
Part III∗

1. SS-ANOVA Spaces on General Domains

2. Averaging Operators and ANOVA Decompositions

3. Reproducing Kernel Spaces for ANOVA Decom-
positions

4. Building Blocks for SS-ANOVA Spaces, General
and Particular

5. Representation of SS-ANOVA Fits

6. Example: Risk of Progression of Diabetic Retinopa-
thy in the WESDR Study. Bernoulli data.

∗Part III of ‘An Introduction to Model Building With Reproducing Kernel Hilbert
Spaces’, by Grace Wahba, Univ. of Wisconsin Statistics Department TR
1020, Overheads for Interface 2000 Short Course. c© Grace Wahba, 2000
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7. GACV for smoothing parameters in the Bernoulli
case.



• General Model Domains: T = T (1) ⊗ · · · ⊗ T (d).
SS-ANOVA spaces.

Let t = (t1, · · · , td), tα ∈ T (α), α = 1, · · · d. Some
examples are:

T (α) = [0,1] unit interval

T (α) = Er Euclidean r − space

T (α) = S the sphere

T (α) = {1, · · · , N} ordered categorical

T (α) = {♦,4,♥} unordered categorical

· · · · · ·

We let t ∈ T ≡ T (1) ⊗ · · · ⊗ T (d). Let E be an
averaging operator on T (α), defined by

Eαfα =
∫
T (α)

fαdµα

where dµα is some given probability distribution on
T (α), for example if T (α) = [0,1] the uniform dis-
tribution is convenient. Given the Eα, any real valued
function f(t) = f(t1, · · · , td) on T has an ANOVA
decomposition as follows:
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Here’s the ANOVA decomposition:

f(t) = µ +
∑
α

fα(tα)

+
∑
α≤β

fαβ(tα, tβ)

+ · · ·+ f1,···,d(t1, · · · , td)

where the components are generated by the decom-
position of the identity:

f =
∏
α

[Eα + (I − Eα)]f

f =
∏
α
Eαf +

∑
α

(I − Eα)
∏

β 6=α

Eβf

+
∑
α<β

(I − Eα)(I − Eβ)
∏

γ 6=α,β

Eγf

+ · · ·+
d∏

α=1

(I − Eα)f.



(from the previous slide)

f =
∏
α
Eαf +

∑
α

(I − Eα)
∏

β 6=α

Eβf

+
∑
α<β

(I − Eα)(I − Eβ)
∏

γ 6=α,β

Eγf

+ · · ·+
d∏

α=1

(I − Eα)f.

Therefore:

µ =
∏
α
Eαf, fα = (I − Eα)

∏
β 6=α

Eβf

fα,β = (I − Eα)(I − Eβ)
∏

γ 6=α,β

Eγf

· · · · · ·

f1,2,···,d =
d∏

α=1

(I − Eα)f,

and satisfy the ANOVA SIDE CONDITIONS

Eαfα = 0

Eαfαβ = Eβfαβ = 0

Eαfαβγ = Eβfαβγ = Eγfαβγ = 0
...
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Now, let H(α) be an RKHS of functions on T (α)

with
∫
T (α) fα(tα)dµα = 0 for all fα(tα) ∈ H(α), and

let [1(α)] be the one dimensional space of constant
functions on T (α). We can construct an RKHS H as
the direct sum of subspaces which correspond to this
decomposition:

H =
d∏

α=1

[{[1(α)]} ⊕ {H(α)}]

H = [1]⊕
∑
α
H(α)

⊕
∑
α<β

[H(α) ⊗H(β)]

⊕ · · · ⊕
d∏

α=1

⊗H(α).

([1](γ) are omitted wherever they occur).
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Let Rα(sα, tα) be the RK for H(α). A (Smoothing
Spline) ANOVA spaceHK of functions on T = T (1)⊗

· · · ⊗ T (d) is given by:

HK =
d∏

α=1

[[1(α)]⊕H(α)]

which then has the RK

K(s, t) =
d∏

α=1

[1 + Rα(sα, tα)]

= 1 +
d∑

α=1

Rα(sα, tα)

+
∑
α<β

Rα(sα, tα)Rβ(sβ, tβ)

+ · · ·+
d∏

α=1

⊗Rα(sα, tα).
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• SS-ANOVA spaces, continued.

H(α) may be further decomposed into a low dimen-
sional parametric partH(α)

π , and a ‘smooth’ partH(α)
s ,

H(α) = H
(α)
π ⊕ H

(α)
s . This can be done in many

ways, depending on the T (α) and what part of the
model it is desired not to penalize. A useful example
when T (α) = [0,1], which will be employed later is:

H(α) = {k1} ⊕ [{k2} ⊕W0
2 ]

Rα(sα, tα) = rπ(sα, tα) + rs(sα, tα) say

where

rπ(sα, tα) = k1(sα)k1(tα),

rs(sα, tα) = k2(sα)(k2(tα))− k4([sα − tα])

We have encountered rs before, the square norm in
its associated RKHS is

∫ 1
0 (f”)2. In this example the

T (α) and rπ and rs will be the same for each compo-
nent of t, but this not necessary.
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• SS-ANOVA spaces, continued.

Now K(s, t) can be seen to be expandable in the ten-
sor sums and products of rπ(sα, tα) and rs(sα, tα),
α = 1, · · · , d. The expansion is carried out and trun-
cated (Model selection!), in our experience, interac-
tions higher than two-factor can generally be deleted,
and frequently only a few two factor interactions are
important. Finally, terms containing only rπ’s will not
be penalized, and are collected intoH0, and the span-
ning set for H0 will be relabeled as {φ1, · · · , φM},
The terms with one or more rs are collected into H1,
and relabeled as H1 =

∑
β H

β, with the RK’s Qβ for
the Hβ weighted and relabeled as

Qθ(s, t) =
∑
β

θβQβ(s, t).

Note that the Qβ generally depend only on a subset
of the components of (s, t). The θβ allow for different
smoothing parameters for the different components.
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• SS-ANOVA spaces, continued.

We have, finally, reduced an arbitrary ANOVA model
to the case established via the representer theorem:
Find f = f0 + f1 with f0 ∈ H0 and f1 ∈ H1 to min

Iλ(y, f) =
1

n

n∑
i=1

gi(yi, f(t(i)))+λ
∑
β

θ−1
β ‖P βf‖2HQβ

.

where P βf is the component of f in HQβ
. Then the

minimizer fλ of Iλ is unique and has, by the represen-
ter theorem, the representation

f(·) =
M∑

ν=1

dνφν(·) +
n∑

i=1

ciQθ(t(i), ·).
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• SS-ANOVA Example: Risk of Progression of
Diabetic Retinopathy in the Younger Onset

Population in the Wisconsin Epidemiolocig Study of
Diabetic Retinopathy.

Data:

{yi, t(i)}, t = (dur, gly, bmi), i = 1, · · · , n = 669.

where

yi = 1, progression yes

= 0, progression no

dur = duration of diabetes at baseline

gly = glycosylated hemoglobin

bmi = body mass index

Goal: Estimate p(t), the probability of progression
given t. Let f(t) = log[p(t)/(1−p(t))]. The−loglik(y, f)

is

−log[py(1− p)1−y] ≡ −yf + log(1+ ef) ≡ g(y, f)
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• SS-ANOVA Example: Diabetic Retinopathy (con’t).

We selected the model

f(dur, gly, bmi) = µ + f1(dur) + a2 · gly

+ f3(bmi) + f13(dur, bmi)

H0 :

{φν(dur, gly, bmi)} = {1, k1(dur), k1(gly), k1(bmi)}

H1 :

β Qβ(dur, bmi; dur′, bmi′)

1 rs(dur, dur
′)

2 rs(bmi, bmi
′)

3 rπ(dur, dur
′)rs(bmi, bmi

′)

4 rs(dur, dur
′)rπ(bmi, bmi

′)

5 rs(dur, dur
′)rs(bmi, bmi

′)

Qθ(dur, bmi; ·)) =
5∑

β=1

θβQβ(dur, bmi; ·).
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•SS-ANOVA EXAMPLE: Diabetic Retinopathy
(con’t).

We will minimize

Iλ(y, f) =
1

n

n∑
i=1

[−loglik(yi, fi)+λ
∑
β

θ−1
β ‖P βf‖2HQβ

.

where fi = f(t(i)), P βf is the component of f in
HQβ

. The minimizer fλ of Iλ has the representation

f(·) =
M∑

ν=1

dνφν(·) +
n∑

i=1

ciQθ(t(i), ·),

and we need to compute (d, c) to min

1

n

n∑
i=1

(−yifi + log(1 + efi)) + λc′Kc

where fi = (Td+Kc)i, Tn×4 = {φν(t(i))}, Kn×n =

Qθ(t(i), t(j)); and we need to estimate λβ = λθβ, β =

1, · · · ,5.
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♣♣ Choosing λ = (λ1, · · · , λq), Bernoulli data.

Notation: Let f
[k]
λ (·) be the minimizer of Iλ(y, f) with

the kth data point omitted. Let f
[k]
λk = f

[k]
λ (t(k)),

fλk = fλ(t(k)). Let b(f) = log(1 + ef), thus
g(y, f) = −yf + b(f).

• Leaving-out-one.

Choose λ to min

V0(λ) =
1

n

n∑
k=1

[−ykf
[k]
λk + b(fλk)].

Generally not practical.
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• GACV (Generalized Approximate Cross Validation).

The inverse Hessian H(λ) of Iλ with respect to
(fλ1, · · · , fλn) at the minimizer plays an important role.
It is an interesting fact that the influence matrix A(λ)

in the Gaussian case is also the inverse Hessian of
Iλ in the Gaussian case, and this is true to first order
in the general exponential family case, and in some
other situations. H can be thought of as the (local)
influence matrix, since in the nonquadratic case it de-
pends on fλ. It can be shown that

V0(λ) ≈ ACV (λ) =
1

n

n∑
k=1

[−ykfλk+b(fλk)]+D0(λ).

where

D0 =
1

n

n∑
i=1

hiiyi(yi − pλi)

[1− hiiσii]
,

hii is the iith entry of H(λ), pλi = efλi/(1 + efλi),
σii = pλi(1 − pλi). The GACV is obtained from the
ACV by replacing hii and hiiσii by their averages, as
follows:
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In the expression for D0 hii is replaced by 1
n

∑n
i=1 hii ≡

1
ntr(H) and 1−hiiσii is replaced by 1

ntr[I−(W1/2HW1/2)],
where W = diag{σii}, giving

GACV (λ) =
1

n

n∑
i=1

[−yifλi + b(fλi)]

+
tr(H)

n

∑n
i=1 yi(yi − pλi)

tr[I − (W1/2HW1/2)]
.

The randomized trace technique may be used to eval-
uate GACV :

ranGACV (λ) =
1

n

n∑
i=1

[−yifλi + b(fλi)]

+
δ
′
(f

y+δ
λ − f

y
λ)

n

∑n
i=1 yi(yi − pλi)

[δ′δ − δ′W (f
y+δ
λ − f

y
λ)]

.

δ is a random white noise perturbation n-vector and
f

y+δ
λ is the n- vector of values of the fit at the obser-

vation points based on estimating f with perturbed
data y + δ. We show next that

δ
′
(f

y+δ
λ − f

y
λ)

provides a randomized estimate of traceH(λ).
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• Randomized Trace Estimates.

δ is a (small) random perturbation with Eδ = 0 and
covδ = σδI. For any matrix H, Eδ′Hδ = σδtraceH.
Now, let H[·] be the operator which maps a data vec-
tor z into the vector of values of fλ at the observation
points, that is, H[z] = fz

λ. In the Gaussian case H is
linear and we just have H[z] = Hz. We have, to first
order

f
y+δ
λ − f

y
λ ≈ H[y + δ]−H[y] ≈ H[y∗]δ

where y∗ is some intermediate value between y + δ

and y. Thus, we have the approximation

Eδ
′
(f

y+δ
λ − f

y
λ) ∼ δ′H[y∗]δ ≈ σδtrH[y)]
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Figure 5a. 10 replicates of ranGACV (λ), compared
to CKL(λ), where the Comparative Kullback-Liebler
distance (CKL) is given by CKL(λ)[pλ, pTRUE] =
1
n

∑n
i=1[−pTRUEifλi + b(fλi)]
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Figure 5b. ranGACV , compared to the true CKL,
λ = (λ1, λ2). Left: CKL. Right: ranGACV .
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Figure 6a. Left: Data and contours of constant poste-
rior standard deviation. Right: Estimated probability of
progression as a function of duration and body mass
index for glycosylated hemoglobin fixed at its median.
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Figure 6b. Estimated probability of progression as a
function of dur for four levels of bmi by four levels of
gly.
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Figure 6c. Bayesian ‘Confidence Intervals’
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• SS-ANOVA spaces, SOFTWARE.

Codes for SS-ANOVA models, reverse chronological
order: Use a Newton-Raphson algorithm for (d, c)

given λ. Use an iterative unbiased risk estimate for
λ in the Bernoulli case.
...

Code- Author- Where Found (∗ = freeware)
—- —– —–
∗ gss- Chong Gu- http:www.r-project.org
∗GRKPACK-Yuedong Wang-http:www.netlib.org/gcv
∗RKPACK- Chong Gu-http:www.netlib.org/gcv
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recap Part I

1. Positive Definite Functions

2. Bayes Estimates and Variational Problems

3. Reproducing Kernel Hilbert Spaces

4. The Moore-Aronszajn Theorem and Inner Prod-
ucts in RKHS

5. Example: Periodic Splines

6. The Representer Theorem (simple case)

7. Sums and Products of Positive Definite Functions
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Part II

1. The polynomial smoothing spline.

2. Leaving-out-one, GCV and other smoothing pa-
rameter estimates.

3. The thin plate smoothing spline.

4. Generalizations: Different kinds of observations:
Non-gaussian, indirect, constrained.

5. Examples: The histospline, convolution equations
with positivity constraints. GCV with inequality
constraints.
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Part III

1. SS-ANOVA Spaces on General Domains

2. Averaging Operators and ANOVA Decompositions

3. Reproducing Kernel Spaces for ANOVA Decom-
positions

4. Building Blocks for SS-ANOVA Spaces, General
and Particular

5. Representation of SS-ANOVA Fits

6. Example: Risk of Progression of Diabetic Retinopa-
thy in the WESDR Study. Bernoulli data.

7. GACV for smoothing parameters in the Bernoulli
case.
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♣♣ Ending Comments

Reproducing Kernel Hilbert Spaces apparently first ap-
peared in the Statistics Literature in the work of Parzen
in the late 60’s, and although there was theoretical
work in the early 70’s there were several things that
were necessary to make models based on them use-
ful to the data analyst: (i) high speed computers that
could handle the solution of large linear systems, (ii)
method(s) for choosing the smoothing parameter(s),
(iii) user friendly software, since the models are gen-
erally non-trivial to code from scratch. These things
have come to pass for some models, but for some of
the more recent methods, user-friendly software is not
(yet) available. There are still many interesting open
theoretical and practical problems for the research-
minded - particularly related to variable and model
selection in very large, complex data sets, and effi-
cient code development. However, we hope we have
shown that model building with RKHS has the flexi-
bility and generality to handle a very wide variety of
statistical data analysis problems, and have given the
interested user ideas on how to begin doing this.
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