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Abstract

This talk will be a short tutorial on the recently pop-
ular support vector machine, (SVM), a relatively re-
cent technique for (nonparametric) classification. We
will explain how it relates to penalized likelihood esti-
mates, and how its popularity is well deserved.
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OUTLINE

1. Optimal classification and the Neyman-Pearson
Lemma.

2. The Penalized Likelihood Estimate, two classes.

3. The Support Vector Machine (SVM), two classes.

4. Tuning the estimates.

5. The Multicategory Support Vector Machine (MSVM).

6. Application to cloud classification from MODIS data.

7. The Multicategory Penalized Likelihood Estimate.

Closing remarks, more closing remarks.

3



♣♣ 1. Optimal Classification and the
Neyman-Pearson Lemma:

�
hA

hB

hA(·), hB(·) densities of t for class A and class B.

NOTATION:

πA = prob. next observation (Y ) is an A

πB = 1 − πA = prob. next observation is a B

p(t) = prob{Y = A|t}

=
πAhA(t)

πAhA(t) + πBhB(t)

1
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♣♣ 1.Optimal Classification and the
Neyman-Pearson Lemma (cont.).

Let cA = cost to falsely call a B an A

cB = cost to falsely call an A a B

Bayes classification rule: Let

φ(t) : t → {AB}

Optimum (Bayes) classifier: (Neyman-Pearson Lemma)
Minimizes the expected cost:

φOPT(t) =







A if p(t)
1−p(t)

> cA
cB

,

B otherwise.
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♣♣ 2. Penalized Likelihood Estimation, Two Classes.

Let f(t) = log p(t)
1−p(t)

, p(t) = ef(t)/(1 + ef(t)).
For comparison to the SVM coming up next, use the
unusual coding:

y =
+1 =

−1 =

A

B

Then the log likelihood can be written:

L(y, f) = log(1 + e−yf).

Given {yi, ti, i = 1, ..., n}, the penalized log likeli-
hood estimate of f is the solution to the problem: Find
f(t) = d + h(t) with h ∈ HK to min

1

n

n
∑

i=1

log(1 + e−yif(ti)) + λ‖h‖2HK
. (∗ ∗ ∗)
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Then (Kimeldorf & Wahba 1971)

fλ(t) = d +
n

∑

i=1

ciK(t, ti), (∗)

‖h‖2HK
=

∑

i,j

cicjK(ti, tj). (∗∗)

Substitute (*,**) into (***), choose λ, given λ, find c

and d numerically. The estimate pλ(t) of p(t) is re-
covered from fλ(t).

Since p = 1/2 corresponds to f = 0, it is possible, if
desired, to use fλ as a classifier, via

fλ(t) > 0 → A

fλ(t) < 0 → B
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Plot of a penalized likelihood estimate of 19 year risk
of a heart attack as a function of cholesterol and dias-
tolic blood pressure, based on data from the Western
Electric Health Study (O’Sullivan, Yandell and Raynor,
JASA 1986) goes here.



♣♣ 3. The Support Vector Machine, two classes.

y =
+1 =

−1 =

A

B
(note coding)

Find f(t) = d + h(t) with h ∈ HK to min

1

n

n
∑

i=1

(1 − yif(ti))+ + λ‖h‖2HK
(∗ ∗ ∗)

where (τ)+ = τ, τ > 0,= 0 otherwise.

Then

fλ(t) = d +
n

∑

i=1

ciK(t, ti), (∗)

‖h‖2HK
=

∑

i,j

cicjK(ti, tj). (∗∗)

Substitute (*,**) into (***), choose λ, given λ, find c
and d numerically. The classifier is

fλ(t) > 0 → A

fλ(t) < 0 → B

Numerically, must solve a mathematical programming
problem.
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Figure 1. Let C(yi, f(ti)) = c(yif(ti)) = c(τ).
Comparison of c(τ) = (−τ)∗, (1 − τ)+ and log2(1 + e−τ),
the log likelihood function. Any strictly convex func-
tion that goes through 1 at τ = 0 will be an upper
bound on the misclassification counter (−τ∗) and will
be a looser bound than some SVM (hinge) function
(1 − θτ)+. τ = yf is known as the margin - there
are many other ”large margin” classifiers....
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Figures of several large margin classifiers (from Yi Lin)
go here.
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♣♣ 3.The SVM (cont.) What is the SVM estimating?.

What is the SVM estimating?

Lemma (Yi Lin 2002) (two category version)

The minimizer of E(1 − ynewf(t))+ is sign f(t)

(= sign (p(t) − 1
2) = sign (2p(t) − 1))

where f(t) = log p(t)/(1− p(t)).

So the SVM, the solution of the problem: Find fλ =

d + h which minimizes

1

n

n
∑

i=1

(1 − yif(ti))+ + λ‖h‖2HK
,

where λ is chosen to minimize (a proxy for) R(λ), is
estimating sign f(t) - not f(t) itself, but just what you
need to minimize the misclassification rate.
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♣♣ 3. The SVM (cont.).The SVM is not estimating a
probability.

−2 −1 0 1 2
−1.5

−1
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0
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1.5

t

truth
penalized likelihood
SVM

300 Bernoulli random variables were generated, equally
spaced t from p(t) = 0.4sin(0.4πt) + 0.5. Solid
line: (2p(t) − 1). Dotted line:(2pλ − 1), pλ is (opti-
mally tuned) penalized likelihood estimate of p. Dashed
line: fsvm λ, is (optimally tuned) SVM. Observe fsvm λ ∼

±1, thus pλ is estimating p(t), whereas fsvm λ is esti-
mating sign(2p−1) = sign(p−1/2)= sign f . (based
on Gaussian K) (plot: Yoonkyung Lee)
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♣♣ 4.Tuning the estimates.

The smoothing parameter λ must be chosen. If the

Gaussian kernel, K(s, t) = exp−
‖s−t‖2

σ2 is used then
σ2 must also be chosen. λ and σ2 can be jointly cho-
sen by GACV (Generalized Approximate Cross Val-
idation, 5-fold crossvalidation, or, if copious data is
available, by test-tune-train data sets.)
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♣♣ 5. The Multicategory Support Vector Machine
(MSVM).

From [LeeLinWahba04],[LeeWahbaAckerman04], ear-
lier reports. k > 2 categories.
Coding:

yi = (yi1, · · · , yik),
k

∑

j=1

yij = 0,

in particular yij = 1 if the ith subject is in category j

and yij = − 1
k−1 otherwise. yi = (1,− 1

k−1, · · · ,− 1
k−1)

indicates yi is from category 1. The MSVM produces
f(t) = (f1(t), · · · fk(t)), with each f j = dj + hj

with hj ∈ HK , required to satisfy a sum-to-zero con-
straint

k
∑

j=1

f j(t) = 0,

for all t in T . The largest component of f indicates
the classification.
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♣♣ 5. The Multicategory Support Vector Machine
(MSVM)(cont.).

The MSVM is defined as the vector of functions fλ =

(f1
λ , · · · , fk

λ), with each hk in HK satisfying the sum-
to-zero constraint, which minimizes

1

n

n
∑

i=1

∑

r 6=cat(i)

(fr(ti) +
1

k − 1
)+ + λ

k
∑

j=1

‖hj‖2HK

where cat(i) is the category of yi. (So, there is no
cost term for r = cat(i) but a cost in the other terms
unless fr(ti) ≤ − 1

k−1)

The k = 2 case reduces to the usual 2-category
SVM.

The target for the MSVM is f(t) = (f1(t), · · · , fk(t))

with f j(t) = 1 if pj(t) is bigger than the other pl(t)

and f j(t) = − 1
k−1 otherwise.
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♣♣ 5. The Multicategory Support Vector Machine
(MSVM)(cont.).
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Above: Probabilities and target f j ’s for three category
SVM demonstration.(Gaussian Kernel)
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The left panel above gives the estimated f1, f2 and
f3. λ and σ were optimally tuned. (i. e. with the
knowledge of the ‘right’ answer). In the second from
left panel both λ and σ were chosen by 5-fold cross
validation in the MSVM and in the third panel they
were chosen by GACV. In the rightmost panel the clas-
sification is carried out by a one-vs-rest method.
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♣♣ 6. Application to the classification of upwelling
MODIS radiance data to clear sky, water clouds or

ice clouds.

From [LWA04]. Classification of 12 channels of up-
welling radiance data from the satellite- borne MODIS
instrument. MODIS is a key part of the Earth Observ-
ing System (EOS).

Classify each vertical profile as coming from clear sky,
water clouds, or ice clouds.

744 simulated radiance profiles (81 clear-blue, 202
water clouds-green, 461 ice clouds-purple).
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Pairwise plots of three different variables (including
composite variables.(purple = ice clouds, green = wa-
ter clouds, blue = clear)
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Classification boundaries on the 374 test set deter-
mined by the MSVM using 370 training examples, two
variables, one is composite.
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MSVM test error rates for the combinations of
variables and classifiers.

Number of Variable descriptions Err rates
variables (%)

2 (i) R2, log10(R5/R6) 11.50
5 (i)+R1/R2, BT31, BT32 − BT29 10.16

12 (ii) original 12 variables 12.03
12 log transformed (ii) 9.89
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Classification boundaries determined by the nonstan-
dard MSVM when the cost of misclassifying clear clouds
is 4 times higher than other types of misclassifica-
tions.
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Real Data: Pairwise plots of three different variables
(including composite variables). (purple = ice clouds,
green = water clouds, blue = clear) 1536 profiles ”La-
beled by an expert.” Note remarkable similarity to sim-
ulated data!
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Real Data: Classification boundaries on the test set
determined by the MSVM using training examples, two
variables, one is composite.
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MSVM test error rates for the combinations of
variables and classifiers.

Simulated Data:

Number of Variable descriptions Err rates
variables (%)

2 (i) R2, log10(R5/R6) 11.50
5 (i)+R1/R2, BT31, BT32 − BT29 10.16

12 (ii) original 12 variables 12.03
12 log transformed (ii) 9.89

Real data:

Number of Variable descriptions Err rates
variables (%)

2 (i) R2, log10(R5/R6) 4.69
5 (i)+R1/R2, BT31, BT32 − BT29 0.26

12 (ii) original 12 variables 0.78
12 log transformed (ii) 0.65

Test error rate of the MODIS cloud masking algorithm
on the real data: 18% (!)
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♣♣ 7. Multicategory penalized likelihood[XLin98].

k + 1 categories, k > 1. Let pj(t) be the probability
that a subject with attribute vector t is in category j,
∑k

j=0 pj(t) = 1. From [XLin98]: Let

f j(t) = log pj(t)/p0(t), j = 1, · · · , k.

Then:

pj(t) = efj(t)

1+
∑k

j=1 efj(t)
, j = 1, · · · , k

p0(t) = 1

1+
∑k

j=1 efj(t)

Coding:

yi = (yi1, · · · , yik),

yij = 1 if the ith subject is in category j and 0 other-
wise.
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♣♣ 8. Remarks

It has been recognized by other authors that when
the data is coded as ±1, that the likelihood function
as well as quadratic loss (ridge regression) are large
margin classifiers, and have given them new names -
e. g. xxx-vector machines. Other large margin clas-
sifiers have appeared under various names. In some
sense, the hinge function associated with the SVM is
the nearest convex upper bound to the misclassifica-
tion counter.

SVM’s are very desirable and popular in higher dimen-
sions, and when the classes are (nearly) separable.

The SVM’s tend to be sparse, as many coefficients
corresponding to correctly classified data points away
from the boundary will be 0.

Penalized likelihood estimates are more appropriate
when there is large overlap between the classes and/or
you want a probability.
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♣♣ 8. More Remarks

Experimental software for the MSVM is available on
a limited basis from Yoonkyung Lee yklee@stat.ohio-
state.edu. Public code under development.

Simulated MODIS Data for the conditions studied here
is reasonably realistic, and may provide a useful rough
cut when real labeled training data is not available.

The tuned MSVM is amazingly good at ’learning’ how
an expert labels MODIS radiance profiles.

The MSVM may be adjusted to reflect different costs
for different kinds of misclassifications.

Interesting questions arise with regard to choosing im-
portant variables or combinations of variables.

The MSVM as well as the SVM is highly appropriate
for many classification problems.
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