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K GROUPS: A GENERALIZATION OF K-MEANS

By Songzi Li, Maria Rizzo

Bowling Green State University ∗ and Bowling Green State University†

In this paper we propose a new class of distribution-based clus-
tering algorithms called K-groups, which assigns observation to the
same cluster if they follow the identical statistical distribution. We
propose two different K-groups algorithms: K-groups by first varia-
tion and K-groups by second variation, and generate Hartigan and
Wong’s idea of moving one point to moving m(m > 1) points. For uni-
variate data, we proved that Hartigan and Wong’s K-means algorithm
is a special case of K-groups by first variation. The simulation results
for univariate and multivariate cases show that both K-groups algo-
rithms perform as well as Hartigan and Wong’s K-means algorithm
when clusters are well-separated and normally distributed. Both K-
groups algorithms perform better than K-means when data does not
have finite first moment or data has strong skewness and heavy tails.
For non–spherical clusters, both K-groups algorithms perform better
than K-means in high dimension and K-groups by first variation is
consistent as dimension increases. Results of clustering on three real
data examples show that both K-groups algorithms perform better
than K-means.

Introduction. Cluster analysis is one of the core topics of data mining
and has a lot of application domains such as astronomy, psychology, market
research and bioinformatics. Clustering is a fundamental tool in unsuper-
vised study which is used to group similar objects together without using
external information such as class label. In general, there are two purposes
for using cluster analysis: understanding and utility [7]. Understanding of
cluster analysis means to find groups of objects that share common charac-
teristics, and utility of cluster analysis attempts to abstract the representa-
tive objects from objects in the same groups. The earliest research on cluster
analysis can be traced back to 1894, when Karl Pearson used the moment
matching method to determine the mixture parameters of two single-variable
components [8]. There are many different clustering algorithms, and each al-
gorithm has its own advantages in the certain situation. In this paper we
will focus on K-means which is the most popular clustering algorithm.

MSC 2010 subject classifications: Primary K-means, K-groups; secondary First varia-
tion, Second variation
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K-means. K-means is a prototype-based algorithm which uses cluster
mean as the centroid, and assigns the observation to the cluster with nearest
centroid. Let D = {x1, . . . , xn} ⊂ Rm is the data set to be clustered. P =
{π1, . . . , πK} be a partition of D, where K is the number of cluster set by
user. so we have ∪iπi = D, and πi ∩ πj = ø if i 6= j. The symbol ωx is
the weight of x, nk is the number of data objects assigned to cluster πk,
ck =

∑
x∈πk

ωxx
nk

represents the centroid of cluster πk, 1 ≤ k ≤ K. The
function d(x, y) is a distance-like function to compute the ”dissimilarity”
between data object x and y. So the K-means clustering is equivalent to
minimization problem.

(0.1) minck,1≤k≤K

K∑
k=1

∑
x∈πk

ωxd(x, ck)

K-means algorithm is equivalent to search a global minimum problem which
is computationally difficult (NP-hard). The standard algorithm was pro-
posed by Stuart LIoyd in 1957 [5]. A more efficient version was proposed and
published in Fortran by Hartigan and Wong in 1979 [3]. The distance-like
function is one of important factors that influence the performance of K-
means. The most common used distance functions are Euclidean quadratic
distance, spherical distance, and Kullback-Leibler Divergence [12]. In this
paper, we will use a new kind of distance function Energy Distance.

Energy Distance. G. J. Székely proposed Energy Distance in 1986 [10].
Energy distance is a statistical distance between observations. The concept
is based on the notion of Newton’s gravitational potential energy, which is
a function of the distance between two bodies in a gravitational space.

Definition 0.1. Energy Distance. The energy distance between the d-
dimensional independent random variables X and Y is defined as

E(X,Y ) = 2E|X − Y |d − E|X −X ′|d − E|Y − Y ′|d,

where E|X|d < ∞, E|Y |d < ∞, X ′ is an independent and identically dis-
tributed (iid) copy of X, and Y ′ is an iid copy of Y.

Let F (x) andG(x) be the cumulative distribution functions, and f̂(t) and
ĝ(t) be the characteristic functions of independent random variables X and
Y , respectively. [9] gave the following proposition .
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proposition 0.1. If the d-dimensional random variables X and Y are
independent with E|X|d + E|Y |d < ∞, and f̂ , ĝ denote the their respec-
tive characteristic functions, then the energy distance between independent
random variables X and Y is

2E|X − Y |d − E|X −X ′|d − E|Y − Y ′|d =
1

Cd

∫
Rd

|f̂(t)− ĝ(t)|2

|t|d+1
dt,

where

Cd =
π

d+1
2

Γ(d+1
2 )

,

and Γ(.) is the complete gamma function. Thus, E(X,Y ) ≥ 0 with equality
to zero if and only if X and Y are identically distributed.

Székely proved energy distance is a generalization of Cramér’s L2 distance
[10] and gave a generalization of Proposition 0.1.

proposition 0.2. Let X and Y be independent d-dimensional random
variables with characteristic functions f̂ , ĝ, and E|X|α < ∞, E|Y |α < ∞
for some 0 < α < 2. If X ′ is an iid copy of X, and Y ′ is an iid copy of y,
then the energy distance between random variables X and Y is defined as

Eα(X,Y ) = 2E|X−Y |α−E|X−X ′|α−E|Y−Y ′|α =
1

C(d, α)

∫
Rd

|f̂(t)− ĝ(t)|2

|t|d+α
dt,

where 0 < α < 2, and

C(d, α) = 2π
d
2

Γ(1− α/2)

α2αΓ(d+α2 )

Note that when α = 2, the expression

2E|X − Y |α − E|X −X ′|α − E|Y − Y ′|α

measures the distance between means,

(0.2) E2(X,Y ) = 2|E(X)− E(Y )|2.

For all 0 < α < 2, we have Eα(X,Y ) ≥ 0 with equality to zero if and only
if X and Y are identically distributed; this characterization does not hold
for α = 2 since we have equality to zero when ever E(X) = E(Y ) in (0.2).
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The two-sample energy statistic corresponding to energy distance Eα(X,Y),
for independent random samples X = X1, ..., Xn1 and Y = Y1, ..., Yn2 is

Eαn1,n2
(X,Y) =

2

n1n2

n1∑
i=1

n−2∑
m=1

|Xi − Ym|α −

1

n21

n1∑
i=1

n1∑
j=1

|Xi −Xj |α −
1

n22

n2∑
l=1

n2∑
m=1

|Yl − Ym|α,

where α ∈ (0, 2). The weighted two-sample statistic

TX,Y = (
n1n2
n1 + n2

)En1,n2(X,Y)

can be applied for testing homogeneity [11] (equality of distributions of X
and Y ).

K-groups. K-means usually uses quadratic distance as a distance-like
function to compute the dissimilarity between the data object and the pro-
totype prespecified, and minimize the variance within the clusters. In this
paper, we use a weighted two-sample energy statistic TX,Y as the statistical
function to measure the dissimilarity between the clusters, and use the K-
means algorithm given by Hartigan and Wong in 1979 [3] to implement our
algorithm. Generally, our method belongs to the class of Distribution-Based
Algorithms. This kind of algorithms takes a cluster as a dense region of
data objects that is surrounded by regions of low densities. They are often
employed when the clusters are irregular or intertwined, or when noise and
outliers are present. Since the energy distance measures the similarity be-
tween two sets rather than the similarity between the object and prototype,
we name our method K-groups.

We define dispersion between two sets A,B as

Gα(A,B) =
1

n1n2

n1∑
i=1

n2∑
m=1

|ai − bm|α

where 0 < α ≤ 2, and n1, n2 are the sample sizes for sets A,B. Let P =
{π1, ..., πk} be a partition of observations, where k is the number of clusters,
prespecified. We define the total dispersion of the observed response by

Tα(π1, ...πk) =
N

2
Gα(∪ki=1πi,∪ki=1πi),
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where N is the total number of observations. The within-groups dispersion
is defined by

Wα(π1, ...πk) =

k∑
j=1

nj
2
Gα(πj , πj),

where nj is the sample size for cluster πj . The between-sample dispersion is

Bα(π1, ...πk) =
∑

1≤i<j≤k
{ninj

2N
(2Gα(πi, πj)−Gα(πi, πi)−Gα(πj , πj))}.

when 0 ≤ α ≤ 2 we have the decomposition

Tα(π1, ...πk) = Wα(π1, ...πk) +Bα(π1, ...πk),

and both Wα(π1, ...πk) and Bα(π1, ...πk) are nonnegative. Because to max-
imize between-sample dispersion Bα(π1, ...πk), with Tα(π1, ...πk) constant,
it is equivalent to minimize Wα(π1, ...πk). So our purpose is to find the
best partitions which minimize the Wα. So the objective function for the
K-Groups is

(0.3) minπ1,...,πk

k∑
j=1

nj
2
Gα(πj , πj) = minπ1,...,πkW

α(π1, ...πk).

First Variation Algorithm. Motivated by the Hartigan and Wong’s
idea, we search for a K-partition with locally optimal Wα by moving points
form one cluster to another. We call this reallocation step First Variation.

Definition 0.2. A first variation of a partition P is a partition P ′

obtained from P by removing a single point a from a cluster πi of P and
assigning this point to an existing cluster πj of P .

Let π1 and π2 are two different clusters in partition P = π1, ..., πk, and
point a ∈ πi. cluster π−1 represents cluster π1 after removing point a, and
cluster π+2 represents cluster π2 after adding point a. Let n1 and n2 are the
size of cluster π1 and π2. The dispersion of cluster π1 and π2 are

Gα(π1, π1) =
1

2n1

n1∑
i

n1∑
j

|x1i − x1j |α,

Gα(π2, π2) =
1

2n2

n2∑
i

n2∑
j

|x2i − x2j |α,



6

where x1i ∈ π1, i = 1, ..., n1 and x2i ∈ π2, i = 1, ..., n2. The dispersion of
cluster π−1 and π+2 are

Gα(π−1 , π
−
1 ) =

1

2 · (n1 − 1)

n1−1∑
i

n1−1∑
j

|x−1i − x
−1
j |

α,

Gα(π+2 , π
+
2 ) =

1

2 · (n2 + 1)

n2+1∑
i

n2+1∑
j

|x+2
i − x

+2
j |

α,

where x−1i ∈ π−1 , i = 1, ..., n1 − 1 and x+2
i ∈ π+2 , i = 1, ..., n2 + 1. The

two-sample energy statistics between point a with cluster π1 and π2 are

(0.4) ξα(a, π1) =
2

n1

n1∑
i

|x1i − a|α − 1

n21

n1∑
i

n1∑
j

|x1i − x1j |α,

(0.5) ξα(a, π2) =
2

n2

n2∑
i

|x2i − a|α − 1

n22

n2∑
i

n2∑
j

|x2i − x2j |α.

Firstly, we compute the Gα(π1, π1)−Gα(π−1 , π
−
1 ).

Gα(π1, π1)−Gα(π−1 , π
−
1 )

=
1

2 · n1

n1∑
i

n1∑
j

|x1i − x1j |α −
1

2 · (n1 − 1)

n1−1∑
i

n1−k∑
j

|x−1i − x
−1
j |

α

=
1

2 · n1

n1∑
i

n1∑
j

|x1i − x1j |α −
1

2 · (n1 − 1)
{
n1∑
i

n1∑
j

|x1i − x1j |α

− 2

n1∑
i

|x1i − a|α}

=
1

n1 − 1

n1∑
i

|x1i − a|α − 1

2 · n1(n1 − 1)

n1∑
i

n1∑
j

|x1i − x1j |α.(0.6)

Times n1
2(n1−1) of equation (0.4), then we have

n1
2(n1 − 1)

ξα(a, π1) =
1

n1 − 1

n1∑
i

|x1i − a|α

− 1

2 · n1(n1 − 1)

n1∑
i

n1∑
j

|x1i − x1j |α.(0.7)
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Equation (0.6) minus equation (0.7), then we have

(0.8) Gα(π1, π1)−Gα(π−1 , π
−
1 ) =

n1
2(n1 − 1)

ξα(a, π1).

Then we compute Gα(π+2 , π
+
2 )−Gα(π2, π2).

Gα(π+2 , π
+
2 )−Gα(π2, π2)

=
1

2 · (n2 + 1)

n2+1∑
i

n2+1∑
j

|x+2
i − x

+2
j |

α − 1

2 · n2

n2∑
i

n2∑
j

|x2i − x2j |α

=
1

2 · (n2 + 1)
{
n2∑
i

n2∑
j

|x2i − x2j |α + 2

n2∑
i

|x2i − a|α}

− 1

2 · n2

n2∑
i

n2∑
j

|x2i − x2j |α

=
1

n2 + 1

n2∑
i

|x2i − a|α −
1

2 · n2(n1 + 1)

n2∑
i

n2∑
j

|x2i − x2j |α.(0.9)

Times n2
2(n1+1) of equation (0.5), then we have

n2
2(n1 + 1)

ξα(a, π2) =
1

n2 + 1

n2∑
i

|x2i − a|α−

1

2 · n2(n2 + 1)

n2∑
i

n2∑
j

|x2i − x2j |α.(0.10)

Equation (0.9) minus equation (0.10), then we have

(0.11) Gα(π+2 , π
+
2 )−Gα(π2, π2) =

n2
2(n2 + 1)

ξα(a, π2).

Equation (0.8)minus equation (0.11), then we have

Gα(π1, π1) +Gα(π2, π2)−Gα(π−1 , π
−
1 )−Gα(π+2 , π

+
2 )

=
n1

2(n1 − 1)
ξα(a, π1)−

n2
2(n2 + 1)

ξα(a, π2).(0.12)

Based on the derivation above, we have the following theorem.

Theorem 0.1. Suppose that P = {π1, π2, ...πk} is a partition, and P ′ =
{π−1 , π

+
2 , ..., πk} is P first variation, so we have

Wα(P )−Wα(P ′) =
n1

2(n1 − 1)
ξα(a, π1)−

n2
2(n2 + 1)

ξα(a, π2).
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Similar as the Hartigan and Wong K-means algorithm, we remove point
a from cluster π1 to π2 If

n1
2(n1 − 1)

ξα(a, π1)−
n2

2(n2 + 1)
ξα(a, π2)

is positive. Otherwise we keep the point a in cluster π1. Based on the com-
putation above we propose the K-Groups algorithm.

Notation Let N be the total sample size of observations, M be the
dimension of the sample, and K be the clusters number prespecified. The
number of points in cluster πi(i = 1, ...,K) is denoted by ni, (i = 1, ...,K).
The two-sample energy statistic between point I to cluster πi is denoted as
ξα(I, πi). The K-Groups algorithm is the following

Step 1. For each point I, (I = 1, ..., N) randomly assign to cluster πi, i =
1, ...,K. let π(I) represent the cluster where I belongs, and n(π(I)) repre-
sents the size of cluster π(I).

Step 2. For each point I, (I = 1, ..., N), Compute

E1 =
n(π(I))

2(n(π(I))− 1)
ξα(I, π(I))

and minimum of the quantity

E2 = min

[
n(πi)

2(n(πi) + 1)
ξα(I, πi)

]
for all clusters πi, π 6= π(I). If E1 is less than E2, observation I remains
in cluster π(I). Otherwise, move the point I to cluster π, and update the
cluster π(I) and π.

Step 3. Stop if there is no relocation in the last N steps.
We can proof the K-groups algorithm and Hartigan and Wong K-means

algorithm have the same objective function when let α = 2.

proposition 0.3. When α = 2,

ni
2
Gα(πi, πi) =

ni∑
l=1

x2l − nic2i

where ci = 1
ni

∑ni
j=1 xj,and xj ∈ πi, j = 1, ...ni
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Proof.

ni
2
G2(πi, πi) =

1

2ni

ni∑
l=1

ni∑
m=1

|xl − xm|2

=
1

2ni

ni∑
l=1

ni∑
m=1

(x2l − 2xlxm + x2m)

=
1

2ni
[ni

ni∑
l=1

x2l − 2

ni∑
l=1

ni∑
m=1

xlxm + ni

ni∑
m=1

x2m]

=
1

2ni
[2ni

ni∑
l=1

x2l − 2

ni∑
l=1

ni∑
m=1

xlxm]

=
1

2ni
[2ni

ni∑
l=1

x2l − 2n2i c
2
i ]

=

ni∑
l=1

x2l − nic2i .(0.13)

proposition 0.4. ∑
xj∈πi

(xj − ci)2 =

ni∑
l=1

x2l − nic2i

where ci = 1
ni

∑ni
j=1 xj,and xj ∈ πi, j = 1, ...ni.

Proof. ∑
xj∈πi

(xj − ci)2 =

ni∑
j=1

(x2j − 2 · xj · ci + c2i )

=

ni∑
j=1

x2j − 2

ni∑
j=1

xjci +

n−i∑
j=1

c2i

=

ni∑
j=1

x2j − 2nic
2
i + nic

2
i

=

ni∑
j=1

x2j − nic2i .(0.14)
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Since the objective function for K-means is

minci,1≤i≤k

k∑
i=1

∑
xj∈πi

(xj − ci)2,

the objective function for K-Groups is

minπ1,...,πk

k∑
i=1

ni
2
Gα(πi, πi),

Based on the Proposition (0.3) and Proposition (0.4) we have∑
xj∈πi

(xj − ci)2 =
ni
2
G2(πi, πi).

for all i = 1, ..., k. So the K-groups and K-means have the same objective
function. We have the following theorem

Theorem 0.2. When α = 2, the K-groups algorithm and Hartigan and
Wong K-means algorithm have the same objective function.

Then we proof the update formula of K-groups and Hartigan and Wong
K-means algorithm are same when α = 2.

proposition 0.5. Suppose point I belongs in cluster L, the sample size
of L is n, then we have

n

2(n− 1)
ξ2(I, L) =

n ·D(I, L)2

n− 1

Proof. we only need to proof 1
2ξ

2(I, L) = D(I, L)2.

(0.15) ξ2(I, L) =
2

n

n∑
i=1

|I − xi|2 −
1

n2

n∑
i=1

n∑
j=1

|xi − xj |2,

(0.16) D(I, L)2 = (I −
∑n

i=1 xi
n

)2.



A SAMPLE DOCUMENT 11

We can simplify the equation (0.15) as follows

ξ2(I, L) =
2

n

n∑
i=1

|I − xi|2 −
1

n2

n∑
i=1

n∑
j=1

|xi − xj |2

=
2

n
(nI2 − 2I

n∑
i=1

xi +

n∑
i=1

x2i )−
1

n2

n∑
i=1

n∑
j=1

(x2i − 2xixj + x2j )

= (2I2 − 4I

∑n
i=1 x

2
i

n
+ 2

∑n
i=1 x

2
i

n
)− 1

n2
(2n

n∑
i=1

x2i − 2
n∑
i=1

n∑
j=1

xixj)

= (2I2 − 4I

∑n
i=1 x

2
i

n
+ 2

∑n
i=1 x

2
i

n
)− (2

∑n
i=1 x

2
i

n
− 2

2
∑n

i=1

∑n
j=1 xixj

n2
)

= 2(I2 − 2I

∑n
i=1 xi
n

+
2
∑n

i=1

∑n
j=1 xixj

n2
)

= 2(I −
∑n

i=1 xi
n

)2,

(0.17)

Base on the equation(0.17) we have

1

2
ξ2(I, L) = D(I, L)2.

With the similar calculation we have

(0.18)
n

2(n+ 1)
ξ2(I, L) =

n ∗D(I, L)2

n+ 1
.

Base on Proposition (0.5) and equation(0.18), update formula of K-groups
and Hartigan and Wong K-means algorithm are same when α = 2.

According the results above, K-means is a special case of K-groups when
α = 2. However, according to the properties of energy statistics, we know
that when 0 < α < 2 the energy distance ξα(X,Y ) = 0 if and only if
random variable X and Y follow the same statistical distribution. However,
when α = 2 we have ξα(X,Y ) = 0 when ever E(X) = E(Y ). In spite of
the objective function and update formula for K-Groups and K-means are
equivalent when α = 2, they are still different clustering method.

Second Variation Algorithm. The objective of K-groups is to find
a global minimum of within-cluster sum of dispersion. However, in most
cases we can only get the local minimum by first variation method. Usually
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in order to solve this problem, one can try different initial random starts,
and choose the best result with minimum within-cluster dispersion. In order
to search the global optimization, we are trying to move more than one
observations. The reasons why we want to move more than one point are
the following.

• We want to move from the local optimum obtained by the first varia-
tion.
• Based on the result of [11], if two samples follow different distributions,

the weighted two-sample energy statistic

TX,Y =

(
n1n2
n1 + n2

)
En1,n2(X,Y)

will approach infinity stochastically as N tends to infinity and neither
n1
N nor n2

N goes to zero, where N denotes the total data size.
• Energy statistics admit a nice updating formula for moving more than

one observations. We will show later that the difference of within-
cluster sum of dispersion equals the difference of weighted two-sample
energy statistics if we move any m (m > 1) points from cluster to
cluster.

Definition 0.3. A mth variation of a partition P is a partition P (m)

obtained from P by removing m points {a1, a2, ..., am} from a cluster πi of
P and assigning these points to an existing cluster πj of P , i 6= j.

We want to move m points {a1, a2, ..., am} from cluster π1 to another clus-
ter π2. Cluster π−1 represents cluster π1 after removingm points {a1, a2, ..., am},
and cluster π+2 represents cluster π2 after adding those m points. Let n1 and
n2 be the sizes of π1 and π2 before moving m points. The derivation of
updating formula for the mth variation is similar to the second variation.
The two-sample energy statistic between the m points {a1, a2, ..., am} and
clusters π1, π2 are by definition

ξα({a1, ...am}, π1) =
2

m · n1

n1∑
i

m∑
j

|x1i − aj |α −
1

m2

m∑
i

m∑
j

|ai − aj |α

− 1

n21

n1∑
i

n1∑
j

|x1i − x1j |α,(0.19)
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and

ξα({a1, ...am}, π2) =
2

m · n2

n2∑
i

m∑
j

|x2i − aj |α −
1

m2

m∑
i

m∑
j

|ai − aj |α

− 1

n22

n2∑
i

n2∑
j

|x2i − x2j |α.(0.20)

Similar to the derivation of first variation, we compute n1
2 G

α(π1, π1) −
n1−m

2 Gα(π−1 , π
−
1 ) and n2+m

2 Gα(π+2 , π
+
2 )− n2

2 G
α(π2, π2), as

n1
2
Gα(π1, π1)−

n1 −m
2

Gα(π−1 , π
−
1 )

=
1

2 · n1

n1∑
i

n1∑
j

|x1i − x1j |α −
1

2 · (n1 −m)

n1−m∑
i

n1−m∑
j

|x−1i − x
−1
j |

α

=
1

2 · n1

n1∑
i

n1∑
j

|x1i − x1j |α −
1

2 · (n1 −m)

 n1∑
i

n1∑
j

|x1i − x1j |α

−2

n1∑
i

m∑
j

|x1i − aj |α +
m∑
i

m∑
j

|ai − aj |α


=
1

n1 −m

m∑
i

n1∑
j

|x1i − aj |α −
1

2 · (n1 −m)

m∑
i

m∑
j

|ai − aj |α

− m

2 · n1(n1 −m)

n1∑
i

n1∑
j

|x1i − x1j |α.(0.21)

Multiply m·n1
2(n1−m) times equation(0.19) to get

mn1
2(n1 −m)

ξα({a1, ...am}, π1) =
1

n1 −m

n1∑
i

m∑
j

|x1i − aj |α−

n1
2m(n1 −m)

m∑
i

m∑
j

|ai − aj |α−

m

2n1(n1 −m)

n1∑
i

n1∑
j

|x1i − x1j |α.(0.22)
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Subtract equation (0.22) from equation (0.21) to obtain

n1
2
Gα(π1, π1)−

n1 −m
2

Gα(π−1 , π
−
1 )

=
mn1

2(n1 −m)
ξα({a1, ...am}, π1) +

1

2m

m∑
i

m∑
j

|ai − aj |α.(0.23)

Based on a similar derivation, we can show that

n2 +m

2
Gα(π+2 , π

+
2 )− n2

2
Gα(π2, π2)

=
mn2

2(n2 +m)
ξα({a1, ...am}, π2) +

1

2m

m∑
i

m∑
j

|ai − aj |α.(0.24)

Subtract equation (0.24) from equation (0.23) to get

n1
2
Gα(π1, π1) +

n2
2
Gα(π2, π2)−

n1 −m
2

Gα(π−1 , π
−
1 )− n2 +m

2
Gα(π+2 , π

+
2 )

=
mn1

2(n1 −m)
ξα({a1, ...am}, π1)−

mn2
2(n2 +m)

ξα({a1, ...am}, π2).(0.25)

Theorem 0.3. Suppose P = {π1, π2, ...πk} is a partition, and P (m) =
{π−1 , π

+
2 , ..., πk} is a mth variation of P by moving points {a1, a2, ..., am}

from cluster π1 to π2. Then

Wα(P )−Wα(P (m)) =
mn1

2(n1 −m)
ξα({a1, ...am}, π1)−

mn2
2(n2 +m)

ξα({a1, ...am}, π2).

Similar to first variation and second variation, we assign points {a1, a2, ..., am}
to cluster π2 if

mn1
2(n1 −m)

ξα({a1, ...am}, π1)−
mn2

2(n2 +m)
ξα({a1, ...am}, π2)

is positive; otherwise we keep points {a1, a2, ..., am} in cluster π1.
According to theorem above, we can move any m points from one cluster

to another cluster. However, the computation cost for moving more points
is excessive. Suppose the total sample size is N , and we have K clusters, K
prespecified. For K-groups by first variation algorithm, one needs to compute
distance NK times in each loop. Suppose m = 2, one needs to compute
distance KN(N−1)

2 times in each loop, because there are N(N−1)
2 combinations

of two points. For mth variation, ones to compute distance CN !
m!(N−m)! times

in each loop. The computation cost will increase exponentially in N . Even
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though we have very nice mathematical formula for moving m points, the
computational cost is too expensive. Here, we let m = 2 and propose the
algorithm by moving two points. We call this algorithm K-groups by second
variation.

It is not practical to consider all possible combinations of two points. Since
our objective is to minimize the within-group sum of dispersion, we do not
need to consider all possible combinations. We pair two points together if
they have the minimum energy distance, and we assume these two points
should be assigned to the same cluster.

Notation Let even number N be the total sample size of observations,
M be the dimension of the sample, and K be the number of clusters, K
prespecified. The size of cluster πi, (i = 1, ...,K) is denoted by ni. The two-
sample energy statistic between pair II to cluster πi is denoted by ξα(II, πi).
The K-groups algorithm by second variation is the following:

Step 1. Each pair of points II (II = 1, ..., N/2), is randomly assigned to
cluster πi (i = 1, ...,K). Let π(II) represent the cluster containing II , and
n(π(II)) represent the size of cluster π(II).

Step 2. For each pair II (II = 1, ..., N/2), compute

E1 =
n(π(II))

n(π(II))− 2
ξα(II, π(II))

and the minimum

E2 = min

[
n(πi)

n(πi) + 2
ξα(II, πi)

]
for all clusters πi, where πi 6= π(II). If E1 is less than E2, pair II remains
in cluster π(II); otherwise, move the pair II to cluster πi with minimum
value of E2, and update the cluster π(II) and πi.

Step 3. Stop if there is no relocation in the last N
2 steps.

For an odd number N , we randomly take one observation out. After run-
ning the K-groups by second variation, we assign the observation to the
cluster based on the updating formula of K-groups by first variation algo-
rithm.

Simulation Results. A variety of cluster structures can be generated
as mixtures of different distributions. Each of our simulated data sets was
designed as mixture, where each component of the mixture corresponds to
a cluster. Each mixture distribution is simulated at different sample sizes
200, we calculate average and standard error for validation indices diago-
nal (Diag), Kappa, Rand, and corrected Rand (cRand) based on B = 500
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iterations. In K-groups methods, for the mixture distributions which have
finite first and second moment, we use α = 1; otherwise we use the smaller
value of α = 0.5 to have finite moments E|X − Y |α. All algorithms were
implemented in R and all simulations carried out in R. The K-groups al-
gorithms are available upon request in an R package kgroups [4]. We want
to compare K-groups by first variation, K-groups by second variation and
K-means under different cluster structure.

Figure1 displays the simulation results for normal mixture 0.5 N (0, 1) +
0.5 N (d, 1), where d = 0.2, 0.4, ..., 3. The average cRand indices of the three
algorithms are almost the same for each value of d. The results for symmetric
normal mixtures suggest that both K-groups algorithms and K-means have
similar performance when the cluster are normally distributed.
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Fig 1. Overlapping effect for normal mixture distributions, n = 200, B = 500

Figure 2 displays the simulation results for Cauchy mixture 0.5 Cauchy(0, 1)+
0.5Cauchy
(d, 1), where d = 0.2, 0.4, ..., 3. The average cRand indices of both K-groups
algorithms dominate the average cRand of K-means for each value of d.
Thus, the results suggest that both K-groups algorithms are more robust
respect to outliers and heavy tails.

Figure 3 displays the simulation results for lognormal mixtures 0.5 lognormal (0, 1)+
0.5 lognormal (d, 1) where d = 0.5, 1, ..., 10. The average cRand indices of
both K-groups algorithms dominate the K-means for each value of d. Thus,
the results suggest that the K-groups algorithms have much better perfor-
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Fig 2. Overlapping effect for Cauchy mixture distributions, n = 200, B = 500

mance than K-means when clusters are strongly skewed, heavy tailed.
Figure 4 shows the results of normal mixtures 0.5 N (0, 1) + 0.5 N (3, 1)

with α = 0.2, 0.4, ..., 2. The average cRand indices of K-means and K-groups
by first variation are very close. When d = 2, K-means and K-groups by
first variation have very close average cRand indices. The average cRand
indices of K-groups by second variation are slight lower than the other two
algorithms. Generally, for each value of α, the average cRand indices of both
K-groups algorithms and K-means are very close. Thus, the results suggest
that there is no α effect when clusters are normally distributed.

Figure 5 shows the results of Cauchy mixtures 0.5 Cauchy (0, 1)+0.5 Cauchy (3, 1)
with α = 0.2, 0.4, ..., 2. The average cRand indices of K-groups by first vari-
ation decrease as α increases, and when α = 2 the average cRand indices of
K-groups by first variation and K-means are very close. K-groups by second
variation have more stable average cRand indices than the other two algo-
rithms. Thus, the results suggest that there is α effect when clusters have
infinite first moment.

Table 1 summarize the simulation results of multivariate cubic mixture
0.5 Cubicd (0, 1) + 0.5 Cubicd (0.3, 0.7). For every dimension d, the average
Rand and cRand indices of both K-groups algorithms are higher than K-
means. For each algorithm, the average Rand and cRand indices increase as
the dimension d increases.

Figure 6 displays the simulation result of cubic mixtures 0.5 Cubicd (0, 1)+
0.5 Cubicd
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Fig 3. Overlapping effect for lognormal mixture distributions, n = 200, B = 500

(0.3, 0.7), where d = 1, 2, 4, ..., 40. The average Rand and cRand indices of
these three algorithms are almost the same when d < 5. However, the average
Rand and cRand indices of both K-groups algorithms are consistently higher
than K-means when d > 5. Furthermore, the average Rand and cRand
indices of K-groups by first variation approach 1 as dimension d increases.
Thus, the results suggest that K-groups by first variation algorithm has
better performance than the other two algorithms when clusters are cubic
shaped in the multivariate case.
Now we want to use some real data to test the K-groups and K-means

algorithm.

Diagnosis of Erythemato-Squamous Diseases in Dermatology.
The dermatology data analyzed is publicly available from the UCI Machine
Learning Repository [1] at ftp.ics.uci.edu. The data was analyzed by [2], and
contributed by Güvenir. The erythemato-squamous dieases are proriasis,
seboreic dermatitis, lichen planus, pityriasis rosea, choronic dermatitis and
pityriasis rubra pilaris. According to [2], diagnosis is difficult since all these
diseases share the similar clinical features of erythema and scaling. Another
difficulty is that a disease may show histopathological features of another
disease initially, but have characteristic feature at the following stages.

The data consists of 366 objects with 34 attributes. There are 12 clinical
attributes and 22 histopathological attributes. All except two take values in
0, 1, 2, 3, where 0 indicates the feature was not present and 3 is the largest
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Fig 4. α effect for normal mixture distributions, n = 200, B = 1000

Table 1
Cubic Mixture 0.5 Cubicd (0, 1) + 0.5 Cubicd (0.3, 0.7), α = 1

Method d Diag Kappa Rand cRand

K-means 1 0.5381 0.0758 0.5021 0.0043
K-groups Point 1 0.5352 0.0710 0.5014 0.0028
K-groups Pair 1 0.5352 0.0710 0.5014 0.0028

K-means 2 0.5439 0.0877 0.5032 0.0065
K-groups Point 2 0.5440 0.0879 0.5034 0.0068
K-groups Pair 2 0.5542 0.0884 0.5034 0.0069

K-means 5 0.5536 0.1067 0.5056 0.0113
K-groups Point 5 0.5713 0.1427 0.5128 0.0257
K-groups Pair 5 0.5676 0.1355 0.5120 0.0240

K-means 10 0.5705 0.1393 0.5128 0.0257
K-groups Point 10 0.7875 0.5758 0.6923 0.3847
K-groups Pair 10 0.6647 0.3287 0.5672 0.1346

K-means 20 0.6065 0.2078 0.5274 0.0550
K-groups Point 20 0.9976 0.9951 0.9952 0.9904
K-groups Pair 20 0.7213 0.4416 0.6045 0.2090

K-means 40 0.6396 0.2794 0.5406 0.0810
K-groups Point 40 0.9999 0.9999 0.9999 0.9997
K-groups Pair 40 0.7471 0.4960 0.6228 0.2456

amount possible. The attribute of family history takes value 0 or 1, and
the age of patient takes positive integer values. There are eight missing
values in the age of patient. The clinical and histopathological attributes
are summarized in Table 2. We standardize all the attributes to zero mean
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Fig 5. α effect for Cauchy mixture distributions, n = 200, B = 1000
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Fig 6. Multivariate cubic mixtures, d = 2, 4, ..., 40, n = 200, B = 500

and unit standard deviation and delete the observations which contain the
missing values. The effective data size is 358 in the clustering analysis.

Table 3 shows the clustering result of K-means, K-groups by first varia-
tion, K-groups by second variation, and Hierarchical ξ. The maximum Rand
and cRand index values 0.9740 and 0.9188 are obtained by K-groups by first
variation. The Hierarchical ξ obtains the second largest Rand and cRand
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Table 2
Dermatology Data Summary

Clinical Attributes Histopathological Attributes

1. erythema 12. melanin incontinence
2. scaling 13. eosinophils in the infiltrate
3. definite borders 14. PNL infiltrate
4. itching 15. fibrosis of the paillary derims
5. koebner phenomenon 16. exocytosis
6. polygonal papules 17. acanthosis
7. follicular papules 18. hyperkeratosis
8. oral mucosal involvement 19. parakeratosis
9. knee and elbow involvement 20. clubbing of the rete ridges
10. scalp involvement 21. elongation of the rete ridges
11. family history 22. thinning of the suprapapillary epidermis
34. age 23. pongiform pustule

24. munro microabcess
25. focal hyperganulosis
26. disapperance of the granular layer
27. vaculolization and damage of basal layer
28. spongiosis
29. saw-tooth appearance of retes
30. follicular horn plug
31. perifollicular parakeratosis
32. inflammatory mononuclear infiltrate
33. band-like infiltrate
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index values 0.9730 and 0.9159. K-groups by second variation obtains the
Rand and cRand index values 0.9543 and 0.8602. K-means obtains small-
est Rand and cRand index values among those four algorithms, 0.9441 and
0.8390.

Table 3
Dermatology Data Results

Indices K-means K-groups Point K-groups Pair Hierarchical ξ

Diag 0.8324 0.9553 0.8910 0.9497
Kappa 0.7882 0.9440 0.8640 0.9370
Rand 0.9441 0.9740 0.9543 0.9730
cRand 0.8390 0.9188 0.8602 0.9159

Conclusion. The simulation results for univariate and multivariate cases
show that both K-groups algorithms perform as well as Hartigan and Wong’s
K-means algorithm when clusters are well-separated and normally distributed.
Both K-groups algorithms perform better than K-means when data does not
have finite first moment. For data which has strong skewness and heavy tails,
both K-groups algorithms perform better than K-means. For non–spherical
clusters, both K-groups algorithms perform better than K-means in high di-
mension and K-groups by first variation is consistent as dimension increases.
Results of clustering on three real data examples show that both K-groups
algorithms perform better than K-means, and in some situations, K-groups
by first variation performs better than Hierarchical ξ.

In summary, our proposed K-groups method can be recommended for
all types of unsupervised clustering problems with pre-specified number of
clusters, because performance was typically comparable to or better than
K-means. K-groups has other advantages and it is a more general method.
It can be applied to cluster feature vectors in arbitrary dimension and the
index α can be chosen to handle very heavy tailed data with non-finite ex-
pected distances. We have developed and applied a simple updating formula
analogous to Hartigan and Wong, which has been implemented in R, and
the method is also easily implemented in Python, Matlab or other widely
used languages.

Future research directions are as follows.

• K-means and both K-groups algorithms have computational timeO(n2),
where n is the total sample size. We plan to use parallel computing to
cut down the computational time.
• Big data is a challenge for clustering tasks, since the computational

time of traditional algorithms are too long. We plan to divide the big
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data into mutually exclusive subsets with reasonable sizes and run the
K-groups algorithm on each subset. Then we can use mth variation
formula to merge the clustering result of different subsets together.
• If we know some observations should be assigned to the same clus-

ter, we can bunch these observations together and use mth variation
formula to implement the clustering tasks.
• Energy distance is a functional distance between the characteristic

functions of two independent random variables X and Y . [6] extended
energy–type distance to separable Hilbert space by choosing appro-
priate kernel functions which are negative definite. Based on similar
ideas, we can extend the K-groups algorithms using different kernel
functions.
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