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In most of the regression problems the first task is to select the most influential predictors explaining the
response, and removing the others from the model. These problems are usually referred to as the variable
selection problems in the statistical literature. Numerous methods have been proposed in this field, most
of which address linear models. In this study we propose two variable selection criteria for regression
based on two powerful dependence measures, maximal correlation and distance correlation. We focus on
these two measures since they fully or partially satisfy the Rényi postulates for dependence measures, and
thus they are able to detect nonlinear dependence structures. Therefore, our methods are considered to be
appropriate in linear as well as nonlinear regression models. Both methods are easy to implement and they
perform well. We illustrate the performances of the proposed methods via simulations, and compare them
with two benchmark methods, stepwise Akaike information criterion and lasso. In several cases with linear
dependence all four methods turned out to be comparable. In the presence of nonlinear or uncorrelated
dependencies, we observed that our proposed methods may be favourable. An application of the proposed
methods to a real financial data set is also provided.

Keywords: variable selection; nonlinear regression; maximal correlation; distance correlation

1. Introduction

Recent improvements in data collection technologies give rise to complex regression problems
where the number of candidate predictor variables explaining the response variable may be very
large. In most of these regression problems the main task is to select the most important predictors
explaining the response, and removing the others from the model. There is an extensive statistical
literature in this type of screening problem, usually referred to as the variable selection problem.
In some situations, identifying the most important variables may be the only concern. More often,
the model is used for predictions where one wishes to avoid bias in estimating coefficients, and
also wishes to get stable models where small changes in data does not result in entirely different
models and predictions. In the existing variable selection literature, most of the work is devoted
to (generalized) linear models.

In this study we propose two novel variable selection methods for linear and nonlinear regression
models. The tools we employ in our methods are two powerful dependence measures, maximal
correlation (MC) and distance correlation (DC). Our rationale for employing these measures

∗Corresponding author. Email: yenigun@bilkent.edu.tr

© 2014 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

M
. L

. R
iz

zo
] 

at
 1

0:
06

 1
1 

A
pr

il 
20

14
 

mailto:yenigun@bilkent.edu.tr


2 C.D. Yenigün and M.L. Rizzo

is that MC fully satisfies, and DC partially satisfies the Rényi [1] postulates for dependence
measures. This means in addition to having several other desirable properties, both measures
are able to detect nonlinear dependence structures. Therefore variable selection criteria based on
these two measures are considered to be appropriate in linear and nonlinear regression models. For
simplicity, we employ both measures in a stepwise regression setting as alternative comparison
criteria for predictor variables to enter the model. The proposed stepwise procedures can easily
be implemented. However, our proposed model selection criteria could alternately be applied via
other procedures, such as stagewise regression. We carried out extensive simulations in order
to compare the performances of the proposed methods with common methods such as stepwise
Akaike information criterion (AIC) and lasso. The performances of the proposed methods and
the benchmark methods turned out to be comparable for cases with linear dependence. When we
introduced nonlinear or uncorrelated dependencies, we observed that our methods perform better.

The rest of the paper is organized as follows. In Section 2, we give a general review of the variable
selection problem. In Section 3, we review the Rényi postulates for dependence measures, and
give the definitions of MC and DC. We describe the proposed methods in Section 4, followed by
an illustration and an application to a real data set in Section 5. The simulation results are given
in Section 6, and the paper concludes in Section 7.

2. Variable selection

Consider the linear regression model

Y = Xβ + ε, (1)

where Y is a vector of length n representing the response variable, X is an n by p design matrix, β
is a vector of length p containing regression coefficients, and ε is a vector of length n containing
independent normal noise terms. The essential goal in variable selection is to divide X into the
set of active terms XA and the set of inactive terms XI . Older variable selection methods such as
stepwise regression and all-subsets regression can be classified as subset selection methods. These
methods simply pick predictors and estimate the model coefficients using standard techniques
such as least squares or maximum likelihood. In general, there are two important issues in subset
selection methods. The first issue is to find a reasonable comparison criterion for two candidates
for XA. The most commonly used criteria are the AIC given by Sakamoto et al.,[2] the Bayesian
information criterion (BIC) given by Schwarz,[3] and Mallows’ Cp given by Mallows.[4] All
three criteria are similar in that they all seek a balance between lack of fit and complexity. As an
alternative to these criteria, it is common to use a computationally intensive criteria such as cross
validation or predictive residual sum of squares. The second issue is computational. Note that
if there are k predictor variables, there are 2k − 1 possible subsets which are candidates for XA.
Then one has to come up with a reasonable computational method to deal with this potentially
large number of comparisons. Perhaps the most commonly used method for reducing this search
space is forward stepwise regression. In short, a forward stepwise regression procedure considers
all predictor variables individually in the first step, and finds the one that minimizes a given
comparison criterion such as AIC. For the remaining steps, new terms are added such that the
comparison criterion is minimum. When all the terms have entered the model, or when addition of
a new term increases the selection criterion, the procedure stops. Other commonly used methods
are modifications of forward stepwise regression such as backward stepwise, stagewise, or leaps-
and-bounds regression. For a general treatment of all these classical subset selection methods,
see, for example, Miller.[5]
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More recent methods such as ridge regression, lasso [6] and least angle regression [7] provide
an alternative to the subset selection methods summarized above, and they may be classified
as shrinkage methods. The advantage of shrinkage methods is that they are not only concerned
with variable selection since they employ all the candidate predictor variables, but they also
modify the estimation procedures for the coefficients. Ridge regression does not perform a variable
selection, but it produces smaller coefficients for the unimportant predictors than they would have
under ordinary least squares. The lasso is similar to ridge regression, but it reduces some of the
coefficients to zero and yields a natural variable selection. Least angle regression (LAR) is similar
to stagewise regression, but much faster.

As various fields require variable selection techniques for analysing complex data structures,
variable selection is still a very active research area with a stronger emphasis on the analysis of ultra
high-dimensional data. Recent methods include the smoothly clipped absolute deviation,[8] the
elastic net,[9] adaptive lasso,[10] and sure independent screening.[11] Similar to our study,[12]
consider employing DC in variable selection, and propose the DC-based sure independence
screening method. As a very good review paper on variable selection, see Fan and Lv.[13]

In this study we propose two forward stepwise procedures. The first procedure uses partial
MC and the second procedure uses partial DC as the comparison criterion. Both criteria will be
explained in detail in Section 4.

3. MC and DC

In virtually any field of statistics, there is a need for measuring the dependence between random
variables. There are several measures of dependence in the statistical literature, which can be
classified into three groups. The first group is the bivariate correlation based measures such as the
product moment correlation, Kendall’s τ , and rank correlation. All these correlations intend to
measure the strength of the relationships between two variables, which usually refers to the strength
of the tendency to move in the same direction. In the second group are the dependence measures
based on distribution or density functions. For example, the problem of measuring the dependence
between two variables can be considered as the problem of measuring the distance between their
joint distribution function and the product of their marginal distribution functions. The third
group consists of the dependence measures for cross classifications such as the mean square
contingency (chi-square statistic) and Goodman and Kruskal’s λ and τ . For a comprehensive
survey on dependence measures, see Liebetrau.[14]

In this section we review the two dependence measures that we will employ in variable selection
in regression, MC and DC. MC can be considered in the first group of dependence measures as
described above, and DC can be considered in the second group. We are particularly interested
in these measures since MC fully satisfies, and DC partially satisfies the Rényi postulates for
dependence measures. Introduced by Rényi in 1959, these postulates are generally accepted
as a complete list of postulates that a good dependence measure must satisfy. We first list the
postulates, then we give definitions of MC and DC, indicating which postulates they satisfy.
Since both measures are sensitive to nonlinear dependence structures, variable selection criteria
based on them are considered to be appropriate in nonlinear regression models.

Consider two random variables X and Y defined on a given probability space. According
to Rényi,[1] a measure of dependence δ(X , Y) of these variables should satisfy the following
postulates.

(A) δ(X, Y) is defined for any X ,Y neither of which is constant with probability 1.
(B) δ(X, Y) = δ(Y , X).
(C) 0 ≤ δ(X, Y) ≤ 1.
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4 C.D. Yenigün and M.L. Rizzo

(D) δ(X, Y) = 0 if and only if X and Y are independent.
(E) δ(X, Y) = 1 if either X = g(Y) or Y = f (X), where g(·) and f (·) are Borel-measurable

functions.
(F) If the Borel-measurable functions g(·) and f (·) map the real axis in a one-to-one way to itself,

then δ(f (X), g(Y)) = δ(X , Y).
(G) If the joint distribution of X and Y is normal, then δ(X, Y) = |ρ(X, Y)|, where ρ(X, Y) is the

product moment correlation coefficient of X and Y .

After listing these seven postulates, Rényi [1] considers five classical bivariate measures of
dependence, and notes that of these five, only MC satisfies all of the seven postulates.

3.1. Maximal correlation

The MC S between X and Y is defined as

S(X , Y) = sup
f ,g

ρ(f (X), g(Y)), (2)

where the supremum is taken over all Borel-measurable functions of X and Y with finite and
positive variance. Here ρ(U, V) denotes the product moment correlation coefficient between the
random variables U and V . As mentioned above, MC satisfies all seven postulates given by
Rényi.[1] Here, perhaps we must give more emphasis on postulate D, indicating that the MC
vanishes if and only if the variables are independent. Note that the commonly used product
moment correlation satisfies B, C, and G only. The important postulate D is not satisfied, in other
words, two variables may be uncorrelated but dependent. This is one of the well-known drawbacks
of product moment correlation.

The MC is introduced by Gebelein,[15] and received considerable attention in the statistical
literature. Rényi [1] gave the conditions such that the MC can be attained. Csáki and Fishcher [16]
computed MC for a number of examples. Koyak [17] considered a multivariate analog of MC.
For random variables that take only a finite number of values, Sethuraman [18] gave a procedure
to estimate the MC from the sample, and gave the asymptotic distribution of this estimate under
the null hypothesis of independence. Dembo et al. [19] and Novak [20] studied the MC between
partial sums of independent and identically distributed random variables. More recently, Yenigün
et al. [21] considered the computation of MC in contingency tables and proposed an independence
test.

MC is an attractive measure of dependence, however, since there does not always exist functions
f0(x) and g0(x) such that S(X , Y) = ρ(f0(X), g0(Y)), MC cannot be evaluated explicitly except
for special cases. If this equality holds for some f0 and g0, we say that the MC of X and Y can be
attained.

Let L2
X denote the Hilbert space of all random variables of the form f (X) for which E(f (X)) = 0

and Var(f (X)) is finite. Similarly, let L2
Y denote the Hilbert space of all random variables of the

form g(Y) for which E(g(Y)) = 0 and Var(g(Y)) is finite. For any f = f (X) ∈ L2
X , consider the

transformation

Af = E[E(f (X)|Y)|X]. (3)

Rényni [1] shows that if the transformation A defined in Equation (3) is completely continuous,
then the MC between X and Y is attained for f0(X) and g0(Y), where f0 is an eigenfunction
belonging to the greatest eigenvalue S2 = S2(X , Y) of A and g0(Y) = S−1E(f0(X)|Y). Rényni [1]
also notes that if the dependence between X and Y is regular and the mean square contingency
is finite, then the transformation A is completely continuous. Here, regular dependence of the
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Journal of Statistical Computation and Simulation 5

variables means that the joint distribution of the variables is absolutely continuous with respect
to the direct product of their distributions.

As noted above, the problem of computing MC can be mathematically intractable, thus it cannot
be evaluated analytically except in special cases. However, a practical approach to this problem
is provided by Breiman and Friedman,[22] which is easily applied for estimating the MC from
data. We provide some insight about this algorithm in Section 4.1.

3.2. Distance correlation

DC is a recent and powerful dependence measure introduced by Székely et al.[23] For all dis-
tributions with finite first moments, DC generalizes the idea of correlation in two fundamental
ways. Firstly, DC is defined for variables in arbitrary dimensions, it is not limited to the bivariate
case. Secondly, DC vanishes if and only if the variables are independent. DC satisfies the Rényi
postulates A, B, C, D. The remaining postulates are partly satisfied. Postulate E is satisfied for
linear functions and F is satisfied for orthogonal transformations.As for G, if X and Y are bivariate
normal, R is a function of ρ. The formal definitions of distance covariance and DC is given in [23].

Consider a random sample (X, Y) = {(Xk , Yk) : k = 1, . . . , n} from the joint distribution of
random vectors X in R

p and Y in R
q. The empirical distance covariance Vn(X, Y) is the nonnegative

number defined by

V 2
n (X, Y) = 1

n2

n∑
k,l=1

AklBkl, (4)

where

Akl = akl − āk· − ā·l + ā··,

Bkl = bkl − b̄k· − b̄·l + b̄··.

Here

akl = ‖Xk − Xl‖p, bkl = ‖Yk − Yl‖q, k, l = 1, . . . , n,

‖a‖d is the Euclidean norm of a in R
d , and the subscript · denotes that the mean is computed

for the index that it replaces. Similarly, the empirical distance variance Vn(X) is the nonnegative
number defined by

V 2
n (X) = V 2

n (X, Y) = 1

n2

n∑
k,l=1

A2
kl. (5)

The empirical DC Rn(X, Y) is the square root of

R2
n(X, Y) = V 2

n (X, Y)√
V 2

n (X)V 2
n (Y)

. (6)

The DC statistic is implemented in the energy [24] package for R Project for Statistical
Computing,[25] available under general public licence. More recent work on DC include.[12,
26–29]

4. Proposed methods

In this section we propose two stepwise variable selection methods, one based on MC, and one
based on DC. We will describe the MC-based method in full detail, the DC-based method will
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6 C.D. Yenigün and M.L. Rizzo

be a straightforward modification of the former. We begin with a few remarks on computational
details.

4.1. Computational details

As noted in Section 3, it is typically not easy to compute MC explicitly except some special cases.
Therefore, we will use an algorithm by Breiman and Friedman [22] for estimating MC from data,
which is quite practical to apply as the algorithm is implemented in the acepack package [30]
for R. Breiman and Friedman [22] consider the problem of replacing the response variable Y and
the predictor variables X1, . . . , Xp by functions θ(Y) and φ1(X1), . . . , φp(Xp). Given the sample
only, they discuss a procedure for estimating the functions θ∗ and φ∗

1 , . . . , φ∗
p that minimize e2 =

E{[θ(Y) − ∑p
j=1 φj(Xj)]2}/var[θ(Y)] while making minimal assumptions on data distribution and

the form of the functions. Their algorithm is referred to as the alternating conditional expectations
(ACE) algorithm. For the bivariate case, θ∗ and φ∗ satisfy ρ(θ∗, φ∗) = maxθ ,φρ(θ(Y), φ(X)), and
thus their algorithm provides an estimate of MC between two variables. In this paper all MCs
are computed using the ACE algorithm, as implemented in acepack. The second dependence
measure we consider in this paper, DC, can easily be implemented using dcor function in the
energy [24] package for R. In both stepwise regression procedures described below, we use the
cross-validation error of the response variable to compare the steps, where the cross-validation is
obtained using the leave-one-out approach.

4.2. Stepwise regression using MC

We first define partial MC. Consider random variables X, Y , and a possibly vector-valued random
variable Z . Given Z , the partial MC between X and Y is computed as follows:

(1) Regress X on Z , denote the error terms by RX .
(2) Regress Y on Z , denote the error terms by RY .
(3) The MC between RX and RY is the partial MC between X and Y , given Z .

Then we can define a stepwise regression procedure, using MC as follows:

(1) Consider all candidate predictor variables individually and find the one which has the largest
MC with the dependent variable.

(2) For the remaining steps, add one more term such that the partial MC with the dependent
variable, given the previously entered variable(s), is largest.

(3) Stop when all terms have entered the model. The step with the smallest cross-validation error
is the selected model.

4.3. Stepwise regression using DC

Simply replace the MCs with DCs in the above procedure in order to define a partial DC and the
stepwise regression using DC.

Remark 1 More precisely, we have defined a ‘linear partial MC’ and a ‘linear partial DC’ as a
natural definition for the problem of variable selection in regression.
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5. Illustration and application to real data

In this section we first provide an illustration of the proposed methods on a classical data set. We
then consider an application of our methods, as well as two commonly used variable selection
methods, on a more timely data set we compiled for this study.

5.1. Illustration: Swiss fertility data

As an illustration of the proposed methods, we consider the Swiss fertility data which consists
of standardized fertility measures and socio-economic indicators for each of 47 French-speaking
provinces of Switzerland in about 1888.[31] Here, the response variable is a common fertility
measure (Fertility), and the candidate predictors are percentage of males involved in agriculture
as occupation (Agriculture), percentage of draftees receiving highest mark on army examina-
tion (Examination), percentage of education beyond primary school for draftees (Education),
percentage of Catholic population (Catholic), and live births who live less than 1 year (Infant
Mortality). The result of stepwise selection for MC and DC criteria are illustrated in Figure 1.
For the MC-based method, the order of entering the model is Education, Catholic, Infant Mortal-
ity, Agriculture, and Examination. According to the cross-validation errors, this method excludes
Examination from the model. As for the DC-based method, the order of entering the model is
Examination, Infant Mortality, Education, Catholic, and Agriculture. This method includes all
candidate predictors in the model. Note that in this example the model returned by the MC-based
method has a lower cross-validation error.

5.2. Application: S&P 500 returns

Here, we consider an application of the proposed methods on a real data set, and compare them with
the commonly used variable selection methods stepwise AIC and lasso.[6] The data set consists
of the monthly returns of S&P 500 index and the values of 11 candidate predictors observed
between January 1989 and December 2007 (n = 216). The data set is available upon contact with

Figure 1. Analysis of Swiss fertility data. Cross-validation errors for each step are displayed for DC and MC.
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8 C.D. Yenigün and M.L. Rizzo

Figure 2. Analysis of S&P 500 monthly returns data. Cross-validation errors for each step are displayed for stepwise
AIC, DC, MC, and lasso methods. Vertical lines indicate the selected models.

the authors. The response variable here is the monthly returns, and the candidate predictors are
dividend yield (X1), earnings yield (X2), volatility index (X3), unexpected volatility (X4), inflation
rate (X5), change in inflation rate (X6), 90-day treasury bill (X7), industrial production index growth
(X8), credit spread (X9), term spread (X10), and yield spread (X11). The steps and cross-validation
errors of all four methods considered in this study are summarized in Figure 2. For each method,
the returned model is indicated by the related colour and style. The DC method returns the model
Y ∼ X3, X4, X5, X7, which has the smallest cross-validation error among all other models returned.
All these predictor variables are common in the remaining three models. The MC method adds
X9, AIC adds X6, and lasso adds X10 to the model.

6. Simulation results

We illustrate the performance of the proposed variable selection methods with an extensive simu-
lation study, where we compare our methods with the commonly used stepwise AIC and lasso. We
consider six cases with different dependence structures between the predictors and the response
variable. The cases are set up such that there are p candidate predictor variables, but only q of
them (q < p) have direct influence on the response variable. We first present the results in detail
for p = 8, then we summarize our findings for p = 20. For each case we generate N = 100 sam-
ples of size n = 100, perform variable selection using all four methods under consideration, and
report the frequencies of the selected models for each method. In what follows, N(a, b) denotes
the normal distribution with mean a and variance b2, U(a, b) denotes the continuous uniform
distribution on (a, b).

6.1. Results for p = 8

Case 1 Linear relations. In this case we consider a total of p = 8 candidate predictors having
independent standard normal distributions, q = 3 of which are related with the dependent variable
via the linear model (1), where β = [1, 1, 1, 0, 0, 0, 0, 0] and ε ∼ N(0, σ = 2).
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Journal of Statistical Computation and Simulation 9

Case 2 Nonlinear relations.We consider a total of p = 8 candidate predictors from the following
distributions: X1 ∼ N(0, 1), X2 ∼ N(0, 2), X3 ∼ U(−1.5, 1.5), X4, . . . , X8 ∼ U(−1, 1). The first
q = 4 are related with the dependent variable via:

Y = log[4 + sin(3X1) + sin(X2) + X2
3 + X4 + 0.1ε],

where ε ∼ N(0, σ = 1).
Case 3 Dependent but uncorrelated variables. We consider a total of p = 8 candidate pre-

dictors from the following distributions: X1 ∼ N(0, 1.4), X2 ∼ U(−1.7, 1.7), X3 ∼ N(0, 0.8),
X4, . . . , X8 ∼ N(0, 1). Let us define Y1, . . . , Y3 as follows:

Y1 = |X1|, Y2 = X2
2 , Y3 = X2

3 .

It can be shown that the pairs (Xi, Yi), i = 1, 2, 3, are uncorrelated. We define the dependent
variable as

Y = |X1| + X2
2 + X2

3 .

Case 4 Constant collinearity among predictors. We consider a total of p = 8 candidate
predictors from a multivariate normal distribution, X ∼ NP(0, �), where

� =

⎡
⎢⎢⎢⎣

1 θ · · · θ

θ 1 · · · θ
...

...
. . .

...
θ θ · · · 1

⎤
⎥⎥⎥⎦ .

We set θ = 0.6. The first q = 3 of these variables are related with the dependent variable via:

Y = Xβ + ε,

where β = [1, 1, 1, 0, 0, 0, 0, 0] and ε ∼ N(0, σ = 2).
Case 5 Toeplitz-type collinearity among predictors. This is the same as Case 4, but

� =

⎡
⎢⎢⎢⎢⎢⎣

1 θ θ2 · · · θp−1

θ 1 θ · · · θp−2

θ2 θ 1 · · · θp−3

...
...

...
. . .

...
θp−1 θp−2 θp−3 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

.

Case 6 A generalized linear model (Gamma Regression) In this case we generate the response
and the predictors from a generalized linear model, namely, gamma regression. A total of p = 8
candidate predictor variables follow standard normal distribution, q = 3 of them are related with
the response via the linear predictor L = Xβ, where β = (0.25, 0.25, 0.25, 0, 0, 0, 0, 0), and X is
the n × p matrix representing the p predictor variables. The link function is the log function,
thus the mean vector of the responses are μ̂ = eL. Then the responses are generated from a
gamma distribution with mean μ̂ and unit variance. In this case we used the response residuals
for computing partial MC and partial DC.

For each case we present two graphs. The first graph gives proportions of the three most frequent
models returned by each method, plus a ratio we call the hit rate, the rate of models containing all q
true predictors. The second graph contains the individual proportions of each candidate predictor
variable to be included in the models returned.

Figures 3–8 summarize our simulation results. In Case 1, linear relations, all methods seem
to perform well as the hit rates and individual proportions for detecting the true predictors are
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10 C.D. Yenigün and M.L. Rizzo

Figure 3. Simulation results for Case 1, linear relations. True model is X1, X2, and X3.

Figure 4. Simulation results for Case 2, nonlinear relations. True model is X1, X2, X3, and X4.

Figure 5. Simulation results for Case 3, dependent but uncorrelated variable. True model is X1, X2, and X3.

very high. The proportion of returning the exact true model is largest for DC method. In Case
2, nonlinear relations, the performances go down for all methods. Here, MC method stands out
with the largest hit rate and proportion of returning the exact model. The remaining three methods
seem to be unable to detect the true predictors X1 and X3. In Case 3, dependent but correlated
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Figure 6. Simulation results for Case 4, constant collinearity among predictors. True model is X1, X2, and X3.

Figure 7. Simulation results for Case 5, Toeplitz type collinearity among predictors. True model is X1, X2, and X3.

Figure 8. Simulation results for Case 6, gamma regression. True model is X1, X2, and X3.

variables, hit rates are larger for MC and DC methods, but the ability to detect the exact model for
all methods is very low for all methods. In terms of individual detection proportions, MC and DC
outperform the benchmark methods (AIC and lasso). In Cases 4 and 5, constant collinearity and
Toeplitz-type collinearity among the predictors, the performances of all four methods are good
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Table 1. Simulation results for models in dimension p = 20.

Case Method Model Percentage X1 X2 X3 X4

1 AIC X1, X2, X3 3 100 100 100 –
DC X1, X2, X3 10 100 100 100 –

Lasso X1, X2, X3 5 100 100 100 –
MC X1, X2, X3 24 99 96 97 –

2 AIC X2, X4 3 20 75 18 99
DC X2, X4 11 45 86 63 99

Lasso X2, X4 3 20 76 18 99
MC X1, X2, X3, X4 16 75 91 78 96

3 AIC X1 2 24 2 19 –
DC X1 24 73 51 48 –

Lasso X1 2 24 18 21 –
MC X3 34 44 46 62 –

4 AIC X1, X2, X3 4 97 94 94 –
DC X1, X2, X3 10 96 93 93 –

Lasso X1, X2, X3 17 98 96 94 –
MC X1, X2, X12 2 85 76 86 –

5 AIC X1, X2, X3, X20 6 100 98 99 –
DC X1, X2, X3 11 99 98 99 –

Lasso X1, X2, X3 10 100 100 100 –
MC X1, X2, X3 12 86 92 84 –

6 AIC X1, X2, X3 6 88 87 86 –
DC X1, X2, X3 15 90 01 87 –

Lasso X1, X2, X3 8 88 89 86 –
MC X1, X2, X3 7 79 78 78 –

Note: The percentage of the most frequent model returned by each method is given, along with the
individual detection percentage for each true predictor variable. The true models are X1, X2, andX3
for all cases except Case 2, where the true model is X1, X2, X3, and X4.

and similar, except the MC method is a little weaker. In Case 6, gamma regression, we observe
that the DC method has the highest frequency of detecting the exact model.

The simulation results indicate that for cases with linear dependence with no or some collinearity
(Cases 1, 4, 5), our methods are comparable with the benchmark methods. When we introduce
nonlinear dependence structures between the response and predictors (Case 2), we observed
that the MC-based method outperforms the others. When we defined the response variable as a
linear combination of variables that are dependent but uncorrelated with the responses (Case 3),
both proposed methods outperformed the benchmark methods. This is because both MC and DC
vanish if and only if the two variables are independent. When the underlying model is the gamma
regression model which also has a nonlinear nature (Case 6), we observe that the DC outperforms
all other methods.

6.2. Results for p = 20

In this section we increase the number of candidate predictor variables to 20 and study the effect of
the increased dimension on the performances of the variable selection methods discussed above.
We consider the same cases, except we now look for the same number of true predictors among 20
predictors generated in the same fashion. Due to larger number of variables, rather than giving the
full simulation details as we did for p = 8, here we only give a summary of our findings. Table 1
presents the percentage of the most frequent model returned by each method, along with the
individual detection percentage for each true predictor variable. For Cases 2, 3 and 4, increasing
the number of candidate predictors does not seem to effect the empirical comparison results to
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a great extent. However, AIC severely suffers from the increased dimension in Cases 1, 5 and
6; lasso severely suffers in Cases 1 and 6; and the MC method severely suffers in Case 6. In
Cases 1 and 2, the MC method performs significantly better than the others. In all of the cases
studied for p = 8 and p = 20, we can say that the DC method either has the best or an acceptable
performance.

7. Conclusions

In this study we considered two new variable selection methods for linear and nonlinear regression
models. The first method is a stepwise procedure which uses the partial MC as the criterion
for adding a variable to the model at each step. The second method is similar, except it uses
partial DC as the criterion. Both methods perform well and they can be easily implemented. We
carried out an extensive simulation study to compare the performances of the proposed methods
with two benchmark methods, stepwise AIC and lasso. In many cases, the performances of the
proposed methods were comparable with the benchmark methods. In the presence of nonlinear or
uncorrelated dependencies, our methods turned out to perform better. We also observed that the
benchmark methods may suffer from increased number of candidate predictor variables, while
the proposed methods still have an acceptable performance.
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