
Examining the Relative Influence of Familial, Genetic and
Covariate Information In Flexible Risk Models

Grace Wahba

Based on a paper of the same name which has appeared in PNAS
May 19, 2009, by Hector Corrada Bravo, Grace Wahba, Kristine

Lee, Barbara Klein, Ronald Klein and Sudha Iyengar, which relies
on Lu, Keles, Wright and Wahba, PNAS Aug 30, 2005

Department of Statistics, Indiana University
March 27, 2013

Bloomington, Indiana

Links to these slides, and the above papers, in my website

http://www.stat.wisc.edu/~wahba/.

1 February 27, 2013



Abstract

Smoothing Spline ANOVA (SS-ANOVA) models are a well known
approach to penalized likelihood regression given heterogenous
attribute variables, with the ability to model their various
interactions. In many circumstances, one may observe attributes,
along with some relationships between objects in the training set.
We describe a new approach to incorporating relationship or
similarity information in an SS-ANOVA model. As an example we
consider a demographic study with the response a particular
disease that is known to run in families. The data includes
environmental/clinical observations, genetic data and pedigree
information in a study where a large fraction of the population
have relatives in the study. Sibling, parent-child, uncle-niece, etc.
provide relationship data which is incorporated in an SS-ANOVA
model penalized likelihood model. One issue is to evaluate the
relative influence of the three distinct sources of information.
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The Log Likelihood for Bernoulli responses

• Given: yi, x(i), i = 1, 2, · · · , n

y ∈ {0, 1}, x = (x1, x2, · · · , xd)

• Estimate: p(x) = Prob(y = 1|x)

• The log odds ratio (logit): f(x) = log p(x)
1−p(x)

• The negative log likelihood:

L(y, f) =
n∑

i=1

−yif(x(i)) + log(1 + ef(x(i)))

• Recover p(x) = ef(x)/(1 + ef (x)).
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Penalized Log Likelihood Estimate

The penalized log likelihood estimate of f is obtained by finding f

in some prescribed function space to minimize

I(f) = L(y, f) + λJ(f)

where J(f) is a penalty functional on f and λ is a tuning
parameter which balances fit to the data and complexity/wiggliness
of f . We will fit f in a function space which admits a useful
ANOVA decomposition-a Reproducing Kernel Hilbert Space
(RKHS), using a Smoothing Spline ANOVA model.
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Reproducing Kernel Hilbert Spaces (RKHS)

• f will be in an RKHS. What is an RKHS?

• Let K(s, t) be a positive definite function on T ⊗ T . This
means for any t1, · · · , tk,

∑k
r,s=1 K(tr, ts) ≥ 0.

• Moore-Aronszajn Theorem: To every positive definite function
K(·, ·) there corresponds a unique RKHS HK and vice versa.

• K(·, t∗) ∈ HK , all t∗ ∈ T . < K(·, s),K(·, t) >= K(s, t).

• All linear combinations of the K(·, t), t ∈ T and their limits in
the norm induced by the inner product constitute HK .

• < f(·),K(·, t∗) >= f(t∗) for all f ∈ HK . Important!
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To understand Smoothing Spline ANOVA Models:

ANOVA Decomposition of Functions of Several Variables

x ≡ (x1, · · · , xd) ∈ X ≡ X (1) ⊗ · · · ⊗ X (d)

f(x) = f(x1, · · · , xd).

Let dµα be a probability measure on X (α) and define the averaging
operator Eα on X by

(Eαf)(x) =
∫
X (α)

f(x1, · · · , xd)dµα(xα).
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ANOVA Decomposition of Functions of Several Variables (continued)

The averaging operators Eα give a (unique) ANOVA decomposition
of f :

f(x1, · · · , xd) = µ +
∑
α

fα(xα) +
∑
αβ

fαβ(xα, xβ) + · · ·

where

µ =
∏
α

Eαf =
∫
· · ·

∫
f(x1, · · · , xd)dµ1(x1) · · · dµd(xd)

fα = (I − Eα)
∏
β 6=α

Eβf

fαβ = (I − Eα)(I − Eβ)
∏

γ 6=α,β

Eγf

...
... Eαfα = 0, EαEβfαβ = 0, etc.
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ANOVA Decomposition of Functions of Several Variables (continued)

f(x) = µ +
d∑

α=1

fα(xα) +
∑
α≤β

fαβ(xα, xβ) + · · ·

• Terms satisfy ANOVA-like side conditions (identifiable).

• SS-ANOVA representation with weights on kernels :

f(·) =
m∑

j=1

djφj(·) +
n∑

i=1

cjKθ(·, x(i)),

φj are unpenalized components (parametric part) with

Kθ(·, ·) =
d∑

α=1

θαKα(·, ·),+
∑
α≤β

θαβKαβ(·, ·) + · · ·

• Kernels depend only on components of x in the subscripts.

• EαKα(xα, ·) = 0 Kαβ = KαKβ · · · etc. (side conditions)
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ANOVA Decomposition of Functions of Several Variables (continued)

The SS-ANOVA penalty functional has the form

J(f) =
n∑

i,j=1

cicj

 d∑
α=1

θ−1
α Kα(x(i), x(j)) +

∑
α≤β

θ−1
αβKαβ(x(i), x(j)) + · · ·


since ‖f‖2

HθK
= θ−1‖f‖2

HK
. λ and the θs are tuning parameters

with an identifiability constraint on the θs.
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ANOVA Decomposition of Functions of Several Variables (continued)

To Reprise: For Bernoulli data, find f to min:

L(y, f) + λJ(f) (∗)

where

L(y, f) =
n∑

i=1

−yif(x(i)) + log(1 + ef(x(i))),

f(·) =
m∑

j=1

djφj(·) +
n∑

i=1

cjKθ(·, x(i)),

J(f) =
n∑

i,j=1

cicj

 d∑
α=1

θ−1
α Kα(x(i), x(j)) +

∑
α≤β

θ−1
αβKαβ(x(i), x(j)) + · · ·

 .

For fixed λ, θ minimize (*) with respect to d and c = (c1, · · · , cn).
Choose λ, θ by minimizing the GACV (Generalized Approximate
Cross Validation).
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Figure 1: Grace Wahba,
Spline Models for Observa-
tional Data (1990)

Figure 2: Chong Gu,
Smoothing Spline ANOVA
Models (2002)

X. Lin et. al. Smoothing spline ANOVA models for large data sets
with Bernoulli observations and the randomized GACV. Ann.
Statist, 28:1570–1600, 2000.
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SS-ANOVA Model in the Beaver Dam Eye Study

• The Beaver Dam Eye Study (BDES) is an ongoing
population-based study of age related ocular disorders, begun
in 1988.

• An SS-ANOVA model for association of a number of
environmental/clinical (E/C) variables based on 2585 women
with complete E/C data appears in Lin, Wahba, et al Ann.
Statist 28 (2000).

• 684 women have at least one relative also in the study.
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• The predictor variables of present interest are:

code units description

horm yes/no current usage of hormone replacement therapy

hist yes/no history of heavy drinking

bmi kg/m2 body mass index

age years age at baseline

sysbp mmmHg systolic blood pressure

chol mg/dL serum cholesterol

smoke yes/no history of smoking

Table 1: E/C covariates for BDES pigmentary abnormalities SS-
ANOVA model
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• The fitted E/C model that we are using in the present study is

f(t) = µ + f1(sys) + f2(chol) + f12(sys, chol)

+ dage · age + dbmi · bmi

+ dhorm · I1(horm) + ddrin · I2(drin) + dsmoke · I3(smoke)

• This is the same model that was fitted in Ann. Statist. 2000
with the exception that smoke was not included there.

• f1, f2 and f12 are splines.

15 February 27, 2013



BERNOULLI OBSERVATIONS AND THE ranGACV 1595
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Fig. 9. Estimated probability of pigmentary abnormality as a function of cholesterol by three
levels of bmi and age and four levels of sys, horm=no, drin=no.

Estimated probability from an SS- ANOVA logistic regression
model. Each x-axis is cholesterol, each set of four lines is four values
of systolic blood pressure, each plot fixes body mass index and age
to the shown values. hist = 0, horm = 0. From Ann. Stat. 2000.
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Modeling E/C, genetic and pedigree data in an extended SS-ANOVA

model

f(t) = µ + dSNP1,1 · I(X1 = 12) + dSNP1,2 · I(X1 = 22)

+ dSNP2,1 · I(X2 = 12)dSNP2,2 · I(X2 = 22)

+ f1(sysbp) + f2(chol) + f12(sysbp, chol)

+ dage · age + dbmi · bmi

+ dhorm · I1(horm) + ddrin · I2(drin) + dsmoke · I3(smoke)

+ fped(z(t)).

• First two lines: Genetic (SNP) data. Two SNPS each with
three levels, (1,1), (1,2), (2,2). (SNP IDs in TR1148)

• Next three lines E/C variables

• Last line: Pedigree/relationship data goes here. Will explain.
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A Pedigree from BDES
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Example pedigree from the Beaver Dam Eye Study. Red nodes-with
pigmentary abnormalities, blue nodes-without pigmentary
abnormalities. Circles are females, rectangles are males.
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A Relationship (Sub)Graph From the Pedigree
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Relationship graph for subjects in the pedigree. Edge labels are
distances defined by the kinship coefficient. Persons 26 and 35 are
siblings [1], persons 8 and 10 are aunt and niece [2] and persons 26
and 40 are cousins [3]. Unrelated pairs have dashed lines.
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Relationship Data Encoded with RKE

• To include relationship/pedigree data into an SS-ANOVA
model, we encode it with the Regularized Kernel Estimation
algorithm (RKE). (Lu, Keles, Wright and Wahba, PNAS 2005)

• Given n objects and pairwise dissimilarity measures dij

between a sufficient number of the
(
n
2

)
pairs, the RKE encodes

this information in an n× n positive definite matrix Rdist(i, j)
defined on the n objects. The dij are obtained based on the
relationship coefficients (1, 2, 3, 4, 5, L), where L is “no
relation” by a biologically motivated transformation.
(dij = −2log2(2φij)) where φ is Malecot’s kinship coefficient).
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Relationship Data Encoded With RKE (continued)

The distance encoding matrix Rdist is obtained by solving the
convex cone optimization problem:

min
R�0

∑
(i,j)∈Ω

|dij − d̂ij(R)|+ λRKEtrace(R) (1)

where R � 0 means R is in the convex cone of all real non-negative
definite matrices of dimension n, Ω is all or a (sufficiently rich)
subset of the

(
n
2

)
pairs of indices, and

d̂ij(R) ≡ R(i, i) + R(j, j)− 2R(i, j), the natural squared distance
induced by R. Small eigenvalues in the fitted Rdist are deleted.
Rdist(i, j) gives a (unique up to rotation) embedding z(i) of the ith
subject. This z(i) will later appear in fped(z(i)) in the extended
SS-ANOVA model.
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Embedding of Pedigree by RKE
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z(i) for the five persons in the relationship graph. The x-axis of
this plot is order of magnitudes larger than the other two axes. The
unrelated edges in the relationship graph occur along this
dimension, while the other two dimensions encode the relationship
distance.
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Relationship Data Encoded With RKE (continued)

The RKE embedding is unique up to rotation, but only the
distances d̂ij are relevant. These distances can be used with any RK
that only depends on ‖z(i)− z(j)‖, that is, a radial basis function
(RBF), Kped(z(i), z(j)) = k(‖z(i)− z(j)‖. We use a Matern RBF
in the present work. Recall that without the pedigree data,

f(·) =
m∑

j=1

djφj(·) +
n∑

j=1

cjKθ(·, x(j)). (2)

The pedigree data enters the model by

Kθ(·, ·) → Kθ(·, ·) + θpedKped(·, ·). (3)

The Matern family is a two-parameter family, and the parameters
are to be chosen along with λ and the θs..
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Preliminary Qualitative Results

An important goal of the study is to explore the relative
contribution of each source of data. Since there three sources of
information: (S=SNPS, P=Pedigrees,C= Environmental/Clinical)
there are seven models we can consider:

• S = SNPS (genetic data) only

• C = Environmental/Clinical (E/C) data only

• S + C

• P = Pedigrees only

• S + P

• C + P

• S + C + P

Compare models by evaluating the AUC (Area Under the Curve).
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Comparing Models by Their Area Under the (ROC) Curve (AUC)

ROC curves for models with two or all three data sources
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ROC curves for the models with two data sources. Plot is
constructed by classifying each person in a test set by thresholding
their value of p(x). As the threshold goes from 0 to 1, plot “True
positive rate” against “False positive rate”. Dashed line-random
classification.
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Results

S−only C−only S+C P−only S+P C+P S+C+P

Mean AUC for each model
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Figure 9: AUC comparison of models. S-only is a model with only genetic markers, C-only is a model with only environ-
mental covariates and S+C is a model containing both data sources. P-only is a model with only pedigree data, P+S is
a model with both pedigree data and genetic marker data, P+C is a model with both pedigree data and environmental
covariates, P+S+C is a model with all three data sources. Error bars are one standard deviation from the mean. Yellow
bars indicate models containing pedigree data. For models containing pedigrees, the best AUC score for each model is
plotted. All AUC scores are given in Table 2.

ROC curves for models with two data sources
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Figure 10: ROC curves for models with two data sources. Although all three models have comparative AUC (shown in
parenthesis in the legend), the relationship between the curves varies across ROC space. The S+C model dominates the
low false positive rate portion of space, while models including pedigree data dominate in the high true positive rate
portion.

10 H. Corrada Bravo et al.

The mean AUC for each of the seven models is given in the plot
above, in order: Red: S-only, C-only and S+C. Pedigrees are added
in yellow: P-only, S+P, C+P and S+C+P.
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Summary and Conclusions

We have described the log likelihood for Bernoulli responses,
Reproducing Kernel Hilbert Spaces, and Smoothing Spline ANOVA
models. We discussed how Smoothing Spline ANOVA models were
originally applied to data from the Beaver Dam Eye Study - to
examine association of clinical/environmental variables with
pigmentary abnormalities. Pigmentary abnormalities are a
precursor to Age Related Maculopathy, which is known to run in
families. We described some of the the pedigree data from the Eye
Study, and we developed a new method for incorporating this
information into a Smoothing Spline ANOVA model, using
Regularized Kernel Estimation. We can see the relative importance
of clinical/environmental variables, certain genetic information, and
pedigree information in modeling risk of pigmentary abnormalities.
The approach has promise for many other applications where
relationship or (dis)similarity information is available.
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Final Remarks

The RKE and its embedding properties have some relation to
spectral clustering as well as multidimensional scaling (not
discussed today).

Future promising applications include medical imaging where
making comparisons between images could be fruitful. GW’s
theorem says that determining appropriate dissimilarity measures
is the key in this and other applications.
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