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Abstract

We begin with a few historical remarks about what might be called
the regularization class of statistical model building methods,
which include penalized likelihood, support vector machines, robust
and quantile nonparametric regression, etc., etc, and the problem of
tuning them, spending a little too much time on methods related to
Generalized Cross Validation. After that we discuss an approach to
variable and pattern selection given very large attribute vectors,
based on the LASSO (that is, l1 penalties) that differs from most
approaches to this problem in that it is a mostly global, rather
than a sequential, or greedy algorithm, for finding patterns in the
data that most influence an outcome.
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Regularization Class of Statistical Models

• y ∈ Y: The observations, y1, · · · , yn.

• x ∈ X : The attribute vectors, x(1), · · · , x(n).

• f ∈ H: The model, to be found, relates x ∈ X to y ∈ Y. H is
the class in which f is to be found.

• C(y, f): Measures goodness of fit of the model to the data.

• Jλ(f): Penalty functional on f , constrains complexity/degrees
of freedom of the model.

The model f is found as the solution to: min f ∈ H:
n∑

i=1

C(yi, f(x(i)) + Jλ(f).

The (set of) parameter(s) λ controls the tradeoff between fit and
complexity, a. k. a bias-variance in some contexts.
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One simple example leads
to the cubic smoothing
spline.

• y ∈ R

• x ∈ [0, 1]

• f ∈ W 2
2 (Sobolev

space of functions with
square integrable sec-
ond derivative),

• C(y, f) = (y − f(x))2

• Jλ(f) =
∫ 1

0
(f”(x))2dx
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On the right: Top: λ too small; Middle λ too big; Bottom λ just
right, chosen by Generalized Cross Validation GCV . (Golub, Heath
and Wahba, 1979, Craven and Wahba, 1979).
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Varieties of Cost Functions (Univariate Case).

C(y, f)

Regression:

Gaussian data (y − f)2

Bernoulli, f = log[p/(1− p)] −yf + log(1 + ef )

Other exponential families other log likelihoods

Data with outliers robust functionals

Quantile functionals ρq(y − f), ρq(τ) = τ(q − I(τ ≤ 0))

Classification: y ∈ {−1, 1}
Support vector machines (1− yf)+, (τ)+ = τ, τ ≥ 0, 0 otherwise

Other ”large margin classifiers” e−yf and other functions of yf

Multivariate (vector-valued y) versions of the above.
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Penalty Functionals

Jλ(y, f)

Quadratic (RKHS) Penalties:

x ∈ T , some domain, can be very general.

f ∈ HK, a reproducing kernel Hilbert space

of functions, characterized by some positive

definite function K(s, t), s, t ∈ T . λ‖f‖2
HK , etc.

lp Penalties:

x ∈ T , some domain, can be very general.

f ∈ span {Br(x), r = 1, · · · , N},
a specified set of basis functions on T .

f(x) =
∑N

r=1 crBr(x) λ
∑N

r=1 |cr|p

Various combinations of RKHS and `p penalties are possible.
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T :

• Anything you can define a positive definite function K on.

• Anything you can define a set of basis functions {Br} on.

• Many generalities: x = (x1 : x2), x1 ∈ T 1, x2 ∈ T 2,
f = f1 + f2 Jλ(f) = J1

λ1
(f1) + J2

λ2
(f2), etc., etc., etc....
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Some Tuning References
Not complete. May not be the earliest reference. Not guaranteed.

• Unbiased Risk C. Mallows. Some comments on Cp.
Technometrics, 15:661–675, 1973.

• AIC H. Akaike. A new look at the statistical identification
model. IEEE Trans. Auto. Control, 19:716–723, 1974.

• Leaving-out-one G. Wahba and S. Wold. A completely
automatic French curve. Commun. Stat., 4:1–17, 1975.

• GCV-illposed G. Wahba. Practical approximate solutions to
linear operator equations when the data are noisy. SIAM J.
Numer. Anal., 14:651–667, 1977.

• Unbiased Risk M. Hudson. A natural identity for exponential
families with applications in multiparameter estimation. Ann.
Statist., 6:473–484, 1978.
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• BIC G. Schwartz. Estimating the dimension of a model. Ann.
Statist., 6:461–464, 1978.

• GCV G. Golub, M. Heath, and G. Wahba. Generalized cross
validation as a method for choosing a good ridge parameter.
Technometrics, 21:215–224, 1979.

• GCV P. Craven and G. Wahba. Smoothing noisy data with
spline functions: estimating the correct degree of smoothing by
the method of generalized cross-validation. Numer. Math.,
31:377–403, 1979.

• G. Wahba. A comparison of GCV and GML for choosing the
smoothing parameter in the generalized spline smoothing
problem. Ann. Statist., 13:1378–1402, 1985.

• Randomized Trace D. Girard. A fast ‘Monte-Carlo
cross-validation’ procedure for large least squares problems
with noisy data. Numer. Math., 56:1–23, 1989.
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• Randomized Trace M. Hutchinson. A stochastic estimator for
the trace of the influence matrix for Laplacian smoothing
splines. Commun. Statist.-Simula., 18:1059–1076, 1989.

• GACV D. Xiang and G. Wahba. A generalized approximate
cross validation for smoothing splines with non-Gaussian data.
Statistica Sinica, 6:675–692, 1996.

• GACV-multiple outcomes X. Lin. Smoothing spline analysis of
variance for polychotomous response data. Technical Report
1003, PhD thesis, Department of Statistics, University of
Wisconsin, Madison WI, 1998. Available via G. Wahba’s
website.

• SVM T. Joachims. Estimating the generalization performance
of an SVM efficiently. In Proceedings of the International
Conference on Machine Learning, San Francisco, 2000. Morgan
Kaufman.
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• GACV-SVM G. Wahba, Y. Lin, and H. Zhang. Generalized
approximate cross validation for support vector machines. In
A. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans,
editors, Advances in Large Margin Classifiers, pages 297–311.
MIT Press, 2000.

• GACV-clustered outcomes F. Gao, G. Wahba, R. Klein, and
B. Klein. Smoothing spline ANOVA for multivariate Bernoulli
observations, with applications to ophthalmology data, with
discussion. J. Amer. Statist. Assoc., 96:127–160, 2001.

• SVM O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee.
Choosing multiple parameters for support vector machines.
Machine Learning, 46:131–159, 2002.

• GACV-l1 H. Zhang, G. Wahba, Y. Lin, M. Voelker, M. Ferris,
R. Klein, and B. Klein. Variable selection and model building
via likelihood basis pursuit. J. Amer. Statist. Assoc.,
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99:659–672, 2004.

• GACV-multicat-SVM Y. Lee, Y. Lin, and G. Wahba.
Multicategory support vector machines, theory, and application
to the classification of microarray data and satellite radiance
data. J. Amer. Statist. Assoc., 99:67–81, 2004.

• B.Efron. The estimation of prediction error: Covariance
penalties and cross-validation. J. Amer. Statist. Assoc.,
81:619–642. (with discussion), 2005.

• GACV-l1,BGACV W. Shi, G. Wahba, S. Wright, K. Lee,
R. Klein, and B. Klein. LASSO-Patternsearch algorithm with
application to ophthalmalogy data. Technical Report 1131,
Department of Statistics, University of Wisconsin, Madison
WI, 2006.

• M. Yuan. GACV for quantile smoothing splines. Comp. Stat.
Data Anal., 50:813–829, 2006.
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The LASSO-Patternsearch Algorithm:

Data {yi, x(i)}, i = 1, · · · , n

yi - response of ith subject with p attributes:
x(i) = (x1(i), x2(i), · · · , xp(i))

yi, x1(i), x2(i), · · · , xp(i) ∈ {0, 1}p+1. (special case and p large)

Define p(x) = Prob(y = 1|x)
f(x) = log(p(x)/(1− p(x))) [the logit a.k.a log odds ratio].
p(x) = ef(x)/(1 + ef(x)).
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The negative log likelihood C(y, f) for n observations is

C(y, f) =
n∑

i=1

−yif(x(i)) + b(f(x(i)), b(f) = log(1 + ef ).

The logit f(x) is modeled as

f(x) =
N∑

`=0

c`B`(x)

where the B` are given basis functions. The B` depend on
x = x1, ..., xp in some specified way. The {c`} are found by
minimizing

C(y, f) + Jλ(f)

where

Jλ(f) = λ

N∑
`=1

|c`| l1 penalty.
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LASSO-Patternsearch involves a large to very large number N of
basis functions. The `1 penalty

∑N
`=1 |c`| has the property that

many smaller c` will be set to 0, depending on λ. For given λ, the
c` can be found numerically in MATLAB for moderate size N , but
that will not be good enough for our purposes. For the
LASSO-Patternsearch the basis functions will be all products of the
xr up to order q:

Bj1,j2,..,jr (x) =
∏

xj1xj2 ...xjr , r = 1, · · · , q.

Thus, Bj1,j2,...,jr
(x) = 1 if x is a p-vector which has ones in each of

the j1, j2, · · · , jr positions, and Bj1,...,jr
(x) = 0 otherwise. The

number N of basis functions is then

N =
(

p

0

)
+

(
p

1

)
+

(
p

2

)
+ ... +

(
p

q

)
.

For q = p, (all possible patterns), N = 2p.
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Note that the conditional distribution of one Bernoulli random
variable y given p other Bernoulli random variables x1, · · · , xp has
2p paramteters and can be expanded in complete generality in these
basis functions. The representation will be most compact, however,
if all the risky variables are coded with the risky direction as 1.

A special purpose algorithm which can handle N up to 4000 on our
3.4 GHz cpu and 4Gb memory workstation is in Shi et. al. (The
data analysis described later took just 5 seconds.)
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How to choose λ?
We will target the Kullback-Liebler (KL) distance between two
distributions η and ηλ where η is the true distribution and ηλ is an
estimated distribution:

KL(η, ηλ) = Eηlog
η

ηλ
.

For example, in the Gaussian case, suppose η ∼ N (µ, 1) and
ηλ ∼ N (µλ, 1), then the KL distance KL(η, ηλ) = 1

2 (µ− µλ)2,
leading to minimizing predictive mean square error as the target.

In the Bernoulli case we use the GACV to choose λ, which targets
the KL distance for members of an exponential family with no
nusiance parameters. GACV is derived starting with the
Comparative KL distance (CKL), which ignores that part of KL

distance not depending on λ. The result for Bernoulli data is next.

Grace Wahba 17 6-11-07



Notation: f(x(i)) → fi; fλ(x(i) → fiλ; p(x(i) → pi;
piλ(1− piλ) → σ2

iλ. H = {hij} is inverse Hessian. (like the influence
matrix in the Gaussian case) with iith entry hii, W = diag(σiλ).

KL(f, fλ) =
n∑

i=1

Ef log[
L(fi)
L(fiλ)

]

CKL(f, fλ) =
n∑

i=1

[−pifiλ + b(fiλ)]

CV (λ) =
n∑

i=1

[−yif
[−i]
iλ + b(fiλ)]

ACV (λ) =
n∑

i=1

[−yifiλ + b(fiλ)] +
n∑

i=1

[
yi(yi − µiλ)
(1− σ2

iλhii)
]hii

GACV (λ) =
n∑

i=1

[−yifiλ + b(fiλ)] + trH

∑n
i=1 yi(yi − µiλ)

tr[I − (W 1/2HW 1/2)]
.
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Notation: f(x(i)) → fi; fλ(x(i) → fiλ; p(x(i) → pi;
piλ(1− piλ) → σ2

iλ. W = diag(σiλ). H = {hij} is inverse Hessian,
Here H = B∗(B′

∗WB∗)−1B′
∗, B∗ is the n×NB0 design matrix for

the NB0 non-zero c` in the model.

ACV (λ) =
n∑

i=1

[−yifiλ + b(fiλ)] +
n∑

i=1

[
yi(yi − µiλ)
(1− σ2

iλhii)
]hii

GACV (λ) =
n∑

i=1

[−yifiλ + b(fiλ)] + trH

∑n
i=1 yi(yi − µiλ)

tr[I − (W 1/2HW 1/2)]
.

GACV (λ) =
n∑

i=1

[−yifλi + log(1 + efλi)] + trH

∑n
i=1 yi(yi − pλi)
n(1− 1

nNB0)
,
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The LASSO-Patternsearch has the following steps:

Step 1. Minimize C(y, f) + λ
∑N

`=1 |c`|, choose λ by GACV .

Step 2. Enter all basis functions with ` : |c`| > 0 into a parametric
logistic regression model:

f(x) =
∑

`:c`>0

a`B`(x)

and fit.

Step 3. Select all ` for which a` are significant at the q% level, to fit
the final model:

f(x) =
∑

`:a` significant

b`B`(x).

q is another tuning parmeter, chose q by BGACV . (What is
BGACV?) Examine patterns (B`)’s with significant b`’s.

Step 4. Interpret, demonstrate “significance after data mining”.
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What is BGACV?

GACV (λ) =
n∑

i=1

[−yifiλ + b(fiλ)] + trH

∑n
i=1 yi(yi − µiλ)

tr[I − (W 1/2HW 1/2)]
.

BGACV (λ) =
n∑

i=1

[−yifiλ + b(fiλ)] +
log n

2
trH

∑n
i=1 yi(yi − µiλ)

tr[I − (W 1/2HW 1/2)]
.

GACV targets KL distance. Not the same as as selecting the ‘true’
model. GACV appears to be conservative in that it almost never
misses a ‘true’ pattern (basis function), at the expense of including
noise patterns. Similar argument: replace AIC with BIC by
replacing a 2 by log n in front of the degrees of freedom. As a
heuristic, considering loss of a ‘true’ pattern worse than inclusion of
a noise pattern, while trying to have it both ways, a BGACV
criteria is employed as a second stage. Interesting theoretical issues
here.
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Application to progression of myopia from the Beaver Dam Eye
Study, BDES 1 to BDES2, n = 876 records of persons aged 60-69
at BDES1. A person whose ‘worse eye’ scored at a decrease of .75
Diopters or more is labeled y = 1, and 0 otherwise. About 13% of
this group was scored y = 1. p = 7 predictor variables.
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Table 1: Trial Variables and Cutpoints

variable description binary cut point

(higher risk )

X = 1)

X1 sex sex Male

X2 inc income < 30

X3 jomyop juvenile myopia < 21

X4 catct cataract 4-5

X5 pky packyear >30

X6 asa aspirin not taking

X7 vtm vitamin not taking
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Step 1. p = 7 variables, q = p = 7, N = 27 basis functions,
minimize C(y, f) + λ

∑128
`=1 |c`|, choose λ by GACV.

Twelve patterns survived Step 1.
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Step2. Parametric logistic regression for patterns surviving Step 1:
Enter the patterns surviving Step 1 into a parametric logistic
regression model:

0 2 4 6 8 10 12 14

−4

−3

−2

−1

0

1

2

3

4

E
st

im
at

e

Pattern

The result for the 12 patterns is above: Confidence intervals
depicted reflect Step 3

Grace Wahba 25 6-11-07



Step 3. Select all ` for which a` are significant at the
q% = 96.92%(BGACV ) level, to fit the final model. The patterns
passing this test are:

1. Constant
2. catct (Cataract)
8. pky vtm (Packyear > 30 and not taking vitamins)

12. sex inc jomyop asa (Male, low income, juvenile myopia, not
taking aspirin)
13. sex inc catct asa (Male, low income, cataract, not taking
aspirin)
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Step 3.(continued) Fit the final model with the five patterns
significant at the 96.92% (BGACV) level.

f(x) =
∑

`:a` significant

b`B`(x).

The (refitted) model is

f(catct, pky, vtm, sex, inc, jomyop, asa)

− 3.29 + 2.42 ∗ cact + 1.18 ∗ pky ∗ vtm

+ 1.84 ∗ sex ∗ inc ∗ jomyop ∗ asa + 1.08 ∗ sex ∗ inc ∗ cat ∗ asa.
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Step 4. Having done some ”data mining”, the investigators can go
back and look at classes of people who may not have been
examined separately before. For example:

catct pky not take vitamins risk of progression

1 1 1 17/23 = 0.7391

1 1 0 7/14 = 0.5000

0 1 1 22/137 = 0.1606

0 1 0 2/49 = 0.0408

1 0 1 18/51 = 0.3529

1 0 0 19/36 = 0.5278

0 0 1 22/363 = 0.0606

0 0 0 13/203 = 0.0640

Looking at the smokers: (1, 1, 1, 1):
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Looking at the smokers: smokers with cataract are relatively
protected by taking vitamins, and smokers without cataract are
also relatively protected by taking vitamins. For non smokers
taking or not taking vitamins makes no (significant) difference.

Physiologically meaningful - recent literature suggests:
a) Certain vitamins are good for eye health.
b) Smoking depletes the serum and tissue vitamin level, especially
Vitamin C and Vitamin E.

(Although as usual, a “randomized controlled clinical trial would
provide the best evidence of any effect of vitamins on progression of
myopia in smokers”)
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To check on the “significance” of the patterns, randomly scramble
the ys while keeping the x’s fixed, and apply the entire
LASSO-Patternsearch algorithm to see how often false patterns are
generated. Repeat 600 times. (Statistical theory is not clear on
properties of multistep procedures)
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Detection of noise patterns found in scrambled data compared to
observed p values:

Log p values of the patterns
found (out of 600) are plotted
(l. to r. top to bottom) for ob-
served patterns of size 1,2,3,4.
Red lines are for the observed
p-values for catct, pky vtm,
none, and sex inc jomyop asa

(lower) and sex inc catct asa

(upper).
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Figure 1: Upper red line sug-
gests that sex inc catct asa is
borderline significant.
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Genetic Data (realistic simulation, not ours, not released yet)

y = phenotype, x = SNPs, alleles, covariates, after coding as 1 or
0, 9192 variables.

Train: 1500 cases, 2000 controls
Tune: 1500 cases, 2000 controls
Test: 1500 cases, 2000 controls.

Pre-screen step: 9192 variables reduced to N = 2559 basis
functions for the LASSO step. Final model has 8 main effects and 3
interactions. Using p = .5 as a classifier, a competitive 12.6% error
rate was obtained. Identified a SNP near most of the genes that
were used to generate the data.
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