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Using Distance Covariance (DCOV) for Improved Variable Selection

Abstract

We extend an approach suggested by Li, Zhong and Zhu (2012) to
use distance correlation as a variable selection method by proving a
theorem, the DCOV Variable Selection theorem, which gives a
principled stopping rule for a greedy variable selection algorithm.
We then apply the resulting DCOV Variable Selection method in
two classification problems with small sample size and large vectors
of gene expression data. The first problem involves the well known
SBRCT childhood Leukemia data, which involves gene expression
data from four different types of Leukemia, and it is well known
that these data are easy to classify. The second involves Ovarian
Cancer data from The Cancer Genome Atlas, and involves Ovarian
Cancer patients that are either sensitive or resistant to a particular
cancer chemotherapy. It was clear from the start that this data
presented a difficult classification problem.
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We will skip the definitions of DCOV and DCOR , and go straight
to the DCOV Variable Selection theorem, the DCOV Variable

Selection method, and then to the analysis of the two data sets for
classification, one easy, and one hard.
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Sample Distance Covariance (DCOV)

For a random sample (X, Y ) = {(Xk, Yk) : k = 1, ..., n} of n i.i.d
random vectors (X, Y ) from the joint distribution of random
vectors X in Rp and Y in Rq, the Euclidean distance matrices
(aij) = (|Xi −Xj |p) and (bij) = (|Yi − Yj |q) are computed. Define
the double centering distance matrices

Aij = aij − ai· − a·j + a··, i, j = 1, ..., n,

where

ai· =
1
n

n∑
j=1

aij , a·j =
1
n

n∑
i=1

aij , a·· =
1
n2

n∑
i,j=1

aij ,

similarly for Bij = bij − bi· − b·j + b··, i, j = 1, ..., n.

4 July 15, 2014



Sample Distance Covariance (DCOV) (continued)

The sample distance covariance(DCOV) Vn(X, Y ) is defined by

V 2
n (X, Y ) =

1
n2

n∑
i,j=1

AijBij .

The sample distance correlation (DCOR) Rn(X, Y ) is defined by

R2
n(X, Y ) =


V 2

n (X, Y )√
V 2

n (X)V 2
n (Y )

, V 2
n (X)V 2

n (Y ) > 0;

0, V 2
n (X)V 2

n (Y ) = 0,

where the sample distance variance is defined by

V 2
n (X) = V 2

n (X, X) =
1
n2

n∑
i,j=1

A2
ij .
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Population Distance Covariance

Szekely and Rizzo (2009) defined the population distance
covariance between X ∈ Rp and Y ∈ Rq to be

V2(X, Y ) =
1

cpcq

∫
Rp+q

|fX,Y (s, t)− fX(s)fY (t)|2

|s|1+p
p |t|1+q

q

dt ds

where fX,Y (s, t), fX(s), and fY (t) are the characteristic functions of
(X, Y ), X, and Y , respectively, and cp, cq are constants chosen to
produce scale free and rotation invariant measure that doesn’t go to
zero for dependent variables. The idea originates from the property
that the joint characteristic function factorizes under independence
of the two random vectors. This leads to the remarkable property
that V 2(X, Y ) = 0 if and only if X and Y are independent. The
sample version of DCOV is an estimate of the population DCOV.
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Population distance covariance: The DCOV Variable Selection theorem

Li, Zhong and Zhu (2012) proposed using distance correlation for
feature screening, (thanks!) but did not provide a necessary
stopping criterion. The following theorem will provide a principled
way of choosing a stopping criterion:

Theorem (J. Kong) Suppose we have random vectors
X ∈ Rp1 , Z ∈ Rp2 Y ∈ Rq, and X : Z ∈ Rp1+p2 and assume Z is
independent of (X, Y ), then

V 2(X : Z, Y ) ≤ V 2(X, Y ),

where V 2 is the population distance covariance.

This says that if variables Z independent of X and Y are added to
X, then the DCOV of X : Z with Y will decrease, or, at least not
increase.
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The DCOV Variable Selection method

Let S be some set of variables and let xS = {xi : i ∈ S} be the set
of variables in S.

1. Calculate marginal sample distance correlations for
xi, i = 1, ..., p with the response.

2. Rank the variables in decreasing order of the sample distance
correlations. Denote the ordered variables as x(1), x(2), ..., x(p).
Start with xS = {x(1)}.

3. For i from 2 to p, keep adding x(i) to xS if V 2
n (xS , y), the

sample DCOV, does not decrease. Stop otherwise.
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Easy case: SRBCT childhood Leukemia data (Kahn et al (2001))

This data set consists of 83 subjects labeled with four types of
Leukemia, and 2308 gene expression values. It is well known to be
an easy classification problem and many authors have used the
same 63 subjects as a training set, with generally near perfect
classification on the test set of the remaining 20. For
demonstration purposes we used the DCOV Variable Selection
method in a a one-vs-rest proceedure to obtain four sets of genes,
which combined as 176 genes, 47 of which were in common with the
96 genes reported in Kahn et al.

9 July 15, 2014



Easy case: SRBCT childhood Leukemia data (cont.)

Left and right panels show pairwise distances of the 63 training
samples using the 176 genes with the DCOV Variable Selection
method and the 96 genes reported in Kahn et al. Four clusters are
seen in both, and both sets can classify the 20 test set members
perfectly via 3-nn, although the number of genes in common is not
large.
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Hard case: The Cancer Genome Atlas (TCGA) Ovarian Cancer data

(cancergenome.nih.gov)

The Ovarian Cancer data set contains a large amount of
information on the ovarian cancer tumors of about 500 subjects, we
focus on 279 subjects with 12,042 gene expressions, along with
cancer grade and cancer stage. Subjects were recorded as either
sensitive (191, or 68.5%) or resistant (88) to platinum-based
combination chemotherapy. The goal is to see if a classification
model can be built to assist in determining whether future cases
will be sensitive. The DCOV Variable Selection method selected 82
genes from the 279 subjects.
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Fitted probabilities of being resistant, by subject label

Fitted Probabilities for Chemosensitive Subjects
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Fitted Probabilities for Chemoresistant Subjects
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Estimated probabilities of being resistant for 191 sensitive subjects
(left) and 88 resistant subjects (right). (Bernoulli likelihood
additive spline model on the 82 selected genes. R code gss with
default tuning (GACV, Gu and Xiang (2001)).
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The Support Vector Machine with Reject Option (SVM-R)

The SVM-R was proposed by Bartlett and Wegkamp (2008), see
also Wegkamp and Yuan (2011). The usual two class SVM has
data on n subjects, yi ∈ {−1, 1} with attribute vectors, and leads
to a model which assigns every subject to either +1 or −1, with a
cost of 1 if an erroneous decision is made. The SVM-R assigns
every subject to either +1,−1, or “Reject”, meaning that no
assignment will be made. If an erroneous decision is made then the
cost is 1 but if no assignment is made, the cost is d, where d is a
parameter chosen by the user.
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Gene expression data for 279 patients and 82 selected genes
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Gene Expression Data for 279 Patients and 82 Selected Genes
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SVM-R results, d = 1/4, λ = 4. l. to r. Resistant 14 resistant
subjects and 1 sensitive subject; Sensitive, 123 sensitives and 8
resistants, and Reject, 67 sensitives and 66 resistants.

14 July 15, 2014



Five fold CV to choose λ in the SVM-R

S1 S2 S3 S4 S5

S1 53

S2 16 77

S3 23 21 87

S4 18 16 15 33

S5 27 30 31 21 94

82 genes 38 38 44 28 50

Pairwise intersections of S1, . . . , S5 and the 82 genes. The diagonal
numbers are the numbers of selected genes in each fold Si. A small
number of genes appeared in all five folds.

15 July 15, 2014



Multiple Cross Validation (MCV) train-tune-test models

1. Randomly partition 279 samples: a 2/3× 4/5 = 8/15 training
set, a 1/5 tuning set and a 1/3× 4/5 = 4/15 testing set.

| − − − train−−−−−−−−| − tune− | − −test−−|

2. 12,042 genes:, select genes using DCOV on the training set.

3. Build the SVM-R model on the training set with the selected
genes for d = 1/4 and 1/5.

4. Use the tuning set to choose the tuning parameter for SVM-R.

5. Use the model with chosen tuning parameter to predict labels
for the testing set.

6. Repeat 1.-5. 50 times.

7. Aggregate the prediction results for the 50 replications and
apply majority votes for each subject.
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num of mean mean mean % mean %
reps training testing training test
with accuracy accuracy with with

decision (std) (std) decision decision

original
1/4 43 0.93(0.03) 0.78(0.12) 28% 27%

1/5 37 0.94(0.04) 0.82(0.15) 16% 15%

permute
1/4 28 0.92(0.00) 0.68(0.08) 38% 34%

1/5 9 0.97(0.00) 0.71(0.13) 35% 32%

First two rows: original data. Last two rows: data which has been
permuted, so there should be no signal. Less cost for no decision
means fewer decisions. Training accuracy for permuted data is
about the same as the training accuracy for the original data.
Testing accuracy for the permuted data is about the same as
guessing. Testing accuracy on the original data here is higher, but
with low decision rates.

17 July 15, 2014



A finer scoring system

Using results that vary across 50 CV replications a voting score vi

for each subject was computed as v = (sensitive - resistant) divided
by rejected, where the entries in v refer to counts among the 50
runs, for each person. d = 1/5.

voting score

(−0.1, 0] (0, 0.1] (0.1, 0.2] (0.2, 0.4] (0.4, 1.5]

orig.
frequency 76 74 67 47 15

proportion 0.5658 0.6486 0.7164 0.8085 0.9333

permu.
frequency 145 67 43 24 0

proportion 0.6759 0.6866 0.7209 0.6667 NA

Newcomers could be classified by their voting scores. Partitioning the

voting scores is conservative but leads to more convincing classification

results.
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Summary and Comments

• We have provided the DCOV Variable Selection theorem and
method and applied the method to two classification problems,
one easy, and one hard.

• For the easy case, a graphical display shows that classification
will be easy, and that the DCOV Variable Selection method
provides relatively tight class clusters.

• For the hard case, a preliminary analysis suggests that a
relatively modest portion of the data can be classified with
some accuracy but a substantial fraction cannot. The DCOV
Variable Selection method is combined with SVM-R to classify
some portion of a training set but not all. These techniques are
combined with MCV to tune and validate the results. A finer
voting scheme is proposed for (validated) classification, but
only a fraction of the test cases are actually classified.
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Summary and Comments (cont.)

In the Ovarian Cancer data, it became evident that there was a
high level of variability among the folds in the number and choice
of genes that were selected. This is a phenomenon that has been
noted by many authors, in particular in the large p small n case. In
the MCV training sets, p = 12, 042, while n is only 148. In this
data set it was, however, noted that the maximum distance
correlation of the selected genes in each fold was actually close to
that in the original data set. It is a challenge to understand the
various scenarios that could explain the phenomena in such a large
p very small n data set, but an important one, since such data sets
are becoming common. Aside from small sample size, it’s possible
that the “truth” has to do with the very complex nature of the
relationship between genotype and phenotype, where, for example
a very large number of variables with small but cumulative effect
could occur. Challenges, both theoretical and practical, remain.
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