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Abstract

We describe a modern method for statistical classifi-
cation known as support vector machine (SVM). The
two class SVM has been known for a decade. The
multicategory SVM (MSVM) was originally proposed
in the thesis of Yoonkyung Lee (2002) and joint techni-
cal reports by various subsets of Lee, Lee, Lin, Wahba
and Zhang. Recently Lee and Wahba teamed up with
Steve Ackerman to apply the results to simulated MODIS
data, to classify the MODIS profiles as coming from a
clear, water cloud or ice cloud situation. Very good re-
sults were obtained. When the JTECH referee wanted
to know how well the method would work on real MODIS
data, a satellite ”expert” took a sample of 1536 ob-
served MODIS profiles, and labeled them with other
information at his disposal. The labeled profiles were
then divided into a training set and a test set. The
MSVM built on the training set achieved an error rate
of under 1% on the test set, while the present MODIS
algorithm had an error rate of about 18%. As ann in-
teresting byproduct we note how closely the simulated
data matched the observational data in some of pair-
wise variable plots. (To appear, JTECH).
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♣♣ 0. Simulated MODIS Data

744 radiance profiles were simulated (81 clear, 202
water clouds, 461 ice clouds). Here are 10 samples
from clear, from water clouds and from ice clouds:
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♣♣ 1. Optimal Classification and the
Neyman-Pearson Lemma:

hA
hB

hA(·), hB(·) densities of t for class A and class B.

NOTATION:

πA = prob. next observation (Y ) is an A

πB = 1 − πA = prob. next observation is a B

p(t) = prob{Y = A|t}

=
πAhA(t)

πAhA(t) + πBhB(t)

1
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♣♣ 1.Optimal Classification and the
Neyman-Pearson Lemma (cont.).

Let cA = cost to falsely call a B an A

cB = cost to falsely call an A a B

Bayes classification rule: Let

φ(t) : t → {AB}

Optimum (Bayes) classifier: (Neyman-Pearson Lemma)
Minimizes the expected cost:

φOPT(t) =







A if p(t)
1−p(t)

> cA
cB

,

B otherwise.
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♣♣ 2. The Support Vector Machine, two classes.

y =
+1 =

−1 =

A

B
(note coding)

Find f(t) = d + h(t) with h ∈ HK to min

1

n

n
∑

i=1

(1 − yif(ti))+ + λ‖h‖2HK
(∗ ∗ ∗)

where (τ)+ = τ, τ > 0,= 0 otherwise.

Then

fλ(t) = d +
n

∑

i=1

ciK(t, ti), (∗)

‖h‖2HK
=

∑

i,j

cicjK(ti, tj). (∗∗)

Substitute (*,**) into (***), choose λ, given λ, find c
and d numerically. The classifier is

fλ(t) > 0 → A

fλ(t) < 0 → B

Numerically, must solve a mathematical programming
problem.
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Figure 1. Let C(yi, f(ti)) = c(yif(ti)) = c(τ).
Comparison of c(τ) = (−τ)∗, (1−τ)+ and log2(1+

e−τ), the log likelihood function. Any strictly convex
function that goes through 1 at τ = 0 will be an
upper bound on the missclassification counter (−τ∗)

and will be a looser bound than some SVM (hinge)
function (1 − θτ)+. Many other ”large margin” clas-
sifiers. (See [Wahba02]).
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♣♣ 2.The SVM (cont.) What is the SVM estimating?.

What is the SVM estimating?

Lemma (Yi Lin [YLin02]) (two category version)

The minimizer of E(1 − ynewf(t))+ is sign f(t)

(= sign (p(t) − 1
2) = sign (2p(t) − 1))

where f(t) = log p(t)/(1− p(t)).

So the SVM, the solution of the problem: Find fλ =

d + h which minimizes

1

n

n
∑

i=1

(1 − yif(ti))+ + λ‖h‖2HK
,

where λ is chosen to minimize (a proxy for) R(λ), is
estimating sign f(t) - not f(t) itself, but just what you
need to minimize the misclassification rate.
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♣♣ 2. The SVM (cont.).The SVM is not estimating a
probability.
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±1, thus pλ is estimating p(t), whereas fsvm λ is esti-
mating sign(2p−1) = sign(p−1/2)= sign f . (based
on Gaussian K) (plot: Yoonkyung Lee)
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♣♣ 3.Tuning the estimates

The smoothing parameter λ must be chosen. If the

Gaussian kernel, K(s, t) = exp−
‖s−t‖2

σ2 is used then
σ2 must also be chosen. λ and σ2 can be jointly cho-
sen by GACV or by 5-fold crossvalidation-(next slide).
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♣♣ 3. Tuning the estimates (cont.).

GACV (generalized approximate cross validation). For
penalized likelihood: [XiangWahba96][XLin98];
For the (two class) SVM[Wahba99]
For the MSVM[Lee02][LeeLinWahba02].

Leaving out one for the two class SVM :

VO(λ) =
1

n

n
∑

i=1

[1 − yif
[i]
λ (ti)]+

where f
[i]
λ is the estimate without the ith data point.

GACV (λ) =
1

n

n
∑

i=1

[1 − yif(ti)]+ + D(y, fλ)

where

D(y, fλ) ≈
1

n

n
∑

i=1

{

[1 − yif
[i]
λ (ti)]+ − [1 − yifλ(ti)]+

}

is obtained by a tailored perturbation argument. Easy
to compute for the SVM, use randomized trace tech-
niques to estimate the perturbation in the likelihood
case.
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♣♣ 4. The Multicategory Support Vector Machine
(MSVM).

From [LeeLinWahba02],[LWA03], earlier reports.
k > 2 categories. Coding:

yi = (yi1, · · · , yik),
k

∑

j=1

yij = 0,

in particular yij = 1 if the ith subject is in category j

and yij = − 1
k−1 otherwise. yi = (1,− 1

k−1, · · · ,− 1
k−1)

indicates yi is from category 1. The MSVM produces
f(t) = (f1(t), · · · fk(t)), with each f j = dj + hj

with hj ∈ HK , required to satisfy a sum-to-zero con-
straint

k
∑

j=1

f j(t) = 0,

for all t in T . The largest component of f indicates
the classification.
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♣♣ 4. The Multicategory Support Vector Machine
(MSVM)(cont.).

Let Ljr = 1 for j 6= r and 0 otherwise. The MSVM is
defined as the vector of functions fλ = (f1

λ , · · · , fk
λ),

with each hk in HK satisfying the sum-to-zero con-
straint, which minimizes

1

n

n
∑

i=1

k
∑

r=1

Lcat(i)r(f
r(ti) − yir)+ + λ

k
∑

j=1

‖hj‖2HK

equivalently

1

n

n
∑

i=1

∑

r 6=cat(i)

(fr(ti) +
1

k − 1
)+ + λ

k
∑

j=1

‖hj‖2HK

where cat(i) is the category of yi.

The k = 2 case reduces to the usual 2-category
SVM.

The target for the MSVM is f(t) = (f1(t), · · · , fk(t))

with f j(t) = 1 if pj(t) is bigger than the other pl(t)

and f j(t) = − 1
k−1 otherwise.
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♣♣ 4. The Multicategory Support Vector Machine
(MSVM)(cont.).
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The left panel above gives the estimated f1, f2 and
f3. λ and σ were optimally tuned. (i. e. with the
knowledge of the ‘right’ answer). In the second from
left panel both λ and σ were chosen by 5-fold cross
validation in the MSVM and in the third panel they
were chosen by GACV. In the rightmost panel the clas-
sification is carried out by a one-vs-rest method.
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♣♣ 4. The Multicategory Support Vector
Machines(MSVM)(cont.).

The nonstandard MSVM:

More generally, suppose the sample is not represen-
tative, and misclassification costs are not equal. Let

Ljr = (πj/πs
j)Cjr, j 6= r

Cjr is the cost of misclassifying a j as an r, Crr =

0, πj is the prior probability of category j, and πs
j is

the fraction of samples from category j in the training
set. Then the nonstandard MSVM has as its target the
Bayes rule, which is to choose the j which minimizes

k
∑

`=1

C`jp`(x)
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♣♣ 5. Application to the classification of upwelling
MODIS radiance data to clear sky, water clouds or

ice clouds.

From [LWA03]. Classification of 12 channels of up-
welling radiance data from the satellite- borne MODIS
instrument. MODIS is a key part of the Earth Observ-
ing System (EOS).

Classify each vertical profile as coming from clear sky,
water clouds, or ice clouds.

744 simulated radiance profiles (81 clear-blue, 202
water clouds-green, 461 ice clouds-purple).
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composite variables.(purple = ice clouds, green = wa-
ter clouds, blue = clear)
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Classification boundaries on the 374 test set deter-
mined by the MSVM using 370 training examples, two
variables, one is composite. Y. K. Lee Student poster prize AMet-

Soc Satellite Meteorology and Oceanography session.
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MSVM test error rates for the combinations of
variables and classifiers.

Number of Variable descriptions Err rates
variables (%)

2 (i) R2, log10(R5/R6) 11.50
5 (i)+R1/R2, BT31, BT32 − BT29 10.16

12 (ii) original 12 variables 12.03
12 log transformed (ii) 9.89
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Classification boundaries determined by the nonstan-
dard MSVM when the cost of misclassifying clear clouds
is 4 times higher than other types of misclassifica-
tions.
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Real Data: Pairwise plots of three different variables
(including composite variables). (purple = ice clouds,
green = water clouds, blue = clear) 1536 profiles ”La-
beled by an expert.” Note remarkable similarity to sim-
ulated data!
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Real Data: Classification boundaries on the test set
determined by the MSVM using training examples, two
variables, one is composite.
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MSVM test error rates for the combinations of
variables and classifiers.

Simulated Data:

Number of Variable descriptions Err rates
variables (%)

2 (i) R2, log10(R5/R6) 11.50
5 (i)+R1/R2, BT31, BT32 − BT29 10.16

12 (ii) original 12 variables 12.03
12 log transformed (ii) 9.89

Real data:

Number of Variable descriptions Err rates
variables (%)

2 (i) R2, log10(R5/R6) 4.69
5 (i)+R1/R2, BT31, BT32 − BT29 0.26

12 (ii) original 12 variables 0.78
12 log transformed (ii) 0.65

Test error rate of the MODIS cloud masking algorithm
on the real data: 18% (!)
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♣♣ 6. Closing Remarks

Experimental software for the MSVM is available on
a limited basis from Yoonkyung Lee yklee@stat.ohio-
state.edu until Dec 31. Public code under develop-
ment.

Simulated MODIS Data for the conditions studied here
is reasonably realistic, and may provide a useful rough
cut when real labeled training data is not available.

The tuned MSVM is amazingly good at ’learning’ how
an expert labels MODIS radiance profiles.

The MSVM may be adjusted to reflect different costs
for different kinds of misclassifications.

Interesting questions arise with regard to choosing im-
portant variables or combinations of variables.

The MSVM is appropriate for many classification prob-
lems.
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