if the argument is real, and | - | denotes the complex
norm when its argument is complex. The notation || - || is reserved for another type of norm in this paper.

Since energy statistics are U-statistics or V-statistics, we can apply their classical limit theory (Hoeffding, 1948;
Von Mises, 1947) to obtain the limiting behavior of these statistics. See Serfling (1980) or Koroljuk and Borovskich (1994) for
details.

A familiar example is the U-statistic for dispersion, Gini's mean difference (Yitzhaki, 2003),

1 non
— Xi—X;|.
n(n_l)i§1]§i} J‘

Alternately one can apply the V-statistic
53 3 e
n2; &

In some of the applications discussed below, a generalized V-statistic is applied, see e.g. Koroljuk and Borovskich (1994,
Chapter 4). Although energy statistics can be defined in terms of either U or V-statistics, we apply V-statistics throughout.
One of the reasons for applying V-statistics instead of U-statistics is that our energy statistics will be nonnegative and more
easily interpreted as a statistical distance.

This paper summarizes many of the most interesting results and some of the applications of energy statistics. The
content is organized in sections as follows.

. Introduction.

. Energy distance.

Why is energy distance special?

. One sample energy statistics: goodness-of-fit, multivariate normality.

Generalized energy distance.

Two-sample and multi-sample energy statistics, distance components for structured data, £-clustering, symmetry.
. Distance correlation, energy test of independence, Brownian covariance.

. Statistical potential and kinetic energy.

. Historical background.
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2. Energy distance

There are many types of distances that can be defined between statistical objects. One of the best known and most
applied is the L,-distance. If F is the cumulative distribution function (cdf) of a random variable and F,, is the empirical cdf,
then their L, distance,

/ " (Fa(0—F(0)? dx @1

e

was introduced in Cramér (1928). This distance has the disadvantage that it is not distribution-free; thus if we want to apply
this distance for testing goodness-of-fit, then the critical values depend on F. This problem was easily rectified via replacing
dx by dF(x) which leads to the Cramér-von Mises Smirnov distance:

/_ " (Fu(x)~F(x))? dF(x). 2.2)

There is, however, another important disadvantage of Cramér's distance (2.1) and also of the Cramér-von Mises—-Smirnov
distance (2.2) that remains. If the sample comes from a d-dimensional space where d > 1, then neither of them are rotation
invariant. This is a very important problem if e.g. we want to test multivariate normality. Here is how to overcome this
difficulty.

Suppose that X,Y are real-valued independent random variables with cumulative distribution function F and G,
respectively. It is easy to show (see e.g. Székely, 1989, 2003) that if X’ is an independent and identically distributed (iid)
copy of X, and Y’ is an iid copy of Y, then

2 / (F(x)=G(x))? dx = 2E|X—Y|-E|X=X'|-E|Y=Y'|.

A rotation invariant natural extension for higher dimension is
2E\X-Y|4—EIX-X'|4—E|Y-Y'|4, 2.3)

where X,YeR? are independent. Rotational invariance of this expression is trivial, but it is not trivial at all that this quantity
(2.3) is nonnegative and equals zero if and only if X and Y are identically distributed. See Proposition 1.

Definition 1 (Energy distance). The energy distance between the d-dimensional independent random variables X and Y is
defined as

E(X,Y) = 2EIX=Y|4—EIX=X"|4~EIY=Y"4, (2.4)

where E|X|4 < o0, E|Y|q < o0, X’ is an iid copy of X, and Y is an iid copy of Y. We omit the subscript d whenever it is clear in
context.

Denote the Fourier-transform (characteristic function) of the probability density functions f and g by f and g,
respectively. Then, according to the Parseval-Plancherel formula,

21 / " Fo0-g0)? dx= / T Fo-gmP dt.

Since the Fourier transform of the cdf F(x)= [*_ f(u) du is f(t)/(it), where i = +/—1, we have
® 200 [T ©-80)P
2n '/_m(F(x)—G(x)) dx = ./_mT dt. (2.5)

The pleasant surprise is that the natural multivariate generalization of the right-hand side of (2.5) is rotation invariant and it
is exactly a constant multiple of (2.4).

Proposition 1. If the d-dimensional random variables X and Y are independent with E|X|;+E|Y |4 < oo, and f ,& denote their
respective characteristic functions, then their energy distance

£ 50112
FO-80P 4

2.6
Mare 2.6)

2E|X-Y|q—E|X-X'|4—E|Y-Y'|4 = Cl
d

where
2d+1)/2

d+1\’
F(Z)

and I (-) is the complete gamma function. Thus £(X,Y)>0 with equality to zero if and only if X and Y are identically distributed.

Cq= (27)

For a proof of this proposition see Székely and Rizzo (2005a) or see the proof of its generalization, Proposition 2 below.
For the prehistory of this inequality see Section 9.

In view of (2.6), the square root of energy distance £(X,Y)!/?

is a metric on the set of d-variate distribution functions.
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It is easy to define € for all pairs of random variables X,Y that take their values in a metric space with distance function &:
EX,Y) = 2E[6(X,Y)]-E[6(X,X")]-E[5(Y,Y")],

provided that these expectations exist; but if we replace Euclidean distance with the metric § in an arbitrary metric space,
then the claim of Proposition 1 that “£(X,Y)>0 with equality to zero if and only if X and Y are identically distributed” does not
necessarily hold. It does hold in separable Hilbert spaces (see Lyons, to appear), which is an important result for
applications.

Energy distance £(F,G) provides a characterization of equality of distributions F and G. The applications in dimensions
d>1 include:

(i) Consistent one-sample goodness-of-fit tests (Székely and Rizzo, 2005a; Rizzo, 2009; Yang, 2012).

(ii) Consistent multi-sample tests of equality of distributions (Székely and Rizzo, 2004; Rizzo, 2002, 2003; Baringhaus and
Franz, 2004).

(iii) Hierarchical clustering algorithms (Székely and Rizzo, 2005b) that extend and generalize the Ward's minimum variance
algorithm.

(iv) Distance components (DISCO) (Rizzo and Székely, 2010), a nonparametric extension of analysis of variance for
structured data.

(v) Characterization and test for multivariate independence (Feuerverger, 1993; Székely et al., 2007; Székely and Rizzo,
2009).

(vi) Change point analysis based on Székely and Rizzo (2004) is applied in Kim et al. (2009) and Matteson and James (2012).

Several of these applications are discussed below. Software for energy statistics applications is available under General
Public License in the energy (Rizzo and Székely, 2011) package for R (R Development Core Team, 2012).

3. Why is energy distance special?

We see that energy distance (2.6) is a weighted L, distance between characteristic functions, with weight function
w(t) = |t|;(‘””. Suppose that the following three technical conditions on the weight function hold: w(t) >0, w(t) is
continuous, and

[ Fo-goPwo dt <. 31)

We claim that under these conditions if the weighted L distance between f and g is rotation invariant and scale equivariant,
then w(t) = const/|t|4* . In other words, rotation invariance and scale equivariance (under some technical conditions) imply
that the weighted L, distance between characteristic functions is the energy distance.

Why do we have this characterization? One can show that if two weighted L, distances of the type (3.1) are equal for all
characteristic functions f and g, then the (continuous) weight functions are also equal (for proof of a similar claim see
Székely and Rizzo, 2012).

Scale equivariance and rotation invariance imply that for all real numbers a

/ If (at)-g(at)Pw(t) dt = |a] x / If (- Pw(t) dt.
Introduce s=at. We can see that if a#0 then
[Fo-gor W/A) g ) [ Fo-gorwo d

lal

Thus w(s/a)/|a| = |ajw(s). That is, if c:=w(1) then w(1/a) = ca?, implying that w(t) = const/|t|?*.

Interestingly, this weight function appears in Feuerverger (1993), where it is applied for testing bivariate dependence.
Although this singular weight function is “special” from the equivariance point of view, other weight functions are also
applied in tests based on characteristic functions; see e.g. Gurtler and Henze (2000), Henze and Zirkler (1990), or Matsui and
Takemura (2005).

4. One sample energy statistics
4.1. Energy goodness-of-fit statistics

Let X1,...,X, be a random sample (iid) from a d-variate population with distribution F, and let x1,...,x, be the observed
values of the random sample. The one sample version of energy distance for testing the goodness-of-fit hypothesis Hy :

FZFO 'S H] ZF;éFO is

2 n ‘l n n
En(X,Fo) = a 2 EIXi—XI—EIX—X’I—n—2 2 21 IXe—Xml, 4.1

i=1 f=1m=
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where X and X' are independent and identically distributed (iid) with distribution Fg, and the expectations are taken with
respect to the null distribution Fy. The energy goodness-of-fit statistic is n&, = né€y(X,Fo).

Notice that &, is a V-statistic, and its unbiased versions are U-statistics. (The kernel function for the energy goodness-of-
fit statistic is (8.1), which is discussed in Section 8.) Under the null hypothesis, the test statistic n&, tends to a nondegenerate
limit distribution as n — o (see Section 8), while under an alternative hypothesis n&, tends to infinity. Thus a goodness-of-fit
test that rejects the null for large values of n&, is consistent against general alternatives.

Fig. 1 illustrates the sampling distribution of an energy goodness-of-fit statistic. The sampling distributions of all energy
statistics have similar shapes under the null hypothesis, with rejection region in the upper tail.

For goodness-of-fit statistics, if parameters of the null distribution are estimated, in many applications the energy
statistic is a degenerate kernel V-statistic, thus the distribution has a similar shape with rejection region in the upper tail.
Here the energy goodness-of-fit test is developed for a specified parametric family of distributions Fy(6) using estimated
parameter(s) 6, so the asymptotic distribution would depend on 6 and the distribution of 4. In this case, Monte Carlo
methods can typically be applied to obtain a test decision. For a discussion of goodness-of-fit tests with estimated
parameters see DasGupta (2008, pp. 451-455) Section 28.1, Section 28.2 on the special case of EDF tests, and the references
at the end of Chapter 28. For further details on energy goodness-of-fit tests, see Section 8 of this paper and Rizzo (2002,
Theorem 5) for proof of consistency in the case of estimated parameters for the multivariate normal distribution.

Energy tests based on (4.1) have been implemented for testing the composite hypothesis of multivariate normality
(Székely and Rizzo, 2005a), Pareto family (Rizzo, 2009), stable (Yang, 2012), and other distributions. Let us first introduce
energy goodness-of-fit tests with a few univariate examples.

4.1.1. Two-parameter exponential distribution
Suppose for example, that we wish to test whether T has a two-parameter exponential distribution, with density

frty=2e7Em,  top,

Then we apply (4.1) using

EIt=T) = bt 5 (1-2Fr(0), 2

EIT-T'|= %

A computing formula for the corresponding test statistic n&, is easily derived.

4.1.2. Energy statistic for uniform distribution
The energy test for the continuous uniform distribution is particularly simple. If X~ Uniform (a,b), then

(x—a)? b-a b-a
Elx—X| = X+ ——, EX-X|=—.
X=X|= =X+ | ==
a b
B 25 T At
2.5 4 Critical value
20 2.0 1
> |
> 1.5 | L B 1.5
3 g
)]
O 1.0 1.0
0.5 054 |/
0.0 - [ 0.0 4 ¥—
I T T T 1 T T T T T T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 25
Energy test statistic Energy test statistic

Fig. 1. Sampling distribution of the energy goodness-of-fit statistic for univariate normality, sample size n=30, in Example 1. Subfigure (a) displays
simulated replicates of the statistic under the null hypothesis. Subfigure (b) compares the density of n&, under the null and alternative hypotheses, for a
normal location mixture. The rejection region is in the upper tail.
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In particular, the energy test statistic for a goodness-of-fit test of Hy : X~ Uniform(0,1) is given by

20 2 1\ 1 2 &

=n|Z X Xi+=)-5—-—= 2k—-1-mX
nén n(”zg:]( ! l+2) 3 ”2k§1( ‘ " (k))'

where X, denotes the k-th order statistic of the sample. The linearization in the last sum simplifies the statistic for any

univariate test, reducing the computational complexity to O(n log n) in the univariate case. The statistic can be simplified

further.

4.2. Energy test of normality

The energy statistic for testing whether a sample X1,...,X;, is from a multivariate normal distribution N(x,X) is developed
by Székely and Rizzo (2005a). Let x1,...,x, denote an observed random sample.

4.2.1. Univariate normality
In the special case of testing univariate normality, the test statistic is n&,, where &, is given by (4.1) with

X=X = 206—)F(x) + 202 F (X)) ~(Xi—p),  EIX—X'| = %

where F.,f are respectively the cdf and density of the hypothesized N(u,0?) distribution.

Example 1 (Distribution of energy goodness-of-fit statistics). The sampling distribution of the energy test statistic for testing
normality is illustrated by Fig. 1(a) and (b) for sample size n=30. Fig. 1(b) displays a histogram of replicates of the test
statistic for normal samples. In Fig. 1(b) the densities of the sampling distribution under the null and alternative are
compared. The test is implemented in the energy package (Rizzo and Székely, 2011) using estimated parameters for x and o.
The alternative in this example is a 90-10% normal location mixture of N(0,1) and N(3,1) data. The approximate critical value
0.82 for a test at 5% significance is marked with a vertical line in Fig. 1(b). As n increases, the distribution under the
alternative shifts farther to the right.

Note that the shape of the sampling distribution under the null hypothesis illustrated in Example 1 is typical of all energy
statistics discussed in this paper.

4.2.2. Relation to quadratic EDF statistics
The quadratic empirical distribution function (EDF) statistics are based on weighted L, distances of the type (2.2):

/_ " (Fa(0—F(0)*w(x) dF(x), 42)

where w(-) is a suitable weight function. When w(x) is the identity function, the test is called the Cramér-von Mises test. The
Anderson-Darling test is obtained using a weight function w(x) = [F(x)(1-F(x))]"'. In case of standard normal null F, the
shape of the curve w(x) = F(x)(1-F(x)) is similar to the shape of the standard normal density; their ratio is close to a constant
c (empirically 0.67). That is, in the univariate case the distribution of the energy statistic for standard normal distribution
hardly differs from the powerful Anderson-Darling test of normality. The energy test of normality can thus be viewed as a
computationally simple way to lift the Anderson-Darling test to arbitrarily high dimension. The energy test of multivariate
normality is rigid motion invariant and consistent against all fixed alternatives with E|X| < co. When the test is applied to
standardized samples, it is affine invariant.

4.3. Energy test of multivariate normality

For the test of multivariate normality, first the sample is standardized by a linear transformation. For standard
multivariate normal ZeR? with mean vector 0 and identity covariance matrix,

%)
E\Z-Z'|4=~2E|Z|4=2 ——
()
Ify;,...,y, denote the standardized sample elements, the computing formula for the d-variate normality test statistic is given
by

d+1
> ¢ ()
nEpg=n|—- ¥ Elyj~Zlg—2

n
% W A 21 Yi=Yrla
2

1
n?; =
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Fig. 2. Empirical power of tests of multivariate normality (d=5, n=25, 50, 100) against normal location mixture 0.9Ns5(0,I)+0.1N5(2,I): percent of
significant tests of 2000 Monte Carlo samples at « = 0.05. E denotes the energy test and HZ denotes the Henze-Zirkler test.

where

d+1

d+1 3
ﬁr<T) 2 = (-1F  jaZke? F(%)r(kjti)
Ela—Zld: 7‘1_'—\/;]{:0 k!2k (2k+1)(2k+2) d )
(2) r(kege1)

k+§+1

The expression for E|a-Z|; follows from the fact (see e.g. Zacks, 1981, p. 55) that if Z is a d-variate standard normal
random vector, |a-Z|3 has a noncentral chisquare distribution ?[v; 2] with degrees of freedom v = d+ 2y, and noncentrality
parameter 1 = |a|5/2, where y is a Poisson random variable with mean 4. Typically the sum in E|a-Z|; converges after 40-60
terms, but may require more terms if |a|4 is large; however, when |a|, is large the limit E|a—Z|;=|a|4 can be applied. See the
source code in “energy.c” of the energy package (Rizzo and Székely, 2011) for an implementation.

If the mean vector x and covariance matrix X are not specified, then the test is modified by transforming the observed
sample using the sample mean vector and the sample covariance matrix. This is the method of implementation in the
following simulations, using mvnorm.etest in the energy package for R (Rizzo and Székely, 2011). The modified test
statistic nén,d has the same type of limit distribution as né&, 4, but with different critical values. Theory for estimated
parameters is derived in Rizzo (2002) and Székely and Rizzo (2005a). In the energy package (Rizzo and Székely, 2011) the
sample is standardized using estimated parameters and a decision is obtained by parametric bootstrap. Alternately, for large
sample sizes (100 or more observations), one can obtain critical values by numerical solution to the eigenvalue problem
(8.5), or see Rizzo (2002) for tabulated critical values of nén‘d.

This new test of multivariate normality is practical to apply for arbitrary dimension and sample size (d > n is not a
problem.) Monte Carlo power comparisons suggest that it is a powerful competitor to other affine invariant tests of
multivariate normality. Overall, the energy test is a powerful omnibus test of multivariate normality, consistent against all
alternatives with relatively good power compared with other commonly applied tests.

Example 2 (Power of energy test of multivariate normality). Several examples appear in Rizzo (2002) and Székely and Rizzo
(2005a) to illustrate the power of the test of multivariate normality against various alternatives, compared with competing
tests. As an example, we summarize a comparison for a 90-10% normal location mixture in dimension d=5 against Mardia's
(1970) skewness and kurtosis tests, and the Henze-Zirkler (1990) test. The latter is another type of test that is based on the
characteristic function. Results for 2000 tests at significance level 5% are summarized in Fig. 2. Here we see that the energy
test dominates the other tests, and we can also observe that the test is consistent with power increasing to 1 as sample size
increases. ©

5. Generalized energy distance

Since many important distributions do not have finite expected values we need the following generalization of
Proposition 1.
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Proposition 2. Let X and Y be independent d-dimensional random variables with characteristic functions f L. IfEIX|* < 00 and
E|Y|* < o for some 0 < a<2, then

(i) ForO<a<?2,
1 f()-g@®”

() _ _Via_ _Yrea_ _Vyre _
EYXY)=2EX-Y|*-E|X-X'|*-E|Y-Y’| = Cda) |t|d+a dt, (5.1)
where
C(d,a) = 2292 L{):/Z) (5.2)
a d+a

(ii) EP(X,Y)=2|EX)-E(Y)2.

Statements (i) and (ii) show that for all 0 < a <2, we have £9(X,Y)>0 with equality to zero if and only if X and Y are
identically distributed; but this characterization does not hold for a =2 since we have equality to zero in (ii) whenever
E(XX) = E(Y).

Applications of Proposition 2 include:

(i) Goodness-of-fit tests for heavy tailed distributions such as stable distributions (Yang, 2012) and Pareto distributions
(Rizzo, 2009).
(ii) Generalization of Ward's minimum variance criterion in hierarchical cluster analysis (see Section 6.4).
(iii) Generalization of distance covariance for heavy tailed distributions (see Section 7.3).
(iv) The energy score (see Gneiting and Raftery, 2007).

On the historical background of Proposition 2 see Section 9. For the sake of easy reference we provide a proof.

Proof of Proposition 2. Statement (ii) is obvious. For (i), let f(-) denote the complex conjugate of f(-). Notice that

f =& = ﬁ(t)—g(t@t)—g(t)] -
= [1-f OEO1+1-f OEE1-11-f OFf O1-[1-8(OE(©)]
= E{[2—exp{i(t.X—Y)}—exp{i(t,Y—X)}]—[l —exp{i(t,X—X’)}]—[l —exp{i(t,Y—Y’)}]}

= E{2[1-cos(t,X-Y)]-[1-cos(t,X—X")]-[1—cos(t,Y-Y")]},

thus

de|.

If (H)—&(t)12 J [ 2[1—cos(t,X=Y)]-[1—cos(t, X—X")]-[1—cos(t,Y=Y")]
VO8O 4. _g /
Ré |t|d+a RY |t|d+a

Therefore for (i), all we need to prove is the following lemma.

Lemma 1. For all xeR?, if 0 < a <2, then

1—cos(t,x) , a
/Rd W dt = C(d,)|x|g,

where (tx) represents inner product, C(d,a) is the constant (5.2) defined in Proposition 2, teR%. (The integrals at t=0 and t = c
are meant in the principal value sense: lim, _, ¢ jkd\{ where B is the unit ball (centered at 0) in R® and B is the complement

of B.)

A proof of Lemma 1 is given in Székely and Rizzo (2005b). Because of the importance of this lemma, we reproduce the
proof in the Appendix of this paper. ©

eB+¢e 1B}’

What class of functions can replace |x—y|§ in Proposition 2? That is, for which functions ¢ does the statement
2Ep(X-Y)—EpX-X")—Ep(Y-Y")>0 (5.3)

hold, with equality to zero if and only if X and Y are identically distributed? A necessary and sufficient condition is
established in Proposition 3 below. For this result, we need the definition of conditionally negative definite functions.

A function ¢ from R? to the complex numbers is called conditionally negative definite if for all choices of Zij = Xi=Y;,
ij=1,...,n, for all complex numbers cy,...,c;, and all natural numbers n we have

3 3 G0 (5.4)

i=1j=1
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whenever c¢; +¢; +--+¢, =0 (see e.g. Berg, 2008). The function ¢ is strictly negative definite if it is negative definite and
equality holds in (5.4) only if ¢; = --- =¢, =0.
If ¢ is a symmetric real valued function, then it is enough to consider real numbers cy,...,c,; in (5.4).

Proposition 3. Let ¢ be a continuous symmetric function from R? to R, and let XeR?, YER? be independent.
(i) A necessary and sufficient condition that
2Ep(X-Y)—EpX—X")—Ep(Y-Y")>0 (5.5)
holds for all X,Y such that E[¢p(X—X")+E¢p(Y-Y")] < oo is that ¢ is conditionally negative definite.
(ii) In (5.5), a necessary and sufficient condition that
2E¢p(X-Y)—Ep(X-X")—Ep(Y-Y)=0
if and only if X and Y are identically distributed is that ¢ is strictly negative definite.

According to a characterization theorem of Schoenberg (Berg et al., 1984, Theorem 3.2.2), a function is conditionally
negative definite, continuous, symmetric, and takes the value 0 at 0 if and only if it is the negative logarithm of an infinitely
divisible characteristic function. The functions

@) =121, O0<axg2

correspond to infinitely divisible characteristic functions that are symmetric stable with parameter a. Other examples
include log(1+|z|?) which corresponds to the characteristic function of the Laplace distribution. Note that in case ¢(z) = |z|?
(case a=2) we have conditional negative definiteness, but not strict conditional negative definiteness. This is an intrinsic
limitation of classical inference procedures applied for least squares estimates or Pearson's correlation. For application of
other negative definite kernels ¢(z) see Baringhaus and Franz (2010).

6. Multi-sample energy statistics
6.1. Testing for equal distributions

The two sample energy statistic corresponding to the energy distance £(X,Y), for independent random samples
X=Xi,....Xn, and Y:Yl,...,Y,,z, is

1 m m
Eny iy XY) = —— Z Z Xi=Yml——5 % 21 Xi=Xjl——5 Z Z IYe=Yml. (6.1)
1 = =

nn21—1m— f— m=1

The statistic Ty, 5, = (N112/(N1 +1n2))En, .1, can be applied for testing homogeneity (equality of distributions of X and Y). As the
null distribution of Ty, », depends on the distributions of X and Y, the test is implemented as a permutation test in the energy
package. The hypothesis of equal distributions is rejected for large Ty, »,. For details, application and power comparisons see
Székely and Rizzo (2004), Rizzo (2003), and Baringhaus and Franz (2004).

Several applications and extensions of the two-sample energy statistic follow.

6.2. Testing for symmetry

A test for diagonal symmetry is a special case of the two-sample energy test in Section 6.1. Diagonal symmetry holds if
the distributions of X and —X coincide. It was shown in Buja et al. (1994) and also in Székely and M6éri (2001) that if X, X’ are
iid R? valued random variables then

EX+X'|2EIX-X|,

and equality holds if and only if X is diagonally symmetric. We can thus introduce a measure of asymmetry, the distance
skewness.

Definition 2. If XeR? and E|X| < c, the distance skewness coefficient of a random vector is defined as
EIX=X'|

—————, EX+X'|>0;
dSkew(X) = { EX+X'| X1
1,

EX+X'|=0.

Distance skewness is a good measure of symmetry because 0<dSkew(X)<1, with equality to zero if and only if X is
diagonally symmetric.
If X=Xj,...,.X, is a random sample from the distribution of X, the sample distance skewness can be defined as follows:

n . .
l‘J:1|X1_X]|

dSkew,;,(X)=1-=—"—_———.
n(X) T XX
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A consistent test against general alternatives can be based on the statistic
IXi +X;|—1Xi=Xj]

TnX):=1+ 62
n) 1si§jsn Di<i<nlXil (6.2)
Ta(X) = Zij =1 Ki=Yil= 20— 1 X+ Yl 63

222]‘: 1 |Xi| '

where Y; =-X';,i=1,...,n, is the reflected X sample in a randomized order. Here the numerator of the fraction in (6.2) is
exactly half the sample energy distance of X and —X. The numerator in (6.3) is proportional to (6.1) for samples X; and
Y; = -X’;, and its expected value is 2E|X|; thus T, is a (normalized) two-sample energy statistic.

With this standardized statistic, one can apply the chi-squared test criterion in Székely and Bakirov (2003). That is, reject
the null hypothesis at significance level a if T,>(®~'(1-a/2))?, where & is the standard normal cdf. This criterion is valid for
any significance level less than 0.215. (This test criterion tends to be conservative in general.)

For an interesting discussion of a special case of the inequality E|X+X'|>E|X—X’| see Mensheinin and Zubkov (2012).

6.3. Distance components: a nonparametric extension of ANOVA

A multi-sample test of equal distributions is a type of generalization of the hypothesis of equal means. Analogous to the
ANOVA decomposition of variance we can obtain a decomposition of distances called distance components (DISCO) and a
test statistic for the K-sample hypothesis Hj : F{ =--- =Fg, K>2. To simplify subsequent notation, for two samples
A={ay,....an,}, B={by,...,by,}, let

1 n ny

)2 21 |ai=bm|", (6.4)

A,B):=
ga( ) nln2i=lm:

for 0 < a<2. The multi-sample statistics are defined as follows. If A4,...,Ax are the samples of sizes nq,n,,...,ng, respectively,
and N = Z]K: 11, we define the total dispersion of the observed response by

N
T,=T.(A1,...,.Ax) = iga(A,A), (6.5)
where A is the pooled sample (size N) and g, is given by (6.4). The within-sample dispersion statistic is defined by
K 1
W, =W,(As,...A) = 21 7’ 8.(ALA)). (6.6)
j=
The between-sample energy statistic is
ni+m\ [ ning ning
Sna= ( J ) [ L g (ALA } = I X (28 (AL A -8, (AL AN -8 (AAD) b, 6.7
o= T (o) [ i da0| =T (SR CatA0-. )5 A} )

Then if 0 < a<2 we have the decomposition T, =S, +W,, where both S, and W, are nonnegative.

If 0<a<?2, the statistic (6.7) determines a statistically consistent test of the hypothesis that the distributions are
identical (Rizzo and Székely, 2010). If « = 2 the corresponding energy distance can be zero if the means of the distributions
are identical. In fact, in the case where F; are univariate distributions and a =2, the statistic S, is the ANOVA between
sample sum of squared error (sum of squares for treatments) and the decomposition T, =S, +W, is the ANOVA
decomposition. By choosing «=1 or any 0 <a < 2 as the exponent on Euclidean distance, we obtain a test of equality of
distributions that is consistent against all alternatives with finite « moments.

The power of the DISCO test of the multisample hypothesis Hg : F; = --- = F¢ is illustrated in the following power
comparison. The test has been implement by permutation bootstrap in the disco function of the energy package for R
(Rizzo and Székely, 2011). For more examples, see Rizzo and Székely (2010).

Example 3. For this simulated data, the multivariate response is in R? and the DISCO test is compared with MANOVA tests
based on Wilks Lambda and Pillai statistics. There are four groups each with sample size n=30. Here groups 2-4 have iid
marginal Gamma (shape=2, rate=0.1) distributions, while group 1 is Gamma (shape=2, rate=0.1) with multiplicative
errors distributed as Lognormal (= 0,s). (The natural logarithm of the group 1 response has an additive normally
distributed error with mean 0 and variance ¢2.)

Empirical power performance is compared at significance level 10%, which is summarized in Fig. 3(a) and (b). In Fig. 3(a)
at ¢ = 0 one can check that each test achieves approximately the correct significance level 10% under the null. The standard
error of the power estimate is at most 0.005, based on 10,000 tests.

In Fig. 3(a) the parameter ¢ is varied while dimension is fixed at p=10. Each test has power increasing with ¢, but the
DISCO test is clearly more powerful than the MANOVA tests in this example. In Fig. 3(b) the dimension p is varied while
o = 0.4 remains fixed. In this simulation one can see that the difference in power between the DISCO and MANOVA tests is
increasing with dimension.

For an interesting application of distance components analysis in behavioral biology see Schilling et al. (2012).
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Fig. 3. Monte Carlo results for Example 3. Power of the DISCO (D) and MANOVA (Wilks, Pillai) tests for Gamma(shape=2, rate=0.1) data, in four groups
with n=30 per group. Group 1 is Gamma(shape=2, rate=0.1) with multiplicative errors distributed as Lognormal(x = 0,s). In (a) dimension p=10 and
o varies and in (b) p varies and ¢ =0.4.

6.4. &-clustering: an extension of Ward's minimum variance method

Energy distance can be applied in hierarchical cluster analysis. In agglomerative hierarchical clustering algorithms, at
each step, we seek to merge clusters that are homogeneous, as measured by the algorithm's cluster distance, while individual
clusters are well-separated according to this cluster distance. In £-clustering, we seek to merge clusters with minimum
energy distance.

For a fairly general class of hierarchical clustering algorithms including Ward's minimum variance, an algorithm is
uniquely determined by its recursive formula for updating cluster distances (see Székely and Rizzo, 2005b for details). The
energy clustering algorithm is also identified by the same type of recursive formula. Suppose at the current step in the
hierarchical clustering, the disjoint clusters C;,C; would be merged. Then the £-distance between the new cluster C;uCj and a
disjoint cluster Cy is given by the following recursive formula:

n; +ny
ni+n;+n

n;j+ny ) _ Ny o
i+ 1y d(C;,Cy)— ———— d(C;,C),

d(CiUCj’Ck) - ni+n;j+n

d(G;,C)+ (6.8)

where d(C;,Cj) = &, n,(Ci,C)), and ny,n;,n; are the number of elements in clusters C;,C;,Cy, respectively. From formula (6.8)
above, if d;;=£(C;,()) is given by (6.1), £-distance can be computed recursively by

dije=d(C;UC;,Cp) = a;d(C;, Cp) + 5d(C;, Cpp) + pd(Ci, C) = iy + o+ pdij + v dire—dje, (6.9)
where
=it "M . _q (6.10)
ni+n;+n n;+n;+n

In the recursive equation (6.9) if we substitute squared Euclidean distances for Euclidean distances, with the same
parameters (6.10), we have the updating formula for Ward's minimum variance method. Applying Proposition 2, we can
replace Euclidean distances in (6.9) with |x—y|* for any 0 < a<2 to obtain a class of clustering algorithms that contain Ward's
minimum variance method as a special case. By Proposition 2(ii) we know that Ward's method (a«=2) is a geometrical
method that separates and identifies clusters by their centers; consistency does not hold for Ward's method (a = 2), because
cluster distance is zero when groups have equal means, while the underlying populations could have different distributions.
On the other hand, Proposition 2(i) implies that for every 0 < a < 2 the energy clustering algorithm separates clusters that
differ in distribution (in any way).

The ability of € to separate and identify clusters with equal or nearly equal centers is potentially an important practical
advantage over geometric or cluster center methods such as centroid, median, or Ward's minimum variance methods. In
Székely and Rizzo (2005b), simulations showed that £-clustering effectively recovers the underlying hierarchical structure in
several different scenarios, including high dimensional data, and data with attributes on different scales. Moreover, in an
example clustering simulated normal data with different covariance but nearly equal means, £ outperformed six standard
methods compared. Overall in our empirical results the theoretical properties of £ are indeed an advantage for certain
clustering problems, without sacrificing the good properties of Ward's minimum variance method for separating spherical
clusters.
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7. Distance correlation: measuring dependence and the energy test of independence

In this section we focus on dependence coefficients distance covariance and distance correlation introduced in Székely
et al. (2007) that measure all types of dependence between random vectors X and Y in arbitrary dimension. The
corresponding energy statistics have simple computing formulae, and they apply to sample sizes n>2 (n can be much
smaller than dimension).

To quote Newton (2009)

Distance covariance not only provides a bona fide dependence measure, but it does so with a simplicity to satisfy
Don Geman's elevator test (i.e., a method must be sufficiently simple that it can be explained to a colleague in the time
it takes to go between floors on an elevator!).

The distance covariance statistic is computed as follows. First we compute all the pairwise distances between sample
observations of the X sample, to get a distance matrix. Similarly compute a distance matrix for the Y sample. Next, we center
the entries of these distance matrices so that their row and column means are equal to zero. A very simple formula (7.10)
accomplishes the centering. Now take the centered distances A, and By, and compute the sample distance covariance as the
square root of

] n
Vi= 2z, {Z 1Akakf~
K, =

The statistic V, converges almost surely to distance covariance (dCov), V(X,Y), to be defined below, which is always
nonnegative and equals zero if and only if X and Y are independent. Once we have dCov, we can define distance variance
(dVvar), and distance correlation (dCor) is computed as the normalized coefficient analogous to Pearson's correlation p.

Pearson's product-moment covariance measures linear dependence and in the bivariate normal case p =0 is equivalent
to independence. For the multivariate normal distribution, diagonal covariance matrix implies independence, but the
converse does not hold in general. More generally, in the case of quadrant dependent random variables (including the
multivariate normal), zero correlation(s) are equivalent to (mutual) independence (Lehmann, 1966). In general, however,
Pearson's correlation and covariance do not characterize independence. Distance covariance and distance correlation are
more general measures of independence as they do characterize independence of random vectors.

Classical inference based on normal theory tests the hypothesis of multivariate independence via a likelihood ratio
statistic based on the covariance matrix of (X,Y) or their marginal ranks. These tests are not consistent against general
alternatives, because like correlation measures, the statistics measure linear or monotone association. The distance
covariance energy test is based on measuring the difference between the joint and marginal characteristic functions, thus
it characterizes independence. For other recent consistent tests of bivariate or multivariate independence see e.g.
Feuerverger (1993), Gretton and Gyorfi (2010), and Gretton and Gyorfi (2012).

In the special case when (X,Y) are jointly distributed as bivariate normal, distance correlation (R) is a deterministic
function of Pearson's correlation p = p(X,Y) (Székely et al., 2007, Theorem 7):

p arcsin p++/1-p2—p arcsin %—\/4—,02 +1
1+7/3-V3 ‘
Note that R(X,Y)<|p(X,Y)| with equality when p=0orp= +1.

R2X,Y) =

7.1. Definitions of distance covariance and distance correlation

In this section, we suppose that X in R’ and Y in R? are random vectors, where p and q are positive integers. If f %
and f y denote the characteristic functions of X and Y, respectively, and their joint characteristic function is denoted f Xy, then
X and Y are independent if and only if fyxy =fxfy.

We define the || - |lp-norm for complex functions y defined on y : R’ x R%=R in the weighted L, space of functions on
RP+4 by

ol = [ IntsPwies) de ds @1

where w(t,s) is an arbitrary positive weight function for which the integral above exists.
Distance covariance is defined as a measure of the distance between fxy and fxfy: it is the nonnegative square root of

VAXY:w) = I xy (69~ xOF v O, = /R . Fxr€)=FxOF (o) wit.s) de ds,

where w is a suitable weight function. The choice of weight function is critical to obtaining a distance covariance with the
properties one would require for a useful measure of dependence.
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We also define (analogous to variance)
VAXw) = VXX w) = I (69 xOF O, = /R xx @)~ xOF (P wit.s) dt ds.

A standardized version of V(X,Y;w) is
VX,Y;w)
Ry = —F————,
VYXwWV(Y;w)

which is an unsigned “correlation” coefficient.

Our definitions above are rotation invariant. We further require that R, be scale invariant. This will follow if we require that V,,
be scale equivariant. This property holds if the weight function w is proportional to the reciprocal of || },“’ |s|3,*q (see (7.2)-(7.3)).In
Székely and Rizzo (2012) it was proved that the distance covariance weight function is unique. That is, scale invariance and rigid
motion invariance, along with natural technical conditions such as integrability of the weight function, imply the uniqueness of w.
Thus, in the following definitions, the weight function w(t,s) = (cpcq|t|;“’ |5\},+")’l is applied, where cp,cq are given by (2.7).

Definition 3. The distance covariance between random vectors X and Y with finite first moments is the nonnegative number
V(X,Y) defined by

1 Fxy&s)—FxOF (o)

1 1
CpCq Jro+a |t|p+l’ |5|q+q

VAX,Y) = IIf x v (6.5)~f x(Of y(&)I1? = dt ds. (7.2)

If EIX|, < o and E|Y|, < oo then by Lemma 1 and by Fubini's theorem we can evaluate
V2(X,Y) = E[IX-X"|,|Y=Y'|]+EIX=-X'|, E|Y-Y"|g—2E[IX-X"|,|Y-Y"|,], (7.3)

where (X)Y), (X',Y"), and (X”,Y”) are iid.
Distance variance is defined as the square root of

VAX) = V2XX) = I1f xx (6:9)—F x (O x©)I12.
By definition of the norm || - ||, it is clear that V(X,Y)>0 and V(X,Y) =0 if and only if X and Y are independent.

Definition 4. The distance correlation (dCor) between random vectors X and Y with finite first moments is the nonnegative
number R(X,Y) defined by

XD KOV*(Y)>0
R2X,Y)={ /V2X)VA(Y) (7.4)
0, V2(X)V2(Y) =0.

The energy dependence statistics are defined as follows. The sample distance covariance statistic V2(X,Y) introduced at
the beginning of this section has a simple form (7.11). It is equivalent to the following definition.

Let f;(t), f ;(s), and f;vy(t,s) denote the empirical characteristic functions of the samples X, Y, and (X,Y), respectively. It is
natural to consider a statistic based on the L, norm of the difference between the empirical characteristic functions; that is,
to substitute the empirical characteristic functions for the characteristic functions in the definition of the norm (7.1).

A key result (Székely et al., 2007, Theorem 1) is the following:

If (X,Y) is a random sample from the joint distribution of (X,Y), then

Iy (€.9)~F x(OF y(©) 1% = St +52-2S3, (7.5)

where

1 n
Si=13 X KXclplYiYoly (7.6)
ke =1

1 & 1 2
S=—5 ¥ |Xk_Xé’|pﬁ >

n [Y=Yelg, (7.7)
ke =1 ke =1

n n
2 X=Xz lplYk=Ymlg, (7.8)
m=1
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and
VEXY) =S;+S5,-253, (7.9)

where Vﬁ(X,Y) is given by (7.11) defined below.

For a random sample (X,Y) = {(X},Y}) : k=1,...,n} of n iid random vectors (X,Y) from the joint distribution of random
vectors X in R” and Y in R?, compute the Euclidean distance matrices (ax,) = (IXy—X¢|,) and (by,) = (|Yx—Y,|q). Define the
centered distances

Ay =ag~ar—a,+a., ke=1,..n, (7.10)

where

n

_ 1 _ 1
Uper Apy=—= 2 Gy 0. === 3 Gip
=1 N yr=a

I ™M=

S=

ay =

=1

Similarly, define By, = by,—~b;,—b ,+b , for k#=1,...,n.
The sample distance covariance V,(X,Y) and sample distance correlation R,(X,Y) are defined by

1 n
ViXY) =5 3 ABie, (7.11)
k=1
and
V2(X,Y) v
—rt—"— V:X)Vi(Y)>0;
RxY) =1 ooy
0, VAX)Va(Y) =0,

respectively, where the sample distance variance is defined by
2 2 1 & o
Vn(x) == Vn(X,X) = ﬁ Z Akf’
k=1

As a corollary we have that V4(X,Y)>0, V2(X)>0.
One can also show (Székely et al., 2007, Theorem 2) that we have the almost sure convergence:

nlim Vn(XY) =V(X,Y);

Jlim R2(X,Y) =R*(X,Y).

Under independence nV2(X,Y) converges in distribution to a quadratic form QZ 25 l/1J-Zj2, where Z; are independent
standard normal random variables, and {;} are nonnegative constants that depend on the distribution of (X,Y) (Székely et al.,
2007, Theorem 5). (For more details on 4; see Section 8.) Under dependence of (X,Y), nV2(X,Y)— oo as 1 — oo, hence a test that
rejects independence for large nV?2 is consistent against dependent alternatives.

On the definition of population distance covariance: Population distance covariance of random vectors X and Y with finite
expectations can alternately be defined along the same lines as the sample distance covariance. For a pair of vectors x,x'eR?,
and a random vector XeR?, introduce the notation

mxX)=E[|X=x|p], mMx:=E[mx(X)],

and
dx(X,X)=[X=X'],—MMx (X)—Mx (X') + M,

which is a doubly centered distance analogous to (7.10). Then an equivalent definition of population distance covariance is
V2(X,Y) = E[dx(X,X")dy(Y,Y")], (7.12)

which may be heuristically easier to understand than (7.3).

Distance covariance and distance correlation can be extended via (7.2), (7.11) and (7.12) to measure dependence of
several random variables. For example, dCor(X,Y,Z) measures the mutual dependence of X,Y,Z. The definition and theory of
partial distance correlation, however, is more complex; it will be addressed in a forthcoming paper.

Some other important properties of distance covariance are

(i) V(a1 +b1C1X,a;+b,CoY) = +/|b1by| V(X,Y), for all constant vectors a;eRP, a,eR?, scalars by, b, and orthonormal matrices
Ci1, G, in R? and RY, respectively.

(ii) Distance covariance is not covariance of distances, but (applying (7.3)) it can be expressed in terms of Pearson's
covariance of distances as

VZ(X,Y) = Cov(|X—X'|p,|Y=Y"|g)—2 Cov(IX=X"|,,|Y=Y"]y).
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It is interesting to note that Cov(IX—X'|p,|Y-Y’|q) = 0 does not imply independence of X and Y. Indeed, there is a simple
two-dimensional random variable (X,Y) such that X and Y are not independent, but |X—X’| and |Y-Y’| are uncorrelated.

Some additional properties of distance variance are:

(i) v(X) =0 implies that X = E[X], almost surely.
(ii) va(X) =0 if and only if every sample observation is identical.
(iii) If X and Y are independent, then V(X +Y)<V(X)+V(Y). Equality holds if and only if one of the random vectors X or Y is
constant.
(iv) V(a+bCX) = |b|V(X), for all constant vectors a in RP, scalars b, and p x p orthonormal matrices C.

In addition to the properties stated above for distance correlation, we have

(i) 0<R.(XY)<1.
(ii) Rn(X,Y) =1 implies that the dimensions of the linear subspaces spanned by X and Y respectively are almost surely
equal, and if we assume that these subspaces are equal then in this subspace
Y =a+bXC

for some vector a, nonzero real number b and orthogonal matrix C.

See Székely et al. (2007) and Székely and Rizzo (2009) for proofs of these results and other properties. Also see Dueck et al.
(submitted for publication) on affine invariant distance correlation.

Expected value of distance covariance: The statistic V2(X,Y) is asymptotically unbiased for V2(X,Y). Under independence of
XandY,

EDVAXY) = —- E|X X'||Y=Y'|.
In general, one can derive that

(n— 1)(n 2)? 2(n—1)2 _(n=1)(n-2)

n3 n3 ﬁv

EDAXY) = V2(X,Y)+

where y:E|X—X’||Y—Y’| a=EX-X’|, and g =E|Y-Y’|. Here
1

"= - 1),]2 Wi = n(n—l)(n—2)(n—3),g1kméu;a"bkm'

are unbiased estimators of y and «ap, respectively, and the statistic

1
U2 X,Y = 3 ZX,Y lbl 1b<m
a6 ) (n—=1)(n-2)> (" VaX )= ,E WP = 3),J§1km§ma1 : )

is unbiased for VZ(X, Y). A simpler and faster computing formula for an unbiased estimator of V(X,Y) is
Z anU-I— i aij(b..—Zbi.—ZbJ+2bij) aij(b,;—b,'j)

n(n —1)1J A m-Dn-3) 2 A1) (n-2)’

UA(X,Y) =

where b;,b;,b.. are the row i sum, column j sum, and grand sum, respectively of the distance matrix (by).
These results apply in arbitrary dimensions. In addition, for high dimensional problems, one can apply an alternate type
of correction for bias and obtain a distance correlation t-test of independence (Székely and Rizzo, 2013).

Example 4 (Measuring nonlinear dependence). In this example, which originally appeared in Székely and Rizzo (2009), we
illustrate how to isolate the nonlinear dependence between random vectors to test for nonlinearity. The bivariate data
follow the Gumbel bivariate exponential distribution, which has density function

f(x.y:0) =[(140x)(1+0y)] exp(-x—y—0xy), x,y>0; 0<0<1.
Here the marginal distributions are standard exponential, so there is a nonlinear, but monotone dependence relation
between X and Y. The conditional densities have the form

Fx) =e T+%Y[1+0x)(140y)-0], y>0.

The correlation between X and Y depends on 6. If 8 = 0 then p = p(X,Y) = 0, and it is easy to check that independence holds. If
0 =1 then p =-0.40365.

Random samples from the Gumbel bivariate exponential were generated with ¢ =0.5. Empirical power of dCov and
correlation tests are compared in Fig. 4 for sample sizes varying from 10 to 300 (10,000 replications for each n =10,20,...).
Fig. 4(a) reveals that the distance correlation test and correlation test are comparable in power against this alternative. This
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Fig. 4. Power comparison of distance covariance and correlation tests at 10% significance level for Gumbel's bivariate exponential distribution. In
subfigure (a), the null is H : X,Y are independent; in (b) the hypothesis tested is independence of X and &, where ¢ are residuals of the regression of Y on X.

is not surprising because E[Y|X =x]=(1+0+x6)/(1+x60)*> is monotone. In this example the rank tests (rank-dCov and
Spearman correlation test) were also applied after first transforming the X and Y samples to ranks.

One of the great advantages of distance correlation is that it can detect all types of dependence, including any nonlinear or
non-monotone association. We can effectively use this property to measure the lack-of-fit of a linear model, which is
illustrated next.

Although we cannot split the dCor or dCov coefficient into linear and nonlinear components, we can extract the linear
component from the data first by regressing Y on X, and then compute dCor on the residuals. Then we can separately analyze
the linear and nonlinear components of bivariate or multivariate dependence relations.

To extract the linear component of dependence, first we fit a linear model Y = X3+ to the sample (X,Y) by ordinary least
squares. We can then apply the dCov test of independence to (X,).

The results are illustrated for our Gumbel bivariate exponential (¢ =0.5) data in Fig. 4(b). The power of dCov tests is
increasing to 1 with sample size, which demonstrates consistency against the nonlinear dependence that remains in the
residuals of the linear model.

This “lack-of-fit” procedure for a linear model is easily applied in arbitrary dimension. One can fit a linear multiple
regression model to extract the linear component of dependence. One could also apply this method to a model with a
multivariate response. This has important practical application for evaluating models in higher dimension.

In addition to testing independence or nonlinearity, there are several other important applications. In Székely and Rizzo
(2009), dCov statistics were applied to identify influential observations. Distance covariance has been applied by Matteson
and Tsay (2011) for independent component analysis. Li et al. (2012) applied distance correlation for feature screening for
ultra-high dimensional data. For another interesting application of distance correlation see Kong et al. (2012).

7.2. Generalization of distance covariance for heavy tailed distributions
Based on Lemma 1 one can easily generalize the definition of distance covariance to a-distance covariance as follows:

Definition 5. For 0 <a <2, and random vector)s X and Y such that E(|X|*+Y|*) < oo, define the a-distance covariance
dCov,(X,Y) as the nonnegative square root of V2 (X,Y) defined by

1 ' lfx,y(t-s)—fx(t)fy(sﬂz
Cp.a)C(qa) Jp+a |ty PIsigTd

V2 (X,Y) = dt ds (7.13)

If EIX|; < oo and E|Y|g < co then

V2 (X,Y) = E[IX=X'[2]Y =Y |21+ EIX—X|2E|Y =Y |2~ E[IX =X |5 Y =Y " |1 -E[I X=X"[3] Y=Y "[2]. (7.14)

Ip
Based on this generalized distance covariance, we can generalize distance correlation. It is clear that « = 1 corresponds to
distance correlation (7.4).
Interestingly, if the a-distance correlation is computed from the a-distance covariance when a =2, and p=qg=1, then
the distance covariance in (7.14) is

EIX=X'*|Y=Y'|> +EIX=X'|?E|Y=Y'|>*=E|X=X'|*E|Y=Y"|>*=E|X=X"|*E|Y=Y"|.
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From this formula one can easily show that the (a = 2)-distance correlation is exactly the same as the absolute value of
Pearson's correlation p(X,Y) in the bivariate case. This correlation p cannot be expressed in terms of characteristic functions,
like in (7.13), and in fact we know that p = 0 does not imply independence. Despite this fact, both distance correlation and
the absolute value of Pearson's correlation are special cases of generalized a-distance correlation.

By this generalization, note that one can apply distance covariance to test independence of distributions that do not have
finite variance. For example, financial data are often modeled by stable distributions; in this case one can choose « such that
EIX—X'|?* < o (see Yang, 2012 for a proof) and an energy test can be applied.

We have applied the corresponding generalization in energy goodness-of-fit for Pareto family (Rizzo, 2009), Cauchy and
stable distributions (Yang, 2012). For the case of Pareto with @ <1 or non-Gaussian stable distribution, our statistic can be
applied using a smaller value of a. (If variance is finite, then we do not find that different choices of « in (0, 2) have
significantly different performance in terms of power.)

7.3. Brownian covariance

There is a very interesting duality between distance covariance and a covariance with respect to a stochastic process,
defined below. We will see that when the stochastic process is Brownian motion (Wiener process) the Brownian covariance
coincides with distance covariance (a=1). For more details see Székely and Rizzo (2009). See also the discussion of
Genovese (2009). One can show that fractional Brownian motion-covariance with Hurst parameter H corresponds to
generalized distance covariance (7.13) with exponent « = 2H. (On fractional Brownian motion see e.g. Herbin and Merzbach,
2007.) When the stochastic process is identity, we obtain classical product-moment covariance.

To motivate Definition 6, first, consider two real-valued random variables X,Y. The square of their ordinary covariance
can be written as

E*[(X—ECO))(Y—E(Y))] = E[X-EC))X'~EX))(Y=E(Y)(Y'=E(Y )],

Now define the square of conditional covariance, given two real-valued stochastic processes U(-) and V(-). If XeR and
{U(t) : teRy} is a real-valued stochastic process, independent of X, define the U-centered version of X:

Xy =UX)- /_oo U(t) dFx(t) = UX)-E[UX)IU],

whenever the conditional expectation exists. Notice that X;; = X—E[X], where id is the identity.
Next consider a two-sided, one-dimensional Brownian motion (Wiener process) W with expectation zero and covariance
function
S|+ |t|—|s—t| = 2 min(s,t), t,s>0.
(This is twice the covariance of the standard Brownian motion.)

Definition 6. The Brownian covariance of two real-valued random variables X and Y with finite first moments is a
nonnegative number defined by its square

W3(X,Y) = Coviy(X,Y) = EXwX'wYw Y'w],
where (W,W’) does not depend on (X,Y,X",Y").
If W in Covyy is replaced by the (non-random) identity function id, then Cov;y(X,Y) = |Cov(X,Y)| is the absolute value of
product-moment covariance.
Definition 6 can be extended to random processes and random vectors in higher dimension; see Székely and Rizzo
(2009) for details. The Brownian variance is defined by
W(X) = Vary(X) = Covy (X,X),
and Brownian correlation is
W(X,Y)
VWEXOW(Y)
whenever the denominator is not zero; otherwise Cory (X,Y)=0.
It was proved (Székely and Rizzo, 2009, Theorem 7) that Covy(X,Y) exists for random vectors X and Y with finite second
moments.

We collect generalizations of distance covariance to Brownian covariance and distance covariance of Gaussian processes
in the following theorem that is split into three parts for readability.

CorW(X,Y) =

Theorem 1 (i). If X is an RP-valued random variable, Y is an R%-valued random variable, and E(X|+|Y|) < oo, then
EXwX'wYw ¥, ] is nonnegative and finite, and

WA(X,Y) = EXwX'wYw ¥y 1= EIX=X'||Y=Y'| +EIX-X'|E)Y=Y'|-E|X=X'||Y=Y"|-EIX-X"||Y-Y'|, (7.15)
where (X,Y), (X',Y"), and (X",Y") are iid.
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If we compare Theorem 1(i) and (7.3), there is a surprising coincidence: Brownian covariance is equal to distance
covariance; that is, W(X,Y)=V(X,Y) in arbitrary dimension. See Székely and Rizzo (2009, Theorem 8) for the proof of
Theorem 1(i).

Now consider the Lévy fractional Brownian motion {Wﬂ(t),teRd } with Hurst index He(0,1), which is a centered Gaussian
random process with covariance function

EIWSOW()] = 1127 +Is2H-[t=s/?H, ¢,seR%.
The following generalization of Theorem 1 follows by application of Lemma 1 (see Székely and Rizzo, 2009).

Theorem 1 (ii). Let Wy and Wy« denote independent fractional Brownian motion processes with Hurst index H, and suppose
that XeRP,YeRY, E|X|g < oo, E|Y|g* < o0, and (X,Y),(X",Y"),(X",Y") are independent. Then for 0 < H, H*<1, h:=2H, and h*:=2H*, we
have

[f(t.9)-f(t)g(s)I” dt ds
Cp.C@q.h") Jr S jep+hysja+h®

= EIX-X' MY =Y\ + EX-X'[RE)Y =Yl ~EIX-X' B Y=Y | —EIX-X"|1 Y-y | (7.16)

2 _
CovWZ_W’;,* X,Y)=

Observe that when h=h*=1, (7.16) is Eq. (7.15) of Theorem 1(i). That is, we have Brownian motion and Brownian
covariance when H=1/2 and a=1.

One can also generalize the notion of Brownian covariance to define a distance covariance for more general Gaussian
processes.

Definition 7. Let ¢;, i=1,2 be two conditionally negative definite continuous symmetric functions from R to R, such
that E¢;(IX—X'|) <o and E¢;(]Y-Y'|) <. Consider the zero mean Gaussian processes (Gaussian fields) G; with
covariance functions k;(s,t) = ¢;(Is)) + ¢;(|t])—¢;(Is—t|). The (squared) distance covariance of X and Y with respect to G; and
G, is defined as

Covg, ¢, (X.Y):=E[Xc, X6, Y, Y'G,). (7.17)
where (X,Y), (X',Y’), and (X”,Y”) are iid.
Theorem 1 (iii). In Definition 7,

Covg, ¢, (X.Y) = EXc,X'c, Y6, Y'c,] (7.18)
is nonnegative, finite, and

Covél_GZ(X,Y) =Ep1(IX=X"D)p2(IY=Y') +Ep1 (IX=X'DEpo(IY =Y ')=Ep1 (IX=X"Dpo(IY =Y")—=Ep1 (IX=X" ] (IY=Y"]).

In addition to the functions ks,t) = |t|*" +|s|?H —|t—s|? (fractional Brownian motion), important examples of condition-
ally negative definite functions include the negative logarithm of the symmetric Laplace characteristic function, log(1+ |t|?).
The covariance function of the corresponding Gaussian process is

(1+1s1%)(1 +|t|2))

k(s,t) = constant x lo
.0 * g( 1+ |s—t

This process (field) can be called a Laplace-Gaussian process. Another example is the negative logarithm of the
characteristic function of the difference of two iid Poisson variables. The corresponding ¢;(t) = cos t—1 and
k(s,t) = cos s+ cos t—cos(s—t)-1,

and this process can be called a Poisson-Gaussian process. Details on proof and application of Theorem 1(iii) will be
published elsewhere.

Remark 1. If &;, i=1,2, denotes the centered version of ¢; such that the conditional expectations E(®;(X—X")|X) and
E(®,(Y-Y")|Y) are equal to zero with probability one, then the Gaussian distance covariance is

Covg, ¢, (X.Y) = E[@1(X-X)@5(Y-Y")]. (7.19)

For the proof of a similar claim see Lyons (to appear).
7.4. Dependent observations

So far in this paper we have assumed that the observations are iid, but this is a stronger assumption than necessary. In
fact it is sufficient to suppose that the sample {X; : i=0, + 1, + 2,...} is strongly stationary and ergodic. To see this, observe
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that the conditional negative definiteness of ¢ : RY >R implies that the kernel
h(x,y) = hy(x,y)=Ep(x—X) +Ep(y—X)~EHX-X")~p(x~y)

is positive semidefinite. If Eh(X,X’) < + oo, then under the null hypothesis that in the definition of the kernel h the
observations have the same distribution as X, we have that

E[h(x.X)IX1,X2,... Xn1]1=0, n=12,...

almost surely (a.s.) with respect to the probability distribution of X. This implies that E[h(x,X)] = 0 a.s. Thus the kernel h is
degenerate, but in fact we have more: a martingale difference type property. If we suppose that ¢ is also symmetric and
continuous as in Proposition 3, then by Theorem 1 of Leucht and Neumann (2013) we have that the asymptotic distribution
of the V-statistic with kernel h is of the same type as if the sample elements were iid: a quadratic form Q (8.2) of iid standard
normal random variables.

It is also true that the strong law of large numbers applies to the corresponding energy statistics (Aaronson et al., 1996,
Theorem U). This means that we can apply energy tests even if the sample elements are not iid, but only strongly stationary
and ergodic, which is a standard regularity condition for time series, stochastic processes and random fields.

On the other hand, if we know that the observations are increments of a stochastic process (or random field) X(t) with
stationary increments, such that E[X(t)]=0 and ¢(t—s):=Var(X(t)-X(s)), t,s€R%, then ¢ is symmetric and conditionally
negative definite (because Var(}1<i<nCiX(t;))>0). If ¢ is also continuous, then by Proposition 3 it is natural to apply the
corresponding generalized energy kernel, h,(x,y), for statistical tests. In case of Brownian distance covariance we had iid
observations and X(t) was Brownian motion. For general Gaussian distance covariance (Definition 7), it makes sense to
choose the Gaussian processes with ¢(t) = Var(X; +---+X;), which implies that for the corresponding covariance function
k(s,t) we have

2Kk(s,t) = 2E[X(H)X(S)]
= EX(0)*1+EIX($)*1-EIX(D-XS) = $(6)+ ()~ (t=S).
We also have the converse identity for computing ¢ from k:
P(t=s) = k(t,t) + k(s,5)—2k(s,t).

Theoretical foundation for degenerate kernel V-statistics (directly relevant to energy statistics for dependent observa-
tions) is found in the recent work of Leucht and Neumann (2013). For time series, definitions of an “auto” distance
correlation analogous to auto correlation have been considered by Matteson and Tsay (2011), Rémillard (2009), and Zhou
(2012).

8. Statistical potential and kinetic energy

Energy is one of the most fundamental concepts in science. Energy is the capacity of an item to do work, the capacity of
acting. Potential energy is the general name of energy which has to do with the location of an object relative to something
else, as in Newton's potential energy. If x4 is a mass distribution or a probability distribution in R?, xeR>, and yeR?, the
Newton potential function of x is defined by the formula

) = du(y)

& IX=yl’

where | - | denotes Euclidean distance. The potential energy function measures the energy necessary to move one unit mass
from the location x to infinity in a gravitational space with mass distribution x. The same formula describes Coulomb's
electrostatic potential if 4 denotes the charge distribution. As a result, according to classical ideas, the orbits of electrons in
atoms are similar to the gravitational orbits in the solar system. The kernel y(x,y)= |x—y|~! =11, where r=|x-y| is
traditionally called Green's function. If the exponent of r is not —1 but 2, then we get the law of elasticity (Hooke's law)
where the force (the negative gradient of the potential) is proportional to the stretching (r) of a solid body, e.g. of a spiral
spring. Thus in physics both positive and negative exponents are applicable.
For statistical applications in R? we need the following extension:

w00 = [ xy1* duty) = Eix-Y1",

where a€R, E is the expected value, and Y is a random variable with distribution x and finite absolute a-moment.

Now let us revisit the goodness-of-fit problem based on the statistical energy &, of samples of size n in the ‘field’ of a
given probability distribution (null distribution), the distribution of a random vector X.

To apply € for univariate or multivariate goodness-of-fit tests of the null hypothesis Hy : X~Fg, the energy statistic &, (4.1)
is a V-statistic with kernel h : RY x R? >R defined by

h(x,y) = E|x—X| +E|y—X|-E|X-X"|—|x-Y]|. 8.1
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By the law of large numbers for V-statistics (see e.g. Serfling, 1980 or Koroljuk and Borovskich, 1994), we have
nlim En = E[h(X,X")]

with probability one. Applying Proposition 1 we see that &(F,Fg) >0 whenever Hp: F=F, is false. Hence under an
alternative hypothesis n&,; — oo with probability one, as n— co.

On the other hand, if Hy is true, then the kernel h is degenerate; that is, E[h(x,X)] = O for almost all xeR¢. Thus né, has a
finite limit distribution under the extra condition E[h*(X,X")] < oo (see Serfling, 1980 or Koroljuk and Borovskich, 1994,
Theorem 5.3.1). This result combined with the property that n€, > under the alternative shows that tests can be
constructed based on &, that are consistent against general alternatives.

Under the null hypothesis, if E[h?(X,X")] < oo, the limit distribution of n&, is a quadratic form

Q= kilﬂkzﬁ (8.2)

of iid standard normal random variables Z, k=1,2,... (Koroljuk and Borovskich, 1994, Theorem 5.3.1). The nonnegative
coefficients 4, are eigenvalues of the integral operator with kernel h(x,y), satisfying the Hilbert-Schmidt eigenvalue equation

[y dF) = . 8.3)

We will call the eigenvalues A the statistical potential energy levels.

The kernel h is symmetric (h(x,y) = h(y,x)), hence the eigenvalues are real. Since |x—y| is conditionally negative definite,
one can easily see that h(x,y) is positive semidefinite, and thus all eigenvalues in (8.3) are nonnegative. It is also known that
their sum is finite and equal to E|X-X'|.

The kernel h is degenerate; that is,

/ h(x,y) dF(y) =0.

Thus y =1 is an eigenfunction with eigenvalue 0. Since eigenfunctions with different eigenvalues are orthogonal we have
for any y corresponding to a nonzero 4 that

[ v darm=o.
For such a y in (8.3) the y-independent terms in h(x,y) integrate to O and thus (8.3) simplifies to
[ Ey=Xi-x=yhwy) dF ) =20,
In the one dimensional case, if we differentiate with respect to x we get
-/ signe-yw ) dFg) = iy (),
where (a,b) is the support of dF. (Note that a,b can be infinite). Now letting x—a,
w@=- | " sign(@-yw() dF) = / ") dFg) =0.

We get a similar equation for b. Therefore the boundary conditions are

w'(@)=y'(b)=0,
and this also holds for yy = 1. One more differentiation leads to
—2fy =",
where f = F'. This means that for f#0 and for x:=1/1 we have the simple eigenvalue equation
1
- ﬁv/” = py. (8.4)

Now let us recall the time independent (stationary) Schrodinger (1926) equation of quantum physics:

_y'X)
2m

+VX)y(x) = Ep(x).

Here y is the standing wave function, m is the mass of a particle, V(x) is the potential function, and £ denotes the energy
level. The left hand side of (8.4) corresponds to pure kinetic energy because the V(x)y(x) term is missing in (8.4). We can
thus call 4 in (8.4) the statistical kinetic energy level.

We have just proved that in one dimension the statistical potential energy level A is the exact reciprocal of the statistical
kinetic energy level u.
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The derivation of this nice property relies on the fact that (1/2)|x-y| is the fundamental solution of the one-dimensional
Laplace equation
d* 1
Ei [X=y| = —o(x=Y),
where §(-) is the Dirac delta function.

In dimension d, the fundamental solution of the d-dimensional Laplace equation, i.e. the solution of A¢(x) = —5(x—Y)
where 4 is the Laplace operator, ¢ is a scalar function on R and § is the Dirac delta, is (4x)~! |x—y|§‘d for d> 2, and
(27) 'log|x—y|4 for d=2. Therefore the relationship between the statistical potential energy levels and the kinetic energy
level is more complex if d>2.

We can also compute the statistical potential energy levels by applying Proposition 1. If the characteristic function of F is
f and the  empirical characteristic function of F is f »» then provided that the variance of F exists, we have that under the null
Jaf a(t— —f(t)) tends to a (complex) Gaussian process with zero expected value and covariance function f(s—t)—f (s)f (t).

Now from the Karhunen-Loéve expansion for Gaussian processes, we have the following equation for the eigenvalues A:

1 [ fe-0-ferf©

— [ LTI IR sy ds = Aw(t),
R? |S|51d+])/2|t|£1d+])/2

where
2@+1)/2

d+1\°
F -

(5)

It is known that this eigenvalue equation has a countable spectrum; that is, we have a discrete set of solutions
A k=1,2,...}. A

For example, if f is the standard normal characteristic function, then

fls-t-Ffsnf = e+t 1y,

thus

ca=C(d,1) =

1 e—(52+t2)/2[est_1]

d+1)/2,,,d+1)/2
lg [ty

— P (s) ds = AP(t),
s s) (t)

where st, s%, and £ denote inner products if d > 1.

Typically we do not know the parameters of the normal distribution but we can standardize the sample using the sample
mean and sample standard deviation. If the characteristic function of the standardized sample is g,(t) and f(t) denotes the
standard normal characteristic function, then it is still true that Jﬁ(gn(t)—f (t)) tends to a (complex) Gaussian process with
zero expected value, but one can show that the covariance function now changes to

e T2 (eSt 1 _st—(st)? /2),
and the eigenvalue equation becomes

1 [ e & +)/2(est_1_st—(st)?/2)

Cq d+1)/2 ,(d+1)/2
Cd R4 Islt(j )/ |t|51 )/

¥(s) ds = 2¥(t). (8.5)

After discretization of the integral one can compute approximate values of the first few eigenvalues in (8.5). For d=1 the
approximate eigenvalues in decreasing order are: 0.11311, 0.08357, 0.03911, 0.03182, 0.01990, 0.01698, 0.01207, 0.01060,
0.00810, ...(computation by V.N. Rokhlin). See e.g. Rokhlin (1983) or Atkinson (1997, Chapter 4) on numerical solutions of
equations of this type.

If only the mean is estimated then we just need to delete the term (st)?/2 in (8.5). For more details see Méri and Székely
(2011).

9. Historical background

The notion of £-statistic or energy statistic was introduced at least as early as the mid-1980s, in several lectures given in
Budapest, Hungary, in the Soviet Union, and at MIT, Yale, and Columbia (for lecture notes and Technical Reports see Székely,
1989, 2003). This topic was also the central topic of the first author's NSA Grant “Singular Kernel Nonparametric Tests”
submitted in 2000 (NSA Grant # MDA 904-02-1-0091).

The prehistory of Proposition 2 goes back to Gel'fand and Shilov, who showed that in the world of generalized functions,
the Fourier transform of a power of a Euclidean distance is also a (constant multiple of a) power of the same Euclidean
distance (see Egs. (12) and (19) for the Fourier transform of |x|*, Gel'fand and Shilov, 1964, pp. 173-174). Thus, one can extend
the validity of Lemma 1 using generalized functions, but the Proposition itself is not in Gelfand and Shilov (1964). The
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duality between powers of distances and their Fourier transforms (characteristic functions) is similar to the duality between
probability density functions of random variables and their characteristic functions (especially of normal distributions
whose probability density functions have the same form as their characteristic functions). This duality was called by Gauss a
“beautiful theorem of probability theory” (“Schénes Theorem der Wahrscheinlichkeitrechnung”, Hans, 2011, p. 46). The
proof of Propositions 1 and 2 in the univariate case, appeared as early as 1989 (Székely, 1989).

An important special case of Proposition 1, namely E|X +X'|>E|X-X'| for all real valued X and X’ with finite expectations,
was a college level contest problem in Hungary in 1990 (Székely, 1996, p. 458). Russian mathematicians also published
proofs of these propositions and their generalizations to metric spaces, and for more general functions than Euclidean
distances; see e.g. Klebanov (2005). See also Mattner (1997) and Morgenstern (2001) of the Austrian-German school. It
seems that by now many versions of the energy distance of Definition 1 and Proposition 1 and its proofs have become
international folklore. On applications see the test of bivariate independence of Feuerverger (1993), and the test of
homogeneity of Baringhaus and Franz (2004). See also historical comments on “Hoeffding-type inequalities” and their
generalizations in Gneiting and Raftery (2007, Section 5.2).

In the 2000s many applications of energy statistics have appeared in the statistics literature as well as the literature of
many other disciplines. The applications and extensions discussed in this paper represent only a subset of recent work that
has appeared.
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Appendix A. Proof of Lemma 1

First let us see the proof for a = 1. Apply an orthogonal transformation t—z = (z,2,...,2z4) with z; = (t,x)/|x| followed by a
change of variables: s = |x| - z to get

1—cos(z1|x|) 1—cos s ds,
Jre |Z|d+l _l | |d+1

where s = (51,52,...,5¢). Then for s =(s1,52,...,54),

1—cos s d+1D/2
cd._C(d,l)_/Rd R ds = r<d+1) .
2

For d=1 see Prudnikov et al. (1986, p. 442). Note that 2c; = w4 1 is the area of the unit sphere in R%*1.In the general case
when both d and « can differ from 1, more technical steps are needed. Applying formulas 3.3.2.1, p. 585, 2.2.4.24 p. 298 and
2.5.3.13 p. 387 of Prudnikov et al. (1986), we obtain

@vpp(etl
. / dzydzs...dzg _ 2z /°° x2dx " F( 2 )
SRt (14224 224 e 22) 002 r d=1\ Jo (14x2)d+®/2 r d+a
2 2
04
d /°°l—cos au - /°°sinv a1 ﬁr(l——)
adl P du) =a dv=a"'—F>—%
da\ Jy ulte Jo v a (a+1)
2°r
2
Introduce new variables sy:=z;, and s;:=s1z; for k=2,...,d. Then
1
Ld-n2p (ot ) _“ d2p(1_%
~1—cos 24 ( 5 2ﬁr(1 2) 2 r(l 2)

C(d,a):Ax/ 52 7 = x = :
— lalt I‘(?) a2ar(¥) aZU’I‘(?)

and this was to be proved. o
References

Aaronson, J., Burton, R., Dehling, H., Gilat, D., Hill, T., Weiss, B., 1996. Strong laws for L- and U-statistics. Transactions of the American Mathematical Society
348, 2845-2865.



G.J. Székely, ML.L. Rizzo / Journal of Statistical Planning and Inference 143 (2013) 1249-1272 1271

Atkinson, K.E., 1997. The Numerical Solution of Integral of the Second Kind. Cambridge University Press ISBN 0-521-58391-8.

Baringhaus, L., Franz, C., 2004. On a new multivariate two-sample test. Journal of Multivariate Analysis 88, 190-206.

Baringhaus, L., Franz, C., 2010. Rigid motion invariant two-sample tests. Statistica Sinica 20, 1333-1361.

Berg, C., 2008. Stieltjes-Pick-Bernstein-Schoenberg and their connection to complete monotonicity. In: Mateu, J., Porcu, E. (Eds.), Positive Definite
Functions: From Schoenberg to Space-Time Challenges. Department of Mathematics, University Jaume I, Castellon, Spain.

Berg, C., Christensen, J.P.R., Ressel, P, 1984. Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions. Graduate Texts in
Mathematics, vol. 100. Springer-Verlag, Berlin, Heidelberg, New York.

Buja, A., Logan, B.F, Reeds, J.A., Shepp, L.A., 1994. Inequalities and positive definite functions arising from a problem in multidimensional scaling. Annals of
Statistics 22 (1), 406-438.

Cramér, H., 1928. On the composition of elementary errors: Il. Statistical applications. Skandinavisk Aktuarietidskrift 11, 141-180.

DasGupta, A., 2008. Asymptotic Theory of Statistics and Probability. Springer, New York.

Dueck, J., Edelmann, D., Gneiting, T., Richards, D. The affinely invariant distance correlation, submitted for publication. ¢(http://arxiv.org/abs/1210.2482).

Feuerverger, A., 1993. A consistent test for bivariate dependence. International Statistical Review 61, 419-433.

Fischer, Hans, 2011. A History of the Central Limit Theorem: From Classical to Modern Probability Theory. Springer.

Gel'fand, I.M., Shilov, G.E., 1964. Generalized Functions, Volume I: Properties and Operations. Academic Press, New York (translation by E. Salatan of the
Russian edition of 1958).

Genovese, C., 2009. Discussion of: Brownian distance covariance. Annals of Applied Statistics 3 (4), 1299-1302, http://dx.doi.org/10.1214/09-A0AS312G.

Gneiting, T., Raftery, A.E., 2007. Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association 102 (477), 359-378.

Gretton, A., Gyorfi, L., 2010. Consistent nonparametric tests of independence. Journal of Machine Learning Research 11, 1391-1423.

Gretton, A., Gyorfi, L., 2012. Strongly consistent nonparametric test of conditional independence. Statistics and Probability Letters 82, 1145-1150.

Gurtler, N., Henze, N., 2000. Goodness-of-fit tests for the Cauchy distribution based on the empirical characteristic function. Annals of the Institute of
Statistical Mathematics 52 (2), 267-286.

Henze, N., Zirkler, B., 1990. A class of invariant and consistent tests for multivariate normality. Communications in Statistics—Theory and Methods 19,
3595-3617.

Herbin, E., Merzbach, E., 2007. The multiparameter fractional Brownian motion. In: Math Everywhere. Springer, Berlin, pp. 93-101.

Hoeffding, W., 1948. A class of statistics with asymptotic normal distribution. Annals of Mathematic Statistics 19 (3), 293-325.

Kim, A.Y., Marzban, C., Percival, D.B., Stuetzle, W., 2009. Using labeled data to evaluate change detectors in a multivariate streaming environment. signal
Processing 89 (12), 2529-2536. ISSN 0165-1684.

Klebanov, L., 2005. N-Distances and Their Applications. Charles University, Prague.

Kong, J., Klein, B.E.K,, Klein, R, Lee, K., Wahba, G., 2012. Using distance correlation and SS-ANOVA to assess associations of familial relationships, lifestyle
factors, diseases, and mortality. Proceedings of the National Academy of Sciences 109 (50), 20352-20357, http://dx.doi.org/10.1073/pnas.1217269109.

Koroljuk, V.S., Borovskich, Yu.V., 1994. Theory of U-statistics, Mathematics and its Applications, vol. 273. Kluwer Academic Publishers Group, Dordrecht
(Translated by P.V. Malyshev, D.V. Malyshev from the 1989 Russian original ed.).

Lehmann, E.L., 1966. Some concepts of dependence. Annals of Mathematical Statistics 37, 1137-1153.

Leucht, A., Neumann, M.H., 2013. Degenerate U- and V-statistics under ergodicity: asymptotics, bootstrap and applications in statistics. Annals of the
Institute of Statistical Mathematics 65 (2), 349-386.

Li, R, Zhong, W., Zhu, L., 2012. Feature screening via distance correlation learning. Journal of the American Statistical Association 107 (499), 1129-1139,
http://dx.doi.org/10.1080/01621459.2012.695654.

Lyons, R. Distance covariance in metric spaces, Annals of Probability, to appear. ¢(http://mypage.iu.edu/~rdlyons/pdf/dcov.pdf).

Mardia, K.V., 1970. Measures of multivariate skewness and kurtosis with applications. Biometrika 57, 519-530.

Matsui, M., Takemura, A., 2005. Empirical characteristic function approach to goodness-of-fit tests for the Cauchy distribution with parameters estimated
by MLE or EISE. Annals of the Institute of Statistical Mathematics 57 (1), 183-199.

Matteson, D.S., Tsay, R.S., 2011. Independent Component Analysis via Distance Covariance. (http://www.stat.cornell.edu/matteson/papers/MattesonTsay_d
CoVICA.pdf), preprint.

Matteson, D.S., James, N.A., 2012. A Nonparametric Approach for Multiple Change Point Analysis of Multivariate Data ¢http://www.stat.cornell.edu/
~matteson/papers/MattesonJames2012a.pdf), preprint.

Mattner, L., 1997. Strict negative definiteness of integrals via complete monotonicity of derivatives. Transactions of the American Mathematical Society 349
(8), 3321-3342.

Mensheinin, D.O., Zubkov, A.M., 2012. Properties of the Székely-Moéri symmetry criterion statistics in the case of binary vectors. Mathematical Notes 91 (4),
62-72.

Mori, T.E, Székely, GJ., 2011. On the covariance function of Gaussian processes, preprint.

Morgenstern, D., 2001. Proof of a conjecture by Walter Deuber concerning the distance between points of two types in R%. Discrete Mathematics 226,
347-349.

Newton, M.A., 2009. Introducing the discussion paper by Székely and Rizzo. Annals of Applied Statistics 3 (4), 1233-1235, http://dx.doi.org/10.1214/09-
AOAS34INTRO.

Prudnikov, A.P., Brychkov, A., Marichev, 0.1, 1986. Integrals and Series. Gordon and Breach Science Publishers, New York.

R Development Core Team, 2012. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-
900051-07-0, ¢http://[www.R-project.org).

Rémillard, B., 2009. Discussion of: ‘Brownian distance covariance’. Annals of Applied Statistics 3 (4), 1295-1298, http://dx.doi.org/10.1214/09-A0AS312F.

Rizzo, M.L., 2002. A New Rotation Invariant Goodness-of-Fit Test. Ph.D. Dissertation. Bowling Green State University.

Rizzo, M.L., 2003. A test of homogeneity for two multivariate populations. In: 2002 Proceedings of the American Statistical Association, Physical and
Engineering Sciences Section. American Statistical Association, Alexandria, VA.

Rizzo, M.L.,, 2009. New goodness-of-Fit tests for Pareto distributions. ASTIN Bulletin: Journal of the International Association of Actuaries 39 (2), 691-715.

Rizzo, M.L., Székely, G.J., 2010. DISCO analysis: a nonparametric extension of analysis of variance. Annals of Applied Statistics 4 (2), 1034-1055.

Rizzo, M.L,, Székely, G.J., 2011. Energy: E-statistics (Energy Statistics). R package version 1.4-0.

Rokhlin, V., 1983. Rapid solution of integral equations of classical potential theory. Journal of Computational Physics 60, 187-207.

Schilling, K., Oberdick, J., Schilling, R.L., 2012. Toward an efficient and integrative analysis of limited-choice behavioral experiments. Journal of Neuroscience
32 (37), 12651-12656.

Schrédinger, E., 1926. An undulatory theory of the mechanics of atoms and molecules. Physical Review 28 (6), 1049-1070.

Serfling, R.J., 1980. Approximation Theorems of Mathematical Statistics. Wiley, New York.

Székely, GJ., 1989. Potential and Kinetic Energy in Statistics. Lecture Notes. Budapest Institute of Technology (Technical University).

Székely, G.J., 1996. Contests in Higher Mathematics. Springer, New York.

Székely, G.J., 2003. E-statistics: Energy of Statistical Samples. Bowling Green State University, Department of Mathematics and Statistics Technical Report
No. 03-05 (also technical reports by same title, from 2000-2003 and NSA Grant # MDA 904-02-1-0091 (2000-2002).).

Székely, G.J., Bakirov, N.K., 2003. Extremal probabilities for Gaussian quadratic forms. Probability Theory and Related Fields 126, 184-202.

Székely, G.J., Méri, T.F, 2001. A characteristic measure of asymmetry and its application for testing diagonal symmetry. Communications in Statistics—
Theory and Methods 30 (8&9), 1633-1639.

Székely, G.J., Rizzo, M.L., 2004. Testing for Equal Distributions in High Dimension. InterStat, November (5).

Székely, G.J., Rizzo, M.L,, 2005a. A new test for multivariate normality. Journal of Multivariate Analysis 93 (1), 58-80.



1272 G.J. Székely, M.L. Rizzo / Journal of Statistical Planning and Inference 143 (2013) 1249-1272

Székely, G.J., Rizzo, M.L., 2005b. Hierarchical clustering via joint between-within distances: extending Ward's minimum variance method. Journal of
Classification 22 (2), 151-183.

Székely, G.J., Rizzo, M.L., 2009. Brownian distance covariance. Annals of Applied Statistics 3 (4), 1236-1265.

Székely, G.J., Rizzo, M.L,, 2012. On the uniqueness of distance covariance. Statistics & Probability Letters 82, 2278-2282.

Székely, G.J., Rizzo, M.L., 2013. The distance correlation t-test of independence in high dimension. Journal of Multivariate Analysis 117, 193-213.

Székely, G.J., Rizzo, M.L., Bakirov, N.K., 2007. Measuring and testing independence by correlation of distances. Annals of Statistics 35 (6), 2769-2794.

Von Mises, R., 1947. On the asymptotic distributions of differentiable statistical functionals. Annals of Mathematical Statistics 2, 209-348.

Yang, G., 2012. The Energy Goodness-of-Fit Test for Univariate Stable Distributions. Ph.D. Thesis. Bowling Green State University.

Yitzhaki, S., 2003. Gini's Mean difference: a superior measure of variability for non-normal distributions. Metron 61, 285-316.

Zacks, S., 1981. Parametric Statistical Inference: Basic Theory and Modern Approaches. Pergamon, Oxford.

Zhou, Z., 2012. Measuring nonlinear dependence in time-series, a distance correlation approach. Journal of Time Series Analysis 33 (3), 438-457.



