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Positive definite functions, Reproducing Kernel Hilbert Spaces and all

that

Abstract

R. A. Fisher was concerned was with the importance of
experimental design to scientific investigations, but he could hardly
have dreamed of modern methods of statistical analysis that
required computation unknown in his lifetime. Reproducing Kernel
Hilbert Spaces (RKHS) appeared in a theoretical paper (Aronszajn
1950), but use in applied nonparametric regression, statistical
model building and machine learning had to wait for modern
computational facilities. We obtain Smoothing Spline ANOVA
decompositions of functions of several variables on arbitrary
heterogenous domains given scattered, noisy data, by applying the
original (Fisherian) geometry of factorial experiments to tensor
products of RKHSs. We conclude by joining SS-ANOVA with
Distance Correlation for a study of mortality as it runs in families.
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Outline

A. 1-5 Positive definite functions and RKHS
B. 1-2 (Fisherian) ANOVA decompositions of functions of several
variables
C. 1-2 Smoothing Spline ANOVA (SS-ANOVA) decompositions of
functions of several variables, and fits in RKHS
D. 1-2 Domains, distance measures, practical issues
E. 1-8 SS-ANOVA joins Distance Correlation (DCOR) to study
mortality as it runs in families in the Beaver Dam Eye Study
F. 1 Comments and Conclusions
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A1.Positive definite functions

Let T be some (measurable) domain. K(s, t), s, t ∈ T is said to be
(strictly) positive definite if, for every n, and every t1, . . . , tn in T ,
and constants c1, . . . , cn,∑

j,k

cjckK(tj , tk) > 0.

The Moore-Aronszajn theorem

The Moore-Aronszajn Theorem: Every positive definite function
K(s, t) on T × T corresponds to a unique Reproducing Kernel
Hilbert Space HK of functions defined on T , and vice versa.
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A2. Construction of the unique RKHS

Let Ks(t) ≡ K(s, t) define a function of t on the domain T with s

fixed. Then Ks is in HK and the linear manifold spanned by all
finite linear combinations of elements of the form

f(t) =
∑

`

cs`
Ks`

(t)

is in HK . Since K is positive definite, it can be shown that

< Ks,Kt > = K(s, t)

defines an inner product and hence a norm on this linear manifold.
The Hilbert space posited by the Moore-Aronszajn theorem is the
closure of the linear manifold under the induced norm.
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A3. The defining property of RKHS

Let t∗ ∈ T and let f ∈ HK . Then f(t∗) can be written as an inner
product in HK as:

f(t∗) = < f, Kt∗ >

for every t∗ ∈ T and f ∈ HK . Kt∗ is called the representer of
evaluation at t∗. RKHS are characterized by the fact that they
contain all their representers of evaluation.
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A4. The representer theorem (Kimeldorf & Wahba 1971)

Representer Theorem: Given a convex cost function L and data
yi, t(i), i = 1, · · · , n, the minimizer fλ of∑n

i=1 L[yi, f(t(i)] + λ‖f‖2
HK

is in the span of the representers
Kt(1),Kt(2) · · ·Kt(n). More generally, if ‖f‖2

HK
is replaced by a

seminorm J(f) on HK , (that is, J(f) acts like a square norm but
with a null space {φν}), then fλ can be constructed in span
{φν} ∪ {Kt(i)}.

The most familiar case is the cubic smoothing spline on [0, 1], where
HK is the space of functions on [0, 1] with square integral second
derivative, the {φν} are linear functions and J(f) =

∫ 1

0
(f ′′(t))2dt.
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A5. Positive definite functions define distances

Let K be a positive definite function on T × T . Then K can be
used to define a pairwise distance between any two points s and t

in T by

[dist]2[s, t] = ‖Ks −Kt‖2 = K(s, s) + K(t, t)− 2K(s, t).

(sometimes known in the CS literature as the “kernel trick”.)
Conversely, given noisy, incomplete pairwise distances, one can fit a
positive definite (or non-negative definite) kernel (matrix) via
Regularized Kernel Estimation that attempts to respect this
information while controlling for the trace. (Lu et al 2005, Corrada
Bravo et al 2009.)
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B1. ANOVA decompositions of functions of several variables

Let T (α), α = 1, . . . , d be d measurable domains with members
tα ∈ T (α). Let

t = (t1, . . . , td) ∈ T (1) × · · · × T (d) = T .

For f satisfying some measurability condition, ANOVA
decompositions of f of the form

f(t1, · · · , td) = µ +
∑
α

fα(tα) +
∑
αβ

fαβ(tα, tβ) + · · · (1)

can always be defined. Our goal is to be able to fit ANOVA models
of this form given scattered, noisy observations
{yi, t(i), i = 1, · · · , n} on T .
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B2. ANOVA decompositions of functions of several variables (cont.)

Let dµα be a probability measure on T (α) and define the averaging
operator Eα on T by

(Eαf)(t) =
∫
T (α)

f(t1, . . . , td)dµα(tα).

Then the identity can be decomposed as

I =
∏
α

(Eα + (I − Eα)) =
∏
α

Eα +
∑
α

(I − Eα)
∏
β 6=α

Eβ+

∑
α<β

(I − Eα)(I − Eβ)
∏

γ 6=α,β

Eγ + · · ·+
∏
α

(I − Eα),

giving
µ = (

∏
α Eα)f, fα = ((I − Eα)

∏
β 6=α Eβ)f

fαβ = ((I − Eα)(I − Eβ)
∏

γ 6=α,β

Eγ)f ... [Ex : full factorial designs]
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C1. Smoothing-Spline ANOVA (SS-ANOVA) decompositions

The idea behind SS-ANOVA is to construct an RKHS H of
functions on T as the tensor product of RKHSs on each T (α) that
admit an ANOVA decomposition. Let H(α) be an RKHS of
functions on T (α) with

∫
T (α) fα(tα)dµα = 0 and let [1(α)] be the

one dimensional space of constant functions on T (α). Construct the
RKHS H as

H =
d∏

j=1

({[1(α)]} ⊕ {H(α)})

= [1]⊕
∑

j

H(α) ⊕
∑
α<β

[H(α) ⊗H(β)]⊕ · · · ,

where [1] denotes the constant functions on T . Then
fα ∈ H(α), fαβ ∈ [H(α) ⊗H(β)] and so forth, where the series will
usually be truncated at some point. Note that the usual ANOVA
side conditions hold here.
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C2. Smoothing Spline ANOVA fits

Given data {yi, t(i), i = 1, . . . , n}, we can fit an SS-ANOVA model
by minimizing

n∑
i=1

L[yi, fλ(t(i)] +
∑
α

λαJα(fα) +
∑
αβ

λαβJαβ(fαβ) + · · ·

where the Js may be RKHS square norms or seminorms, and the
representer theorem used to provide a finite dimensional
representation for the minimizer.
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D1. Domains, distance measures, practical issues etc.

• Essentially nothing is assumed about individual domains T (α)

other than that averaging operators can be defined on them.

• Typical historical domains include the unit interval, Euclidean
d space, the sphere and other Riemannian manifolds, typically
with Jα depending on the Laplacian.

• More recently RK’s (positive definite functions) have been
defined on peptides (Shen et al 2013), anatomical (airway)
trees (Feragen et al 2013), and many other objects, including
images, paragraphs, networks, graphs.

• The choice of RK is equivalent to a choice of distance measure.
If only pairwise (Euclidean) distances are known, then radial
basis functions may be used as RK’s. If scattered noisy pairwise
dissimilarities are observed, Regularized Kernel Estimation
may be used to embed a training set into a Euclidean space.
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D2. Domains, distance measures, practical issues (cont.)

• The kernel trick may be used to transform one distance
measure to another.

• The SS-ANOVA class of methods provides a principled way of
combining information from qualitatively different variables in
a predictive model, including interactions.

• When it comes to applications, many practical issues remain.
The key to a successful application may well depend on a
meaningful choice of distances (as well as pruning, tuning,
approximations for extremely large data sets, not discussed).

R codes: gss and assist. Books: Wahba 1990, Gu 2002, Berlinet
and Thomas-Agnan 2003, Wang 2011. Gu and Wang provide many
examples. More references at end.

14 July 11, 2014



E. SS-ANOVA meets DCOR

(Kong, Klein, Klein, Lee and Wahba 2012)

Does Life Span Run in Families, and If So, Why? The Beaver Dam
Eye study (BDES) started with about 5000 subjects in 1988
between the ages of 43-84 years and about 2400 of these had
relatives in the study. The study has a large amount of covariate
information, and pedigree (relationship) information, along with
mortality information through 2011. We compared pairwise death
ages between relatives and between unrelated subjects and it is
clear that mortality runs in families. SS-ANOVA combined with
Distance Correlation is used to quantify this.

• What is DCOR?

• Variable Descriptions, the SS-ANOVA Deathage Scoring Model

• Determining DCOR from the Deathage Scoring Model

• DCOR results
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Distance Correlation (DCOR) (Szekely and Rizzo 2009)

For a random sample (X, Y ) = {(Xk, Yk) : k = 1, ..., n} of n i.i.d.
random vectors (X, Y ) from the joint distribution of random
vectors X in Rp and Y in Rq, the Euclidean distance matrices
(aij) = (|Xi −Xj |p) and (bij) = (|Yi − Yj |q) are computed. Define
the double centering distance matrices

Aij = aij − ai· − a·j + a··, i, j = 1, ..., n,

where

ai· =
1
n

n∑
j=1

aij , a·j =
1
n

n∑
i=1

aij , a·· =
1
n2

n∑
i,j=1

aij ,

similarly for Bij = bij − bi· − b·j + b··, i, j = 1, ..., n.
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The sample distance covariance Vn(X, Y ) is defined by

V2
n(X, Y ) =

1
n2

n∑
i,j=1

AijBij .

The sample distance correlation Rn(X, Y ) (DCOR) is defined by

R2
n(X, Y ) =


V2

n(X, Y )√
V2

n(X)V2
n(Y )

, V2
n(X)V2

n(Y ) > 0;

0, V2
n(X)V2

n(Y ) = 0,

where the sample distance variance is defined by

V2
n(X) = V2

n(X, X) =
1
n2

n∑
i,j=1

A2
ij .
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What is the Sample Distance Covariance V2
n(X, Y ) estimating?

Let fXY be the characteristic function of the joint distribution of
X and Y , and let fX and fY be the characteristic functions of X

and of Y . Let

V2(X, Y ) =
∫

Rp+q

|fXY (s, t)− fX(t)fY (s)|2ωpq(t, s)dtds

where
ωpq = [cpcq|t|1+p

p |s|1+q
q ]−1.

Amazing Theorem: (Szekely and Rizzo).

V2
n(X, Y ) is the sample version of V2(X, Y )
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Table 1. Variable Descriptions: Fixed:Lifestyle:Diseases (from BDES)

variable units description
deathage years death age
baseage years age at baseline
gender F/M gender
............................................................................
edu years highest year school/college completed
bmi kg/m2 body mass index
smoke yes/no history of smoking
inc yes/no household personal income > 20T
............................................................................
diabetes yes/no history of diabetes
cancer yes/no history of cancer
heart yes/no history of cardiovascular disease
kidney yes/no history of chronic kidney disease
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SS-ANOVA Death Age Scoring Model

Death age as a function of fixed, lifestyle and disease variables will
be modeled using SS-ANOVA as

death agei =g0(baseline agei, genderi)+

g1(lifestyle factorsi) + g2(diseasesi),

where g0 is a term involves fixed characteristics, baseline age and
gender for individual i, g1 is a term that includes only lifestyle
factors, namely edu, bmi, smoke, inc, and g2 is a term containing
only disease variables, namely diabetes, cancer, cardiovascular
disease and chronic kidney disease. In the paper, the fitted values
of g1 and g2 are treated as scores for the individuals and to be used
to assess the association with familial relationships. Do g1 and g2

scores, both high and low, run in families, thus partially explaining
why mortality runs in families?
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The SSANOVA Death Age Scoring Model

The SSANOVA death age scoring model is:

deathage =µ + f1(baseage) + βgenderI{gender=F}
}
fixed

+ f2(edu) + f12(baseage : edu) + f3(bmi)

+ βsmokeI{smoke=no} + βincI{inc>20T}

}
lifestyle (g1)

+ βdiabetesI{diabetes=no} + βcancerI{cancer=no}

+ +βheartI{heart=no} + βkidneyI{kidney=no}

}
disease (g2)
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Determining Distance Correlation (DCOR)

All six DCOR values between mortality, pedigree, lifestyle factors
and diseases will be computed.

The lifestyle factor score g1 for an individual is based on the
four-vector of the fitted effects for smoke, bmi, edu and inc.
Similarly the disease score g2 is based on the four-vector of fitted
effects for the four disease variables.

It is well known that the pedigree distance (1− 2φ) based on the
kinship coefficient is Euclidean, so that pairwise pedigree distances
can be used directly in DCOR.
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DCOR Results, Entire Pedigrees

very signif-signif
lifestyle:pedigree
lifestyle:mortality
disease:mortality
mortality:pedigree
disease:lifestyle
disease:pedigree

DCOR results using pedigree distance. Numbers in parens are
significance levels to test independence, based on a permutation
test with 1000 replicates.
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More questions than answers

• We have shown that pairwise differences in lifestyle factors that
run in families correlate well with pairwise differences in death
age that also run in families, partially accounting for the
familial death age effect. This leads to new questions to be
asked about the complex relations between genetics, family
structure, lifestyle factors, and other variables. We provide
here an overall methodological approach joining SS-ANOVA
with DCOR which shows promise to help in answering these
questions in future studies.
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Comments and conclusions

• We have reviewed Smoothing Spline ANOVA models, obtained
by the same geometry that decomposes full factorial designs
(Fisherian ANOVA), by constructing ANOVA decompositions
of tensor product RKHS. The approach allows for the joint
modeling of heterogenous variables including interactions. The
flexibility of the models allows for highly diverse applications.
In applications, many practical issues remain, including model
pruning and tuning, numerical approximations for extremely
large data sets, subject matter informed choice of distance
measures, and graphical displays of complex results.

• A marriage of an SS-ANOVA model with Distance Correlation
is used to examines pairwise correlations between variables of
interest in a completely distribution free way. Again,
applications with big data sets show great potential as well as
presenting many challenging issues.

25 July 11, 2014



References
[1] N. Aronszajn. Theory of reproducing kernels. Trans. Am. Math. Soc., 68:337–404, 1950.

[2] G. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. J. Math. Anal. Applic.,
33:82–95, 1971.

[3] F. Lu, S. Keles, S. Wright, and G. Wahba. A framework for kernel regularization with application to
protein clustering. Proceedings of the National Academy of Sciences, 102:12332–12337, 2005. Open Source
at www.pnas.org/content/102/35/12332, PMCID: PMC118947.

[4] H. Corrada Bravo, K. E. Lee, B. E. K. Klein, R. Klein, S. K. Iyengar, and G. Wahba. Examin-
ing the relative influence of familial, genetic and environmental covariate information in flexible
risk models. Proceedings of the National Academy of Sciences, 106:8128–8133, 2009. Open Source at
www.pnas.org/content/106/20/8128.full.pdf+html, PMCID: 2677979.

[5] G. Wahba. Spline Models for Observational Data. SIAM, 1990. CBMS-NSF Regional Conference Series
in Applied Mathematics, v. 59.

[6] C. Gu. Smoothing Spline ANOVA Models. Springer, 2002.

[7] A.Berlinet and C. Thomas-Agnan. Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer,
2003.

[8] Y. Wang. Smoothing Splines: Methods and Applications. Chapoman & Hall/CRC Monographs on Statistics
& Applied Probability, 2011.

[9] J. Kong, B. Klein, R. Klein, K. Lee, and G. Wahba. Using distance correlation and Smoothing Spline
ANOVA to assess associations of familial relationships, lifestyle factors, diseases and mortality.
PNAS, pages 20353–20357, 2012. PMCID: 3528609.

[10] G. Szekely and M. Rizzo. Brownian distance covariance. Ann. Appl. Statist., 3:1236–1265, 2009.

25 July 11, 2014



[11] A. Feragen, J. Petersen, D. Grimm, A. Dirksen, J. Pederse, K. Borgwardt, and M. deBruijne. Geo-
metric tree kernels: classification of COPD from airway tree geometry. In IMPMI’13 Proceedings of the
23rd international conference on Information Processing in Medical Imaging, pages 171–183, Heidelberg, 2013.
Springer.

[12] H-J. Shen, H-S. Wong, Q-W. Xiao, X. Guo, and S. Smale. Introduction to the peptide binding
problem of computational immunology: New results. Foundations of Computational Mathematics, pages
1–34, 2013.

[13] C. Gu and G. Wahba. Smoothing spline ANOVA with component-wise Bayesian “confidence inter-
vals”. J. Computational and Graphical Statistics, 2:97–117, 1993.

[14] G. Wahba, Y. Wang, C. Gu, R. Klein, and B. Klein. Smoothing spline ANOVA for exponential
families, with application to the Wisconsin Epidemiological Study of Diabetic Retinopathy. Ann.
Statist., 23:1865–1895, 1995. Neyman Lecture.

[15] B. Brumback and J. Rice. Smoothing spline models for the analysis of nested and crossed samples
of curves. J. Amer. Statist. Assoc., 93:961–991, 1998.

[16] W. Guo. Inference in Smoothing Spline Analysis of Variance. J. Roy. Stat. Soc. B, 64:887–889, 2002.

[17] H. Zhang and Y. Lin. Component selection and smoothing in multivariate nonparametric regression.
Ann. Statist., 34:2272–2297, 2006.

[18] X. Sun, P. Ma, and R. Mumm. Nonparametric method for genomics-based prediction of performance
of quantitative traits involving epistasis in plant breeding. PLOS One, November, 2012.

[19] S. Touzani and D. Busby. Smoothing spline analysis of variance approach for global sensitivity
analysis of computer code. Reliability Engineering and System Safety, 112:67–81, 2013.

25 July 11, 2014


