
A Variety of Regularization Problems

Beginning with a review of some optimization prob-
lems in RKHS, and going on to a model selection
problem via Likelihood Basis Pursuit (LBP).

LBP based on a paper by Hao Helen Zhang (NC
State) with

Grace Wahba, Yi Lin, Meta Voelker, Michael Ferris,
Ronald Klein, and Barbara Klein

IPAM ”Inverse Problems: Computational Methods
and Emerging Applications”,

UCLA October 15, 2003

http://www.stat.wisc.edu/˜wahba

References since 1993 available via the TRLIST link.
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We review a selected class of regularization problems
which balance distance to the observations with a penalty
on the complexity or size of the solution. Considered
are a variety of definitions of ’closeness’, and several
selected penalties, based on RKHS or l1 norms. A
class of tuning methods which generalize the Gen-
eralized Cross Validation (GCV) to distance criteria
other than least squares are noted. Smoothing Spline
ANOVA (SS-ANOVA) models will be described, and
their use in a study selecting important important fac-
tors affecting the risk of progression of an eye dis-
ease, based on data from a demographic study. Based
on H. Zhang et al, TR 1059r available via
http://www.stat.wisc.edu/˜wahba, click on
”TRLIST”.
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♣♣ 1. Positive definite matrices and functions.

Let T be an index set. A symmetric function of two
variables, K(s, t), s, t ∈ T is said to be positive defi-
nite (pd) if, for every n and t1, · · · , tn ∈ T , and every
a1, · · · , an,

n
∑

i,j=1

aiajK(ti, tj) ≥ 0.

In the case T = {1,2, · · · , N} K reduces to an N ×
N matrix. But we will be interested in a (limitless)
variety of other index sets-anything on which you can
construct a positive definite function:

T = (. . . ,−1,0,1, . . .)

T = [0,1]

T = Ed (Euclidean d-space)
T = S (the unit sphere)
T = the atmosphere
T = {♦,4,♥} (unordered set)
T = A Riemannian manifold
T = A collection of trees

etc, etc.
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♣♣ 1. (cont.) Positive definite matrices and
functions.

For matrices A and B of appropriate dimensions, the
sum (A ⊕ B), and the (Kronecker) product,

A ⊗ B =











a11B . . . a1nB
a21B . . . a2nB

... ...
an1B . . . annB











are pd, and this carries over to positive definite func-
tions on arbitrary domains: Let

u, u′ ∈ T (1), v, v′ ∈ T (2)

s = (u, v), t = (u′, v′) ∈ T = T (1) ⊗ T (2)

K1(u, u′), K2(v, v′) be pd.

Then K ≡ K1 ⊗ K2:

K(s, t) = K1(u, u′)K2(v, v′)

is pd on T ⊗ T . Thus tensor sums and products
of pd functions on arbitrary domains provide an inex-
haustible source of models.
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♣♣ 1. (cont.) Reproducing kernel Hilbert spaces
(RKHS).

Recall: An RKHS (reproducing kernel Hilbert space)
is a Hilbert space HKof functions on a domain T with
all the evaluation functionals t : f → f(t) bounded.
That is, for each t ∈ T there exists a representer ηt ∈

HK such that f(t) =< ηt, f >HK
.

Furthermore, let K(s, t) =< ηs, ηt >HK
. Thus, K

is a uniquely determined pd function, and the famous
Moore-Aronszajn theorem says that the converse is
true: to each positive definite function on T ⊗T there
corresponds a unque RKHS HK , with

ηt(·) = K(t, ·).

ηt is the so-called ’representer of evaluation’ at t.
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♣♣ 1. (cont.) Regularization Problems in RKHS,
single smoothing parameter.

The canonical regularization problem in RKHS: Given

{yi, ti}, yi ∈ Y, ti ∈ T ,

and {φ1, · · · , φM}, M special functions defined on
T . Find f of the form

f =
M
∑

ν=1

dνφν + h

with h ∈ HK to minimize

Iλ{y, f} =
1

n

n
∑

i=1

C(yi, f(ti)) + λ‖h‖2HK
.

C is a convex function of f for each yi ∈ Y and it is
required that the minimizer of 1

n

∑n
i=1 C(yi, f(ti)) in

the span of the φν be unique. f(ti) may be replaced
by Li(f), where Li(f) is a bounded linear functional
on HK and well defined on the φν: For example:

Li(f) =
∫

T
Hi(s)f(s)ds.

For some H, observed derivatives can also be used.
So a wide variety of observation types can be used.
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♣♣ 1. (cont.) Regularization Problems in RKHS, the
representer theorem.

Iλ{y, f} =
1

n

n
∑

i=1

C(yi, f(ti)) + λ‖h‖2HK
.

C measures ”fit to data”, ‖h‖2HK
is ”complexity” and λ

governs their tradeoff. The minimizer of I{f, y} has a
representation of the form:

f(s) =
M
∑

ν=1

dνφν(s) +
n

∑

i=1

ciK(ti, s).

d = (d1, · · · dM)′ and c = (c1, · · · , cn)′ are found
using

‖
n

∑

i=1

ciK(ti, ·)‖
2
HK

= c′Knc

where Kn is the n×n matrix with i, jth entry K(ti, tj)

[KW71].
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♣♣ 1. (cont.) Regularization Problems in RKHS, the
representer theorem for indirect observations.

Iλ{y, f} =
1

n

n
∑

i=1

C(yi, f(ti)) + λ‖h‖2HK
.

If f(ti) is replaced by Li(f) then K(ti, ·) is replaced
by ξi obtained by applying Li to one of the arguments
in K, for example if Li(f) =

∫

T Hi(s)f(s)ds then

Li(K(t, ·)) =
∫

T
Hi(s)K(t, s)ds = ξi(t),

and (Kn)ij is replaced by

< ξi, ξj >=

∫

T

∫

T
Hi(s)K(s, t)Hj(t)dsdt.

See [NYGP84]
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♣♣ 2. Varieties of Cost Functions and Tuning
Methods.

Cost Function C(y, f)

Regression
.........
Gaussian data (y − f)2

Bernoulli, f = log[p/(1 − p)] −yf + log(1 + ef)
Other exponential families other log likelihoods
Data with outliers robust functionals
Quantile functionals ρq(y − f)
.........
Classification: y ∈ {−1,1}
.........
Support vector machines (1 − yf)+
Other ”large margin classifiers” e−yf and other

functions of (yf)
..........

(MV) Density estimation: y ≡ 1 −yf +
∫

ef

(Here (τ)+ = τ, τ ≥ 0,= 0 otherwise,
ρq(τ) = τ(q − I(τ ≤ 0)).
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♣♣ 2. (cont.) Varieties of cost functions and tuning
methods.

Tuning methods for choosing λ from the data:

• Gaussian Data: Generalized Cross Validation (GCV),
Generalized Maximum Likelihood (GML)(aka REML),
Unbiassed risk (UBR), others (google ”methods”
”choose” ”smoothing parameter” gave 2850 hits)

• Bernoulli Data: Generalized Approximate Cross
Validation (GACV) [XW96],other earlier related

• Support Vector Machines: GACV for SVM’s [WLZ00]
other related, esp. Joachim’s ξα method.

• Multivariate Density Estimation: GACV for density
estimation. [WLL02]

• All problems: Leaving-out-one, k-fold cross vali-
dation
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♣♣ 3. Smoothing Spline ANOVA, or, ANalysis Of
Variance in RKHS.

Some background:

Let H be the direct sum of p orthogonal subspaces,

HK =
p

∑

β=1

⊕Hβ

In the penalty functional Iλ{y, f}, replace λ‖h‖2HK
by

p
∑

β=1

λβ‖P
βh‖2HK

≡
p

∑

β=1

λβ‖P
βh‖2Hβ

where P β is the orthogonal projection of h onto Hβ.
The representer theorem along with some rescaling of
components of K can be used to obtain the desired
representers with the multiple smoothing parameters
{λβ} explicitly available for tuning [W90][WWGKK95].
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♣♣ 3. (cont.) Smoothing Spline ANOVA.

t ≡ (t1, · · · , td) ∈ T ≡ T (1) ⊗ · · · ⊗ T (d)

f(t) = f(t1, · · · , td)).

Let dµα be a probability measure on T (α) and define
the averaging operator Eα on T by

(Eαf)(t) =
∫

T (α)
f(t1, · · · , td)dµα(tα),

giving the SS-ANOVA decomposition of f :

f(t1, · · · , td) = µ+
∑

α
fα(tα)+

∑

αβ

fαβ(tα, tβ)+· · ·

µ =
∏

α
Eαf

fα = (I − Eα)
∏

β 6=α

Eβf

fαβ = (I − Eα)(I − Eβ)
∏

γ 6=α,β

Eγf

... ... Eαfα = 0, EαEβfαβ = 0, etc.
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♣♣ 3. (cont.) Smoothing spline ANOVA, or, analysis
of variance in RKHS.

The idea behind SS-ANOVA is to construct an RKHS
H of functions on T so that the components of the SS-
ANOVA decomposition represent an orthogonal de-
composition of f in H. Then RKHS methods can
be used to explicitly impose smoothness penalties of
the form

∑

α λαJα(fα) +
∑

αβ λαβJαβ(fαβ) + · · · ,
(where, however, the series will be truncated at some
point.)
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♣♣ 3. (cont.) Smoothing Spline ANOVA.

Let H(α) be an RKHS of functions on T (α) with
∫

T (α) fα(tα)dµα = 0 for fα(tα) ∈ H(α), and let

[1(α)] be the one dimensional space of constant func-
tions on T (α).

Construct H as

H = ⊗d
α=1

[

[1(α)] ⊕H(α)
]

= ⊗d
α=1[1

(α)]⊕
∑

j

H(α)⊕
∑

α<β

[H(α)⊗H(β)]⊕· · · ,

Factors of the form [1(α)] are omitted whenever they
multiply a term of a different form. Thus H(1) is short-
hand for H(1) ⊗ [1(2)]⊗ · · · ⊗ [1(d)] (which is a sub-
space of H).

The components of the ANOVA decomposition will be
in mutually orthogonal subspaces of H.
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♣♣ 3. (cont.) Smoothing Spline ANOVA.

Consider

I =
d

∏

α=1

[Eα + (I − Eα)] =

d
∏

α=1

Eα +
d

∑

α=1

(I − Eα)
∏

β 6=α

Eβ

+
∑

α<β

(I−Eα)(I−Eβ)
∏

γ 6=α,β

Eγ+· · ·+
d

∏

α=1

(I−Eα).

and note that the the terms match up with the expan-
sion

⊗d
α=1[1

(α)] ⊕
∑

j

H(α) ⊕
∑

α<β

[H(α) ⊗H(β)] ⊕ · · · ,

Jα(f) = ‖PH(α)
f‖2, and similarly for Jαβ. (Details

allowing for unpenalized terms omitted here.)
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♣♣ 4. The Wisconsin Epidemiological Study of
Diabetic Retinopathy (WESDR)

WESDR is an ongoing epidemiological study of a co-
hort of patients receiving their medical care in an 11-
county area in southern Wisconsin. Baseline exam,
1980, with four, ten, fourteen and twenty year followups.
(refs in [ZWL02]). [WWGKK95] built a Smoothing Spline
ANOVA model for four year risk of progression of dia-
betic retinopathy from baseline, as a function of three
risk factors. We started out with twenty possible risk
factors, and narrowed it down to three variables by
very laborious means. It would be highly desirable to
have a model selection procedure that could simul-
taneously select important variables/components of a
Smoothing Spline ANOVA model. Such a procedure
has been obtained in [ZWL02].
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♣♣ 4. (cont.). Wisconsin Epidemiological Study of
Diabetic Retinopathy (WESDR).

[WWGKK95] looked for the four year risk of progres-
sion of diabetic retinopathy from baseline at a cohort
of (selected) n = 669 younger onset subjects. Let
p(t) be the probability of progression for a subject
with risk factor vector t and f = log[p/(1 − p)]. y
(coded as 1 or 0) and t is observed for each sub-
ject. The model fitted was f(t) = f(dur, gly, bmi)
= µ+f1(dur)+a2 ·gly+f3(bmi)+f13(dur, bmi)

where dur = duration of diabetes, gly = glycosylated
hemoglobin, and bmi = body mass index.
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(Right: probability plotted against bmi and dur;
gly at median.) (Note: model is not monotonic in
dur) From [WWGKK95]
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Wisconsin Epidemiologic Study of Diabetic

Retinopathy (WESDR)

• Continuous covariates:

X1: (dur) duration of diabetes at the time of baseline examination, years

X2: (gly) glycosylated hemoglobin, a measure of hyperglycemia, %

X3: (bmi) body mass index, kg/m2

X4: (sys) systolic blood pressure, mmHg

X5: (ret) retinopathy level

X6: (pulse) pulse rate, count for 30 seconds

X7: (ins) insulin dose, kg/day

X8: (sch) years of school completed

X9: (iop) intraocular pressure, mmHg

• Categorical covariates:

Z1: (smk) smoking status (0 = no, 1 = any)

Z2: (sex) gender (0 = female, 1 = male)

Z3: (asp) use of at least one aspirin for (0 = no, 1 = yes)

at least three months while diabetic

Z4: (famdb) family history of diabetes (0 = none, 1 = yes)

Z5: (mar) marital status (0 = no, 1 = yes/ever)

1
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♣♣ 4. (cont.) WESDR: The Likelihood Basis Pursuit
result for the WESDR data.

gly dur sch bmi puls ret sys iop ins sex smk asp famdb mar
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L1 norm scores for the WESDR main effects model,
from a Likelihood Basis Pursuit analysis. The method
selected gly, dur, sch and bmi, in that order, as im-
portant variables in a Smoothing Spline ANOVA main
effects model.

Next: How it was done.
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♣♣ 5. What is Likelihood Basis Pursuit (LBP)?

Likelihood Basis Pursuit combines ideas from the
LASSO [T96][F98], basis pursuit [CDS98], and Smooth-
ing Spline ANOVA models to generate an overcom-
plete set of basis functions, which are then used in a
penalized likelihood variational problem with l1 penal-
ties. Basis pursuit uses l1 penalties, instead of quadratic
penalties, to obtain solutions which are relatively sparse
in the number of basis functions with non-0 coeffi-
cients.

Why do l1 penalties result in sparser solutions than
quatratic penalties?

24



♣♣ 6. Why do l1 penalties give sparser solutions?

c1

c2

l1 l2

Circle:
∑N

j=1 c2j ≤ M , diamond:
∑N

j=1 |cj| ≤ M .

Ellipses: contours of constant
∑n

i=1(yi−
∑N

j=1 xijcj)
2.

Find c to minimize:

n
∑

i=1

(yi −
N
∑

j=1

xijcj)
2

subject to
∑N

j=1 |cj|
p ≤ M . Green dots: minimizers

for (l. to r.) p = 1 and p = 2. Note that c1 = 0 for
p = 1.
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♣♣ 6. (cont.) Why do l1 penalties give sparser
solutions ?

The problem: Find c to minimize:

n
∑

i=1

(yi −
N
∑

j=1

xijcj)
2

subject to
∑N

j=1 |cj|
p ≤ M is generally equivalent to

the problem: Find c to min

n
∑

i=1

(yi −
N
∑

j=1

xijcj)
2 + λ

N
∑

j=1

|cj|
p

for some λ = λ(M).
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♣♣ 7. Building an overcomplete set of basis
functions for Likelihood Basis Pursuit, with a

Smoothing Spline ANOVA model.

1. Main effects model, continuous variables.

First: the usual penalized likelihood: Let l!kl(u) be
the lth Bernoulli polynomial, and let K(u, v) = k2(u)k2(v)−

k4(|u − v|), u, v ∈ [0,1] (spline kernel [W90]). Let
x = (x1, · · · , xd), and the observations be {yi, xi}

where xi = (x1
i , · · · , xd

i ), i = 1, · · · , n.

The solution to the problem: Find f (in an appropriate
space) of the form f(x) = µ +

∑d
α=1 fα(xα) to min

1

n

n
∑

i=1

C(yi, f(xi)) +
d

∑

α=1

θ−1
α

∫

(fα”)2

has a representation

f(x) = µ+
d

∑

α=1

bαk1(x
α)+

n
∑

i=1

ci





d
∑

α=1

θαK(xα, xα
i )
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♣♣ 7. (cont.) Building an overcomplete set of basis
functions for Likelihood Basis Pursuit, with a

Smoothing Spline ANOVA model.

1. Main effects model, continuous variables (cont.).

Since generally an excellent approximation to the so-
lution to the variational problem can be obtained with
fewer basis functions, a selected subset, xi1, · · · , xiN ,
of the xi can be used to generate the solution. Thus

n
∑

i=1

ci





d
∑

α=1

θαK(xα, xα
i )





is replaced by

N
∑

j∗=1

cj∗





d
∑

α=1

θαK(xα, xα
j∗)





where {xj∗ = (x1
j∗, · · · , xd

j∗), j∗ = 1, · · · , N} is the
selected subset of the xi.
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♣♣ 7. (cont.) Building an overcomplete set of basis
functions.

1. Main effects model, continuous variables (cont.).
This suggests the overcomplete set of 1 + d + dN

basis functions:

{1, bα(x) ≡ k1(x
α), Bα

j∗(x) ≡ K(xα, xα
j∗)}.

for α = 1, · · · , d, j∗ = 1, · · · , N

The basis pursuit variational problem is to find f(x),

f(x) = µ +
d

∑

α=1

bαbα(x) +
d

∑

α=1

N
∑

j∗=1

cαj∗B
α
j∗(x)

to minimize

1

n

n
∑

i=1

C(yi, f(xi))+λπ(
d

∑

α=1

|bα|)+λs(
d

∑

α=1

N
∑

j∗=1

|cαj∗|)

2. Two factor interactions basis funtions are built up
from tensor products of the main effects basis func-
tions.
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♣♣ 7. (cont.) Building an over complete set of basis
fuctions .. the importance measure for individual

model components.

We have adopted the empirical L1 norm to assess the
relative importance of the various terms. (Since the
Smoothing Spline ANOVA basis functions all average
to 0 this is makes sense). The empirical L1 norms
of the main effects fα and the two-factor interactions
fαβ are defined as

L1(fα) = 1
n

∑n
i=1 |fα(xα

i )|

= 1
n

∑n
i=1 |bαk1(x

α
i ) +

∑N
j=1 cαj∗K1(x

α
i , xα

j∗)|

and

L1(fαβ) = 1
n

∑n
i=1 |fαβ(x

α
i , x

β
i )|

= 1
n

∑n
i=1 |bαβk1(x

α
i )k1(x

β
i )

+
∑N

j=1 cπs
αβj∗K1(x

α
i , xα

j∗)k1(x
β
i )k1(x

β
j∗)

+
∑N

j=1 cπs
βαj∗K1(x

β
i , x

β
j∗)k1(x

α
i )k1(x

α
j∗)

+
∑N

j=1 css
αβj∗K1(x

α, xα
j∗)K1(x

β, x
β
j∗)|.
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♣♣ 8. Back to the WESDR results.
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L1 norm scores for the WESDR main effects model.

The importance threshhold is .39 (blue line). The p-
values for all four of the selected variables gly, dur, sch, bmi,
were .02, obtained by a bootstrap procedure [ZWL02].
The solution was very sparse, with about 90% of the
coefficients 0.

♣♣ 9. Closing Remarks: Results nice - - the method
returned important variables, that had previously been
selected by much more tedious methods. Simulation
results in [ZWL02] also demonstrated the efficacy of
the approach in data sets where ’truth’ is known.
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