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a b s t r a c t

This paper proposes a new nonlinear classifier based on a generalized Choquet integral with signed

fuzzy measures to enhance the classification accuracy and power by capturing all possible interactions

among two or more attributes. This generalized approach was developed to address unsolved Choquet-

integral classification issues such as allowing for flexible location of projection lines in n-dimensional

space, automatic search for the least misclassification rate based on Choquet distance, and penalty on

misclassified points. A special genetic algorithm is designed to implement this classification

optimization with fast convergence. Both the numerical experiment and empirical case studies show

that this generalized approach improves and extends the functionality of this Choquet nonlinear

classification in more real-world multi-class multi-dimensional situations.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Supervised classification is a procedure of constructing a
mathematical model based on a training data set and using the
model to assign a categorical class label to any new sample
element. Essentially, this type of classification procedure is an
optimization problem and has been widely applied in the pattern
recognition and decision making literature. Classification meth-
ods, such as neural networks, decision trees, and nearest neighbor,
have been studied extensively [1–7]. Nonlinear-integral based
classification methods have recently gained more attention and
encouraging results [8–11]. Our line of research concentrates on
using the Choquet integral to conduct nonlinear classification
[12,13] and regression analyses [14–18]. Our core research in
nonlinear Choquet classification is based on the theoretical
development of Choquet integral [19] by Wang and Klir [20] and
our subsequent research team [21–26]. Previously, we studied the
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applicability of Choquet integral in classification problems such as
high-dimensional projection [12], and the algorithms for Choquet
classification [27,28]. To further advance our method, we realize
that there are three issues yet to be solved. First, our previous
research [12,13] can solve the nonlinear classification problem
only when the projection line is through the origin, which means
that those projection lines not through the origin could not be
identified, and therefore some classes with their actual bound-
aries on other projected locations in n-dimensional space cannot
be properly classified. Second, our previous studies [12,13] used
discrete misclassification rates, where a predefined misclassifica-
tion rate would be required each time in the classification process,
which can be inaccurate or ineffective. In this paper, an automatic
searching of the least misclassification rate using a continuous
Choquet distance is addressed. Thirdly, our preliminary research
[12,13] has not yet found an effective way to penalize misclassified
points which caused an unsolved optimization problem in
practice, while in this study a penalty coefficient will be discussed
to address this issue. Our contribution herein is to further
generalize the functionality of nonlinear Choquet-integral based
classification by solving the above three identified problems.

Literature indicates that the genetic algorithm is an effective
approach to finding the optimal solution of a nonlinear classification
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problem [12,29]. The genetic algorithm is a parallel random
search technique widely applied in parameterized optimization
problems, although it has been shown that its search speed is
sometimes slow [27,28,30]. We studied different algorithms for
Choquet classification. For example, compared to other algorithms
such as neural networks, the advantage of the special genetic
algorithm for Choquet integral avoids the risk of failing into a local
minimum on the error surface, and its speed is also satisfactory
[27,28]. In this work, our specially designed genetic algorithm is
further upgraded to accommodate the three newly identified
issues for nonlinear Choquet classification.

Recently we proposed the Choquet classifier for linear models
[15]. In [15] the classifier estimated a hyperplane to separate the
given data in the feature space for a linear model. However, in the
real world, the data are most likely to be linearly not separable. In
this situation, nonlinear models are needed to enhance the
classification power. A naive assumption is that the contribution
from all the attributes is the sum of the contribution from each
individual attribute. This consideration usually results in a power
loss in classification models. If the interaction among attributes
towards the classification is nonignorable, fuzzy measures (non-
additive measures) should be considered. When the nonadditive
fuzzy measures are identified through the Choquet integral, the
classifier becomes nonlinear [12,13,19,20,31].

In the following sections we first introduce the fuzzy measure
used in our previous research and then the generalized Choquet
integral used in this work. Sections 3 and 4 present our new
Choquet-based nonlinear classification model and our upgraded
special genetic algorithm to solve the above three identified issues.
Then in Section 5 a numerical example is exhibited to illustrate the
classification procedure in detail using artificial data. In Section 6
we demonstrate the performance and advantages of our proposed
generalized approach in multi-class multi-dimensional situations
using data from the UCI Machine Learning repository [32].
2. Fuzzy measures and Choquet integrals

The use of the Choquet integrals with respect to a signed fuzzy
measure has been shown as an efficient approach to aggregate
information from attributes via a nonadditive set function
[22,23,25,26]. Let X ¼ fx1; . . . ; xng represent the attributes of the
sample space and PðXÞ denote the power set of X. The signed fuzzy

measure m is defined as a set function

m : PðXÞ-ð�1;1Þ;

where mð|Þ ¼ 0.
Let mi, i¼ 1; . . . ;2n

� 1, denote the values of the set function m on
the nonempty sets in PðAÞ, and f denote a given function, where
f ðx1Þ; . . . ; f ðxnÞ represent the values of each attribute for one
observation. The procedure of calculating the generalized Choquet
integral is given in [14], summarized as follows. Let fx1

0 ; x2
0 ; . . . ; xn

0 g

be a permutation of ðx1; x2; . . . ; xnÞ such that f ðx1
0 Þ, f ðx2

0 Þ; . . . ; f ðxn
0 Þ is

in nondecreasing order. That is,

f ðx1
0 Þr f ðx2

0 Þr � � �r f ðxn
0 Þ:

The Choquet integral with respect to fuzzy measure m is defined as

ðcÞ

Z
f dm¼

Xn

j ¼ 1

½f ðxj
0 Þ � f ðxj�1

0 Þ�mðfxj
0 ; xjþ1

0 ; . . . ; xn
0 gÞ;

where f ðx0
0 Þ ¼ 0 and ðcÞ indicates Choquet integral. Let o : X-½0;1�

be a nonnegative weight function on the attributes such thatPn
i ¼ 1 oðxiÞ ¼ 1. In [12,14] the weighted Choquet integral with
respect to a nonadditive measure m is defined by

Y ¼ ðcÞ

Z
of dm;

where f is a nonnegative set function and mðXÞ ¼ 1.
In this paper, we generalize the weighted Choquet integral

with respect to a nonadditive measure to a more comprehensive
Choquet model, which is with respect to a nonadditive signed
measure; that is, allowing the set function to take negative values
and to be nonmonotone. Thus, a generalized weighted Choquet

integral is expressed as

Y ¼ ðcÞ

Z
ðaþbf Þ dm;

where signed measure m is restricted to be regular ðmaxA � X j

mðAÞj ¼ 1Þ. The parameters a¼ ða1; a2; . . . ; anÞ and b¼ ðb1;

b2; . . . ; bnÞ, are n-dimensional vectors satisfying aiA ½0;1Þ with
mini ai ¼ 0 and jbijA ½0;1� with maxijbij ¼ 1. We use this general-
ized Choquet model as a projection tool to reduce the complexity
of the classification problem in an n-dimensional space [12,25,26].
We call a and b the matching vectors used to address the scaling
and phase matching requirements of the feature attributes. In
other words, matching vectors a and b are used to scale diverse
units and ranges of the feature attributes with respective
dimensions such that the signed measure m can reflect the
interaction appropriately. Also, with both scaling and phase
matching parameters a and b, the projection line does not have
to go through the origin. The simulation study in Section 5 will
further demonstrate this function. Generally Y depends on f

nonlinearly due to the nonadditivity of m. For convenience,

mðfx1gÞ;mðfx2gÞ; . . . ;mðfxngÞ;mðfx1; x2gÞ;mðfx1; x3gÞ; . . .

are abbreviated by m1;m2; . . . ;mn;m12;m13; . . ., respectively, hereafter.
3. A new nonlinear classification model

To simplify our theoretical illustration, 2-class classification
based on Choquet integral is presented in detail, and the extension
to multi-class classification is introduced at the end of this
section.

We consider a 2-class nonlinear classification problem with
classes A and A0. Suppose that the learning data consist of l sample
points belonging to class A and l0 sample points belonging to
class A0. Also, suppose that all of these sample points have the
same feature attributes, x1; . . . ; xn. Thus, the feature space is the
n-dimensional Euclidean space Rn. The j-th sample point in A,
denoted by sj, is expressed as

sj ¼ ðfjðx1Þ; fjðx2Þ; . . . ; fjðxnÞÞ; j¼ 1; . . . ; l;

while the j0�th sample point in A0 is similarly denoted by sj0
0 ,

j0 ¼ 1; . . . ; l0.
Now we want to find a Choquet hyperplane H determined by

H : ðcÞ

Z
ðaþbf Þdm� B¼ 0; ð1Þ

where B is an unknown real number. Without any loss of
generality, we assume that all of these unknown parameters and
B are in ½�1;1Þ. A natural criterion to determine these parameters
optimally is to maximize the total sum of signed distances of the
learning sample points in the two classes from the respective side
to the Choquet hyperplane H (see Fig. 1).

For example, on one side of H the signed distance dj from a
sample point sj in A to H is the signed distance from the projection
of sj paralleled with H on line L to the intersection (B) of H and L,
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Fig. 1. Two-dimensional data set projection based on Choquet integrals.
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which is equal to

dj ¼
ðcÞ
R
ðaþbf Þdm� Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
1þm2

2þ � � � þm2
2n
�1

q ; j¼ 1;2; . . . ; l:

From the other side of H, the signed distance of a sample point
to H is just the signed distance from the projection of the point
paralleled with H on line L to the intersection (B) of H and L, which
is equal to

dj0
0 ¼

B� ðcÞ
R
ðaþbf 0Þdmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
1þm2

2þ � � � þm2
2n
�1

q ; j0 ¼ 1;2; . . . ; l0:

The projection paralleled with H onto L is a transformation
identified by function

FðsÞ ¼ ðcÞ

Z
ðaþbf Þdm or FðsÞ ¼ ðcÞ

Z
ðaþbf 0Þdm

from the feature space to one-dimensional line L. That is, under
this projection, any point

sj ¼ ðfjðx1Þ; fjðx2Þ; . . . ; fjðxnÞÞ; j¼ 1; . . . ; l

in the feature space has an image represented by the function
ðcÞ
R
ðaþbf Þdm, and the Choquet hyperplane H itself has an image

represented by B. Thus, the total signed Choquet distance is

D¼
Xl

j ¼ 1

djþ
Xl0

j0 ¼ 1

dj0
0

¼

Pl
j ¼ 1ððcÞ

R
ðaþbf Þdm� BÞ �

Pl0

j0 ¼ 1ððcÞ
R
ðaþbf 0Þdm� BÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP2n

�1
i ¼ 1 m2

i

q : ð2Þ

In this formula, the Choquet distance for those misclassified
points will have a negative value. As to the optimization of
Choquet hyperplane H (see Fig. 1), we expect that the hyperplane
H will be pushed to the opposite side as far as possible by the
sample points from classes A and A0, respectively. In other words,
H should be squeezed to an optimal position. In case there is a gap
between classes A and A0, the Choquet hyperplane H as the
classifying boundary should pass through the feature space along
the gap. This means that the total signed Choquet distance D in (2)
should be maximized. Such a criterion for determining the
optimal hyperplane looks good. Unfortunately, it does not work
well actually. In fact, if in the learning data set one class is larger
than another, say l4 l0, then class A has more power than class A0

to push hyperplane H to its opposite side infinitely such that the
optimization problem has no solution. Thus, we must revise the
above optimization model. Our previous research [12,13] did not
consider this issue and encountered this optimization problem in
practice.
The revision can be realized by applying a large penalty
coefficient to each misclassified sample point. Let

cj ¼
c if ðcÞ

R
ðaþbf ÞdmoB;

1 otherwise

(

for j¼ 1;2; . . . ; l, and

cj0
0 ¼

c if ðcÞ
R
ðaþbf 0Þ dm4B;

1 otherwise

(

for j0 ¼ 1;2; . . . ; l0, where c4 jl� l0j is a penalty coefficient and is
usually taken as c¼ jl� l0jþ1. Then a penalized total signed
distance is defined as

Dc ¼ cj

Xl

j ¼ 1

djþcj0
0
Xl0

j0 ¼ 1

dj0
0

¼

Pl
j ¼ 1 cjððcÞ

R
ðaþbf Þdm� BÞ �

Pl0

j0 ¼ 1 cj0
0 ððcÞ

R
ðaþbf 0Þdm� BÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP2n

�1
i ¼ 1 m2

i

q :

ð3Þ

Thus, for a given learning sample data set with two classes, the
unknown parameters a, b, m, and B of hyperplane H as

the classifying boundary can be determined by maximizing the
penalized total distance Dc in expression (3). After determining
the classifying boundary H expressed by Eq. (1), for any new
sample element sj ¼ ðfjðx1Þ; . . . ; fjðxnÞÞ, we classify s into class A if

ðcÞ

Z
ðaþbf ÞdmZB

and otherwise classify s into class A0.
The 2-class Choquet classification can easily be extended to

multi-class classification where the boundary B will be expressed
as a vector fb1; . . . ; bk�1g. The element bk�1 in vector B denotes the
projection point for the boundary of class k and class k� 1 on the
projection real line L. Let s be the sample point and fA1; . . . ;Akg be
the classes. Then the generalized Choquet multi-class classifica-
tion can be deduced as follows:

if ðcÞ
R
ðaþbf ÞdmobA1

then sAA1;

^ ^

if ðcÞ
R
ðaþbf ÞdmA ½bAi�1

; bAi
Þ then sAAi;

^ ^

if ðcÞ
R
ðaþbf ÞdmZbAk�1

then sAAk:

8>>>>>><
>>>>>>:

4. A genetic algorithm

A specially designed genetic algorithm is applied to solve the
optimization problem for this generalized Choquet-integral
classification described in Section 3. First a population of
classifiers (the chromosomes) is generated. These classifiers are
each scored as to fitness using a fitness score based on Dc . The
population is renewed by crossover and mutation operations, and
the most fit are retained in the next generation. The components
of the algorithm are outlined and explained as follows.
(a)
 Coding and decoding. Unknown parameters m1;m2; . . . ; matching
vectors a and b, and B are coded as binary genes g1; g2; . . . ; gN

and gNþ1 ðN¼ 2n
� 1þ2nÞ. Thus, each gene is a bit string. The

length of the bit string depends on the required precision for the
solution. For example, if the required precision is 10�3, then each
gene consists of dlog2ð103

Þe ¼ 10 bits. Once the genes are
generated, they are decoded by the formula ui ¼ 2ðgi � 0:5Þ for
i¼ 1;2; . . . ;N, B̂ ¼ 2ðgNþ1 � 0:5Þ, etc.
(b)
 Population and chromosomes. Each chromosome is a gene
string, ðg1; g2; . . . ; gNþ1Þ. The population P consists of a large
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number of chromosomes. The number of chromosomes is
called the size of the population and is denoted by p. The
default value of p is 100.
(c)
 Chromosomes’ fitness. For each chromosome ðg1; g2; . . . ; gNþ1Þ,
after decoding the genes, we may obtain the current
parameter estimates u1;u2; . . . ;un, â, b̂, and B̂, which represent
a hyperplane H according to Eq. (1). Then, based on the given
learning data, the corresponding penalized total signed
Choquet distance Dc from the sample points in the data set
to the hyperplane H can be calculated by (3). The relative

fitness of this chromosome in the current population is
defined by

F ¼
Dc � Dmin

Dmax � Dmin
; ð4Þ

where

Dmin ¼ min
k ¼ 1;2;...;p

DcðkÞ; Dmax ¼ max
k ¼ 1;2;...;p

DcðkÞ

and DcðkÞ is the penalized total signed distances from the
sample points in the data set to the Choquet hyperplane HðkÞ

corresponding to the k-th chromosome in the current
population.
(d)
 Parents selection. Denoting the fitness of the k-th chromosome
in the current population by FðkÞ, we assign probability

pk ¼
FðkÞPp

k ¼ 1 FðkÞ

to the k-th chromosome, k¼ 1;2; . . . ; p. Select two chromo-
somes at random from the population as the parents
according to the probability distribution fpkjk¼ 1;2; . . . ; pg.
(e)
 Produce new chromosomes. According to a preset two-point
probability distribution ða;1� aÞ, choose a genetic operation
via a random switch from mutation and crossover and then
produce two new chromosomes. Repeat this procedure p=2
times to get p new chromosomes.
(f)
Table 1
Generations in training process for scenario (a) in Fig. 2.
Renew population. Calculate the total signed distance of each
new chromosome and add these p chromosomes to the
current population. According to the total signed distance of
these 2p chromosomes, delete the p worst from them and
then form a new generation of the population.
G A A0 m12 m1 m2 B D
(g)
1 150 40 0.1451 0.2369 0.5423 0.1021 �2.7990

2 150 40 0.1451 0.2369 0.5423 0.1021 �2.7990

3 153 42 0.1981 0.2244 0.5687 0.1189 0.6311

4 152 44 0.1336 0.1931 0.4901 0.0925 13.8546

5 152 44 0.1336 0.1931 0.4901 0.0925 13.8546

6 152 44 0.1336 0.1931 0.4901 0.0925 13.8546

7 152 44 0.1336 0.1931 0.4901 0.0925 13.8546

^
32 154 44 0.1410 0.1825 0.5501 0.0927 27.2005

33 155 45 0.1387 0.1800 0.5453 0.0916 27.4156

34 155 45 0.1387 0.1800 0.5453 0.0916 27.4156
Stopping controller. Repeat the above procedure to get the
population generation by generation until the largest pena-
lized total signed distance (which could achieve the least
misclassification rate instead of the predefined misclassifica-
tion rate used in the previous approaches [12,13]). This largest
distance is associated with the best chromosome in the
population; it has not been significantly improved for w (with
default value 10) consecutive generations. Here, ‘‘has not been
significantly improved’’ means that the improvement D is less
than 10�4dðA;A0Þ, where dðA;A0Þ is the distance between the
centers of class A and class A0 in the learning data set.
35 155 45 0.1387 0.1800 0.5453 0.0916 27.4156
(h)

36 155 45 0.1387 0.1800 0.5453 0.0916 27.4156

37 155 45 0.1387 0.1800 0.5453 0.0916 27.4156

38 155 45 0.1387 0.1800 0.5453 0.0916 27.4156

39 155 45 0.1387 0.1800 0.5453 0.0916 27.4156
After stopping, find the best chromosome in the last
generation of population. Then, output the corresponding
estimated values of parameters m1;m2; . . .mn, m12;m13; . . . ; a; b,
and B.
40 155 45 0.1387 0.1800 0.5453 0.0916 27.4156

41 155 45 0.1388 0.1802 0.5453 0.0917 27.4177

42 155 45 0.1388 0.1802 0.5453 0.0917 27.4177

43 155 45 0.1388 0.1802 0.5453 0.0917 27.4177

44 155 45 0.1388 0.1802 0.5453 0.0917 27.4177

45 155 45 0.1388 0.1802 0.5453 0.0917 27.4177

46 155 45 0.1388 0.1802 0.5456 0.0917 27.4187

47 155 45 0.1389 0.1802 0.5456 0.0917 27.4189

48 155 45 0.1389 0.1802 0.5456 0.0917 27.4189

49 155 45 0.1389 0.1802 0.5460 0.0917 27.4211

50 155 45 0.1389 0.1802 0.5460 0.0917 27.4211
5. Simulations

We have implemented the algorithm shown in Section 4 using
Microsoft Visual Cþþ . All the functions are encapsulated into our
CGenetic and CChoquet classes. Based on a training data set, the
simulations were run on the Windows XP platform and regular PC
desktop with AMD 1.6 GHZ CPU and 512 M memory. It takes
1.5 min to stop and obtain the results.
To illustrate the classification procedure with numerical
examples, we consider two data sets with known classification
boundaries below: (a) where the projection line passes through
the origin and (b) where the projection line does not pass through
the origin.

The two-dimensional training data sets are generated by a
random number generator and are separated into two classes by
the straight line

ðcÞ

Z
ðaþbf Þdm� B¼ 0;

where m1, m2, m12, and B are pre-assigned separately. (In the
examples, the data are uniformly distributed on the unit square.)
Each sample point is labeled with class A if ðcÞ

R
ðaþbf ÞdmZB;

otherwise, ðx1; x2Þ is labeled with class A0. In this way, 200 sample
points are generated and labeled.

Running our classifier on the data for the two scenarios
described below, we obtain the consecutive simulation results
presented in Tables 1 and 2, where G is the number of generations
that have been created in the training procedure. The crossover
probability in the simulation experiment was set to 0.9 and the
mutation probability was 0.01.
5.1. Scenario (a)

In scenario (a) the preset parameters are m12 ¼ 0:15, m1 ¼ 0:20,
m2 ¼ 0:60, a¼ ð0;0Þ, b¼ ð1;1Þ, and B¼ 0:1. The distribution of the
data is shown in Fig. 2. Class A has 155 points, while class A0 has 45
points. The program for scenario (a) in Fig. 2 stops at the 50th
generation. The output of the classifier provides the standardized
parameter estimates u12 ¼ 0:1389, u1 ¼ 0:1802, u2 ¼ 0:5460,
â ¼ ð0;0Þ, b̂ ¼ ð1;1Þ, and B̂ ¼ 0:0917. The classifying boundary
found in the last generation is shown in Fig. 3.

In Table 1, the second column is the number of sample points
that have been correctly classified in class A by the temporary best
boundary obtained in that generation, while the third column is
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Table 2
Generations in training process for scenario (b) in Fig. 4.

G A A0 m12 m1 m2 B a1 a2 b1 b2 D

1 133 11 0.5685 0.5825 0.5868 0.4409 0.7617 0.1982 0.0471 0.4197 �751.6648

2 140 31 0.4899 0.5999 0.6256 0.2563 0.3893 0.5641 0.2501 �0.0771 �318.9425

3 140 31 0.4899 0.5999 0.6256 0.2563 0.3893 0.5641 0.2501 �0.0771 �318.9425

4 123 58 0.3846 0.6051 0.4342 0.2388 0.3228 0.6245 0.4720 �0.1708 �154.2835

5 135 51 0.3740 0.8851 0.7594 0.2460 0.5222 0.6800 0.1758 �0.1429 �112.1395

6 133 60 0.3010 0.7808 0.4535 0.2287 0.6118 0.7550 0.1978 �0.1140 �10.4408

7 139 56 0.3533 0.6666 0.5943 0.2361 0.3991 0.6825 0.3944 �0.1774 �8.8121

8 139 60 0.3094 0.7779 0.4586 0.2329 0.6067 0.7540 0.2011 �0.1141 �0.6097

9 139 60 0.3094 0.7779 0.4586 0.2329 0.6067 0.7540 0.2011 �0.1141 �0.6097

10 139 60 0.3094 0.7779 0.4586 0.2329 0.6067 0.7540 0.2011 �0.1141 �0.6097

11 139 58 0.3241 0.7522 0.4628 0.2351 0.5684 0.7342 0.2307 �0.1182 1.9987

12 139 58 0.3241 0.7522 0.4628 0.2351 0.5684 0.7342 0.2307 �0.1182 1.9987

13 139 59 0.3564 0.6881 0.4891 0.2703 0.4871 0.7786 0.4030 �0.1999 4.9859

14 139 59 0.3564 0.6881 0.4891 0.2703 0.4871 0.7786 0.4030 �0.1999 4.9859

15 139 59 0.3567 0.6883 0.4893 0.2702 0.4862 0.7778 0.4030 �0.2001 5.0826

16 139 59 0.3567 0.6883 0.4893 0.2702 0.4862 0.7778 0.4030 �0.2001 5.0826

^
22 140 60 0.3845 0.6764 0.5648 0.2676 0.4536 0.7120 0.3569 �0.1580 5.9200

23 140 60 0.3845 0.6764 0.5648 0.2676 0.4536 0.7120 0.3569 �0.1580 5.9200

24 140 60 0.3845 0.6764 0.5648 0.2676 0.4536 0.7120 0.3569 �0.1580 5.9200

25 140 60 0.3830 0.6683 0.5713 0.2633 0.4420 0.7021 0.3614 �0.1544 5.9296

26 140 60 0.3830 0.6683 0.5713 0.2633 0.4420 0.7021 0.3614 �0.1544 5.9296

27 140 60 0.3830 0.6683 0.5713 0.2633 0.4420 0.7021 0.3614 �0.1544 5.9296

28 140 60 0.3830 0.6683 0.5713 0.2633 0.4420 0.7021 0.3614 �0.1544 5.9296

29 140 60 0.3830 0.6683 0.5713 0.2633 0.4420 0.7021 0.3614 �0.1544 5.9296

30 140 60 0.3830 0.6683 0.5713 0.2633 0.4420 0.7021 0.3614 �0.1544 5.9296
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Fig. 2. Training data set (a), m12 ¼ 0:15, m1 ¼ 0:20, m2 ¼ 0:60, B¼ 0:1, a1 ¼ 0, a2 ¼ 0,

b1 ¼ 1, b2 ¼ 1.
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Fig. 3. Classified training data set (a), u12 ¼ 0:1389, u1 ¼ 0:1802, u2 ¼ 0:5460,

B¼ 0:0917, a1 ¼ 0, a2 ¼ 0, b1 ¼ 1, b2 ¼ 1.
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the number of sample points that have been correctly classified in
class A0. The fourth through seventh columns are the current
estimated values of parameters m12, m1, m2, and B corresponding to
one of the best chromosomes in each generation. The eighth
column contains the penalized total Choquet signed distances
from the sample points in the data set to the hyperplane
corresponding to one of the best chromosomes in each generation,
as described in Section 3.

In Table 1, at generation 33 the classifier has found a good
chromosome whose corresponding classifying boundary can
separate the training data without any misclassification, is
presented. However, according to the stopping condition, the
program does not stop until the counter w of the stopping
controller reaches 10.
5.2. Scenario (b)

The preset parameters for scenario (b) are m12 ¼ 0:15, m1 ¼ 0:60,
m2 ¼ 0:20, a¼ ð0:2;0:85Þ, b¼ ð0:85;�0:60Þ, and B¼ 0:12. As shown
in Fig. 4, class A has 140 points, while class A0 has 60 points. The
output of the classifier provides the standardized parameter
estimates u12 ¼ 0:3830, u1 ¼ 0:6683, u2 ¼ 0:5713, â ¼ ð0:4420;
0:7021Þ, b̂ ¼ ð0:3614;�0:154Þ, and B̂ ¼ 0:2633 when the program
stops after 30 generations.

In Table 2, the fourth through eleventh columns present the
current estimates of parameters m12, m1;m2;B; a1; a2; b1, and b2.
The twelfth column lists the penalized total Choquet signed
distances from the sample points in the data set to the hyperplane
corresponding to one of the best chromosomes in each generation,
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Fig. 4. Training data set (b), m12 ¼ 0:15, m1 ¼ 0:60, m2 ¼ 0:20, B¼ 0:12, a1 ¼ 0:2,

a2 ¼ 0:85, b1 ¼ 0:85, b2 ¼ � 0:60.
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Fig. 5. Classified training data set (b), u12 ¼ 0:3830, u1 ¼ 0:6683, u2 ¼ 0:5713,

B¼ 0:2633, a1 ¼ 0:4420, a2 ¼ 0:7021, b1 ¼ 0:3614, b2 ¼ � 0:154.

Table 3
Classified sample data for scenarios (a) and (b).

Scenario (a) (b)

Class A A0 A A0

Classified in A 155 0 140 0

Classified in A0 0 45 0 60
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Fig. 6. Classification accuracy rate comparison on the simulated data in scenario

(b) where the projection line is not through origin.
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as described in Section 3. The program stops at generation 30 for
scenario (b) data in Fig. 4. The classifying boundary found in the
last generation is shown in Fig. 5.

Table 3 summarizes the final results for both scenarios that
shows no misclassified sample points.
6. Case studies

Our previous study [12] applied a special case of the general-
ized Choquet-integral approach, and demonstrated that the
Choquet-integral classification approach is better than other
available methods, such as Bayes, Neural Networks, HLM, and
Nearest Neighbor, in terms of classification accuracy. Here our
case studies compare implementation of this generalized ap-
proach with our previous approach using one of our artificial and
one of the UCI data sets.

As discussed earlier, our previous approach only tolerates the
projection line through the origin, lacks an automatic selection of
the least misclassification rate, and does not penalize the
misclassified points. In contrast, our current approach dramati-
cally improved the classification accuracy rate by solving the three
identified issues. For simplicity we call our previous approach
‘‘without penalty’’ and the current one ‘‘with penalty.’’ For
classification performed on the same data used in the simulation
scenario (b) where the projection line L is not through the origin,
the current approach dramatically increases the classification
accuracy rate to 100% by almost 50%, especially as the genetic
evolution stabilized after 40 generations (see Fig. 6).

Considering real multi-class situations, we utilized the IRIS
data from UCI [32]. These data include three classes (three IRIS
species: Setosa, Versicolor, and Virginica) with 50 samples each
and four-dimensional features (the length and the width of sepal
and petal). The empirical results indicated that the classification
accuracy rates of our current with-penalty approach reached
100%, 98%, and 93% for Setosa, Virginica, and Versicolor,
respectively, after just a few genetic generations (see Fig. 7).

High dimensionality is another common feature in real-world
pattern recognition. To address this issue using Choquet classifi-
cation, we used the Pima Indians Diabetes data set from the UCI
repository [32], which consists of 2 classes and eight-dimensional
features with 768 samples. The outcome from our current with-
penalty approach shows that over 20 genetic generations the
classification accuracy rates reached 100% and 98% for each class.
The results from the without-penalty approach were unsatisfac-
tory with accuracy rates below 50% and quite unstable (see Fig. 8).
This comparison demonstrates the superiority of the generalized
Choquet approach over the previous without-penalty technique.

In addition, we have compared our current approach with nine
typical classification methods on the previous two data sets (IRIS
and Pima Indians Diabetes) and also on the Wisconsin Breast
Cancer, Haberman’s Survival, and Blood Transfusion Service
Center data from the same repository. The Breast Cancer data
set includes 2 classes and 9 features, comprising 699 records. The
Survival data has 3 attributes and 306 patients, with 2 survival
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Fig. 8. Classification accuracy rate comparison on eight-dimensional Pima Indians

diabetes data set.

Table 4
Misclassification rates ðEÞ of selected classifiers on five empirical data sets.

Method IRISc (%) Breast

Cancer

NaiveBayesa 4.0 3.9

BayesNeta 5.3 2.7

NBtreea 2.7 2.7

Classification Via Regressiona 2.0 2.3

SMOa 3.3 3.0

RBF networka 2.7 3.6

Decision tablea 4.0 3.6

Fuzzy Lattice Reasoning (FLR)a Classifier 3.3d 0.7d

Fuzzy Decision Treeb 4.0 3.0

Choquet Distance based Classifier with Penalty 2.7 0.0e

a Tested with default parameter settings in Weka3.6.0 [41].
b Tested with default parameter settings in FID3.4 [42].
c Classification of all empirical data sets used 100% training set.
d Results when r¼ 0:75, rA ½0:5;1� (when r¼ 1, EIris ¼ 0%, EBreast ¼ 0%, EPima ¼ 0%,
e Missing data were preprocessed using multiple imputation procedure in SAS9.2 [4

exists in Breast Cancer and no interaction was added in.
f Four significant pair-wise interactions ðpo0:05Þ were found using logistic regress
g All pair-wise interactions were included, as the number of attributes is relatively s
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status (the patient survived 5 years or longer, or died within 5
year), while the Blood Transfusion data consist of 5 attributes and
748 donors with two categories, donating and nondonating blood.
For this comparison, 100% training data for each data set was used
to evaluate these nine classification methods.

We have summarized the comparison results for each method
in Table 4. Among these methods, the first two are Bayes-based
methods: NaiveBayes [33] is a simple probabilistic classifier based
on applying Bayes’ theorem with strong (naive) independence;
BayesNet classifier is based on the Bayes networks that are
composed of the prior probability distribution of the class
node and a set of local networks. NBtree [34] is the tree-based
classification method, which is the decision tree with NaiveBayes
classifiers at the leaves. Classification Via Regression [35] is the
meta-based method, using regression techniques, where class is
binarized and one regression model is built for each class
value. Radial basis function (RBF) network and sequential
minimal optimization (SMO) are the function-based classifi-
cation methods [36,40]. RBF networks is a radial basis function
network, which uses K-means clustering algorithm to learn either
a logistic regression (discrete class problems) or linear regression
(numeric class problems). SMO is the one that utilizes sequential
minimal optimization algorithm for training a support vector
classifier using polynomial or RBF kernels. Fuzzy Lattice
Reasoning (FLR) and Fuzzy Decision Tree (FDT) are fuzzy-based
classification methods [37–39]. FLR is the classifier that uses the
notion of fuzzy lattices for creating a reasoning environment.
We also compared our results with those obtained from FDT
which is a popular and powerful technique of learning from
fuzzy examples, and can be a benchmark for fuzzy classifiers. The
best accuracy achieved on each data set, measured by the
misclassification rates, is presented in bold in Table 4.

The overall results indicate that our current approach is
competitive and can be regarded as one of the best classifiers.
Especially for the Wisconsin Breast Cancer, Pima Indians diabetes
and Blood Transfusion data, our approach dramatically out-
performed all other alternative methods compared, in terms of
the least misclassification rate. For the Haberman’s Survival data
sets, our approach is below but close to the least classification rate
achieved by FLR when its vigilance value is 0.75, in contrast to the
poor performance of the nine alternate methods in the Pima
Indians and Blood Transfusion data classification. For the IRIS
data, our approach ranked at the second with NBTree and RBF
c (%)

Pima Indians

Diabetesc (%)

Haberman’s

Survivalc (%)

Blood

Transfusionc (%)

23.7 24.2 25.0

21.7 25.8 24.6

25.7 22.9 20.5

22.7 25.5 19.8

22.5 25.2 23.8

25.6 24.8 21.8

22.4 25.8 23.8

19.1d 38.2d 32.4d

20.1 22.8 19.1

0.0f 26.5 4.95g

EHaberman ¼ 2%, EBlood ¼ 11%).

3]. Simple logistic regression test showed that no significant pair-wise interaction

ion test and added in Choquet classification.

mall and three interactions are significant ðpo0:05Þ using logistic regression tests.
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Table 5
Parameter settings and parameter estimates of Choquet classification for UCI data sets.

IRIS

Result Iris-setosa: 50

Iris-versicolor: 46

Iris-virginica: 54

Maximum generation 50

Population size 800

Estimated parameters

m1 m2 m3 m4 m12 m13 m14 m23 m24 m34

0.5619 0.9547 0.5916 0.5982 0.7096 0.4955 0.0144 0.0998 0.4394 0.5824

a1 a2 a3 a4

0.4801 0.8875 0.0157 0.0216

b1 b2 b3 b4

0.6452 0.8214 0.9827 0.9485

Bound 1 Bound 2

0.5521 0.0061

Breast Cancer

Result Class 2: 458

Class 4: 241

Maximum generation 50

Population size 500

Estimated parameters

m1 m2 m3 m4 m5 m6 m7 m8 m9

0.8451 0.8227 0.5142 0.0909 0.334 0.3888 0.0653 0.2295 0.4545

a1 a2 a3 a4 a5 a6 a7 a8 a9

0.4239 0.2228 0.7837 0.3085 0.7508 0.8591 0.7499 0.5009 0.5088

b1 b2 b3 b4 b5 b6 b7 b8 b9

0.1023 0.653 0 0.1168 0.7906 0.1127 0.6651 0.1907 0.4844

Bound

0

PIMA India Diabete’s

Result Class 0: 500

Class 1: 268

Maximum generation 30

Population size 500

Estimated parameters

m1 m2 m3 m4 m5 m6 m7 m8 m18 m38

0.7926 0.3335 0.2957 0.1944 0.7915 0.5507 0.3857 0.2681 0.2116 0.4178

m47 m57

0.6373 0.3459

a1 a2 a3 a4 a5 a6 a7 a8

0.6552 0.848 0.0261 0 0.5307 0.3932 0.594 1

b1 b2 b3 b4 b5 b6 b7 b8

0.2585 0.0478 0.6574 0.5944 0.6699 0.6137 0.4581 0.2821

Bound

0

Haberman

Result Class 1: 306

Class 2: 0

Maximum generation 100

Population size 800

Estimated parameters

m1 m2 m3 m12 m13 m23

0.5552 0.5801 0.5771 0.4166 0.5097 0.5705

a1 a2 a3

0.4785 0 0.4025

b1 b2 b3

0 0 0.4261

Bound

0.2361

Blood Transfusion

Result Class 0: 607

Class 1: 141

Maximum generation 50

Population size 800

Estimated parameters

m1 m2 m3 m4 m12 m13 m14 m23 m24 m34

0.2225 0.555 0.7359 0 0.6594 0 0.3674 0.6044 0.4796 0.5643

a1 a2 a3 a4

0.0412 0.3753 0.837 0.1273

b1 b2 b3 b4

0.139 0.653 0.5246 0.2834

Bound

0
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network, less than the average misclassification rate (3.5%) among
the nine alternative methods compared. Although our approach
costs relatively longer time than other methods in the Wisconsin
Breast Cancer, Pima Indians and Blood Transfusion data set
classification, it has even equivalent or better performance than
FLR with its extreme vigilance value of 1 (see notes under Table 4).
This may indicate a trade-off between the accuracy and the time
efficiency, and there may indeed exist the interactions among the
features of these data sets, which our approach may best fit.
Therefore we believe that the time cost of our approach is
tolerable in terms of the highest accuracy achieved and its overall
performance (Table 5).

7. Summary

Based on our previous research on Choquet classification, this
paper addressed three unsolved issues through theoretical discus-
sion, simulation experiments, and empirical case studies. This
research used 2-class classification as an example for the simplicity
of theoretical illustration, and also extended to multi-class multi-
dimensional situations. The current generalized Choquet-integral
classification can allow for the projection line at any location,
automatic search for the least misclassification rate based on
Choquet distance, and penalty on misclassified points. This
improvement expands the functionality of Choquet-classification in
solving more flexible real-world classification problems and also
practically enhances the classification accuracy and power.

Choquet integral has recently been applied to acoustic event
classification [44], image analysis [45], image processing [46,47],
voice recognition [48], traffic surveillance [49] and temperature
prediction [50]. Our case studies extended the generalized
Choquet classification to the biological and medical areas. Our
future studies will continue in this line of research by emphasiz-
ing the practical value of the Choquet-integral classification.
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