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I learned about Reproducing Kernel Hilbert Spaces from Manny
Parzen, my thesis advisor, somewhere around 1962-64, and these
wonderful objects have essentially formed the foundation of my
career. Randy Eubank has already told you a lot of modern things
about them so I am going to revisit ill-posed inverse problems, the
RKHS setting rephrased from Manny’s work, and some
computational and convergence results from 1990 and earlier.
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Figure 1: Manny Parzen’s 60th Birthday Party, 1989.

l. to r. Don Ylvisaker, Grace Wahba, Joe Newton, Marcello
Pagano, Randy Eubank, Manny Parzen, Will Alexander, Marvin
Zelen, Scott Grimshaw
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Ill-Posed Inverse Problems and (Tihonov) Regularization

1. I’ll review how one can solve ill-posed inverse problems in an
RKHS setting. These result are already in Manny’s papers,
and, in any case, I learned them at his feet at Stanford in the
60’s.

2. I’ll make some remarks as to how to actually compute the
solutions in a stable way (Nychka et al 1989)

3. I’ll note some old convergence results and discuss the question
“When is the optimal regularization parameter review
insensitive to the choice of the loss function?” (Wahba and
Wang 1990)

Searching google for “Ill Posed Inverse Problems” gives “about
27,800 hits”. and adding “convergence” to the “all of these words”
box gives “about 12,000 hits - my guess is that these kinds of
convergence results are being rediscovered often.
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Some Early Applications:

• G. Wahba. Constrained regularization for ill posed linear
operator equations, with applications in meteorology and
medicine, in “Statistical Decision Theory and Related Topics
III”, Vol. 2, S.S. Gupta and J.O. Berger, eds., 383-418,
Academic Press (1982).

• D. Nychka, G. Wahba, S. Goldfarb, and T. Pugh.
Cross-validated spline methods for the estimation of three
dimensional tumor size distributions from observations on two
dimensional cross sections. J. Am. Stat. Assoc., 79:832–846,
1984.

• F. O’Sullivan and G. Wahba. A cross validated Bayesian
retrieval algorithm for non-linear remote sensing. J. Comput.
Physics, 59:441–455, 1985.
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Solving Ill Posed Integral Equations in an RKHS Setting

Given data

yi =
∫

Ω

G(ui, s)f(s)ds + εi, i = 1, · · · , n (1)

with ε ≈ N (0, σ2), σ2 unknown. Suppose f ∈ HK , an RKHS with
RK K. Find fλ ∈ HK to minimize

n∑
i=1

(yi −
∫

Ω

G(ui, s)f(s)ds)2 + λ‖f‖2HK
. (2)
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Solving Ill Posed Integral Equations in an RKHS Setting,
continued

Assume
∫
HK

G(ui, s)f(s)ds ≡ Lif is a bounded linear functional in
HK . Then by the Riesz Representation theorem there exist some ηi

in HK such that
Lif ≡< ηi, f >HK

(3)

where < ·, · >HK
is the inner product in HK . What is ηi? Recall

that Kt(·) ≡ K(·, t) is the representer of evaluation in HK . This
means that for any fixed t, ηi(t) =< ηi,Kt >HK

≡ LiKt. So,

ηi(t) =< ηi,Kt >HK
≡ LiKt ≡

∫
Ω

G(ui, s)Kt(s)ds ≡
∫

Ω

G(ui, s)K(s, t)ds.

(4)
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Solving Ill Posed Integral Equations in an RKHS Setting,
continued

Theorem: (Special case of Kimeldorf and Wahba, 1971)

The minimizer of
∑n

i=1(yi −
∫
Ω

G(ui, s)f(s)ds)2 + nλ‖f‖2HK
has a

representation of the form

fλ =
n∑

j=1

cjηj . (5)

A closed form solution is now at hand, using∫
Ω

G(ui, s)f(s)ds = Lif = Li

n∑
j=1

cjηj =< ηi,

n∑
j=1

cjηj >

‖fλ‖HK
=

∑
i,j=1n

cicj < ηi, ηj > .
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Solving Ill Posed Integral Equations in an RKHS Setting,
continued

We’re almost done. We just have to know what < ηi, ηj >HK
is.

Let L(i(t) mean Li applied to what follows, considered as a function
of t. Then

< ηi, ηj >= Liηj = Li(t)

∫
Ω

G(uj , s)K(s, t)ds

=
∫

Ω

∫
Ω

G(uj , s)K(s, t)G(ui, t)

= Rij , [say]

Almost!
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Solving Ill Posed Integral Equations in an RKHS Setting,
continued

Almost! Let R be the nxn matrix with ij entry

Rij =
∫

Ω

∫
Ω

G(uj , s)K(s, t)G(ui, t)

Returning to the original optimization problem and writing it in
terms of the ηi: Find f in HK to minimize

n∑
i=1

(yi −
∫

Ω

G(ui, s)f(s)ds)2 + nλ‖f‖2HK

becomes: Find c ∈ En to minimize

‖(y −Rc)‖2 + λc′Rc.

and fλ =
∑

j cjηj with

c = (R + λI)−1y. (6)
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Computing

• If n is large the solution may be computed in the span of a
subset of the basis functions (the ηi’s).

• Do not attempt to compute the
Rij =

∫
Ω

∫
Ω

G(uj , s)K(s, t)G(ui, t) by quadrature. It is better
to approximate the ηi by a quadrature approximation
η̃i =

∑N
r=1 birKtr with the tr playing the role of quadrature

points. Then < η̃i, η̃j >=
∑

r,r′ birbjr′K(tr, t′r)

• If ‖f‖2 is replaced by
∫

(f (m)(s))2ds then the Kt are splines,
and B-spline basis functions are convenient.
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Three Early Convergence Rate Papers:

1. G. Wahba. Convergence rates of certain approximate solutions
to Fredholm integral equations of the first kind. J. Approx.
Theory, 7:167–185, 1973.

2. D. Nychka and D. Cox. Convergence rates for regularized
solutions of integral equations from discrete noisy data. Ann.
Statist., 17:556–572, 1989.

3. G. Wahba and Y. Wang. When is the optimal regularization
parameter insensitive to the choice of the loss function?
Commun. Statist.-Theory Meth., 19:1685–1700, 1990.
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When is the optimal regularization parameter insensitive to
the choice of the loss function?

Simple case to get closed form answers, periodic convolution
equation and periodic solution function f ..

yi =
∫ 1

0

h(
i

n
− s)f(s)ds + εi, i = 1, 2, · · · , n.

• ‖f‖2 =
∫ 1

0
(f (m))2(s)ds.

• Fourier coefficients of f go to 0 at the rate n−α.

• Fourier coefficients of h go to 0 at the rate n−β .

• MSE(solution) ≡ MSE(S) =
∫ 1

0
(fλ(s)− f(s))2ds

• MSE(prediction) ≡ MSE(P ) =
∫ 1

0
(gλ(s)− g(s))2ds, g = h ∗ f.

When is the optimal λ for MSE(P ) the same as the optimal λ for
MSE(S) (ratewise)? The answer depends on α, β and m.
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Figure 2: Optimal λ and MSE(S) as a function of α, β and m.

• Region A, λS ∼ n−
m+β
α+β , MSE(S) ∼ n−

α−1/2
α+β , λP ∼ λS

• Region B, λS ∼ n−
m+β
α+β , MSE(S) ∼ n−

α−1/2
α+β , λP = o(λS)

• Region C,

λS ∼ n−
2(m+β)

(4m+6β+1) ,MSE(S) ∼ n−
4(m+β)

(4m+6β+1) , λP = o(λS)
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Conclusions

So, it all started for me back in the 60’s, with fond memories of
sitting on the grass in front of the old Sequoia Hall at Stanford
hearing abut these wonderful objects, and now “Kernel Methods”
(meaning “Reproducing Kernel Hilbert Space Methods”) are
everywhere. Of course in density estimation we have the Parzen
Kernel, so, Manny is the father of both reproducing kernel methods
and Parzen kernel methods!
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