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Abstract

According to the Mathematics Genealogy project I was Manny

Parzen’s fifth student (PhD 1966, Postdoc 1967). Manny was a

truly wonderful advisor and mentor and we remained friends for

fifty years. Seeing Manny and Carol at JSM and numerous other

meetings over the years was always a time of happy reunion. There

are many fond memories. I learned about Reproducing Kernel

Hilbert Spaces as a student in one of his classes that occasionally

met on the lawn in front of the old Sequoia Hall at Stanford in the

60’s. In fact I knew Manny by his books Modern Probability and

Stochastic Processes before I arrived at Stanford. And his classic

paper “ Statistical inference on time series by RKHS methods”

served as a font of ideas as I embarked on an academic career.

Manny was one of the greats and we have lost a beloved friend and

colleague.
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Akaike Time Series Conference, Tokyo 1984. l. to r. Victor Solo,

Manny, me, Wayne Fuller, Bill Cleveland, Bob Shumway, David

Brillinger
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Manny, a man of many interests Manny had a major role in a

number of fundamental areas in the development of the Statistical

Canon. Aside from his work on kernel density estimation and

Reproducing Kernel Hilbert Spaces work in the early 60’s, these

include time series modeling, spectral density estimation, quantile

estimation and others. Manny’s work involving these two different

kinds of kernels that have played important roles in the

development of modern statistical methodology. Thus it might be

appropriate to take a short glimpse at some modern ideas related

to these two kinds of kernels.
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Consider a biostatistical training set where several attributes are

observed for each subject, including a personal sample density. We

allow the posibility of treating an image which registers intensity as

a rescaled ‘density’.

We show a sequence of steps in which densities as attributes could

be included in predictive models such as Smoothing Spline ANOVA

models, which have main effects, two factor interactions, and so

forth.
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Outline:

1. Parzen Density Kernels and Reproducing Kernel Hilbert Space

Kernels.

2. Step 1: Embed densities in an RKHS to obtain pairwise

distances.

3. Step 2: Use Regularized Kernel Estimation to map densities

into Er to get pseudo-attributes.

4. Step 3: Use Radial Basis Function kernels to include the

pseudo-attributes of densities/images(?) in SSANOVA Models.
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Parzen Density Kernels and RKHS Kernels

Manny was a pioneer in both the theory and practice of density

estimation and of RKHS.

Parzen Density Kernels Let X1, X2, . . . , Xn be a random

sample from some (univariate) density f(x), x ∈ [−∞,∞]. The

kernel density estimates of Manny’s seminal 1962 paper

[Parzen, 1962b] (paraphrasing slightly) are of the form

fn(x) =
1

nh

n∑
j=1

K

(
x−Xj

h

)
, (1)

where K(y) is non-negative, sup−∞<y<∞K(y) <∞
∫∞
−∞K(y) = 1,

limy→∞ |yK(y)| = 0, and, letting h = h(n), limn→∞ h(n) = 0.

This seminal 1962 paper explores in detail the properties of these

density estimates. Today we consider multivariate densities/images.
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RKHS Kernels

Manny was likely the first statistician to seriously introduce

RKHSs to statisticians, certainly highly influential, see

[Parzen, 1962a, Parzen, 1963, Parzen, 1970].

• HK be an RKHS of functions on a domain T . ∃ a unique

positive definite function K(s, t), s, t ∈ T associated with HK .

• Conversely, let T be a domain on which a positive definite

function, K(s, t), s, t ∈ T is defined. ∃ a unique RKHS HK
with K as its reproducing kernel.

• Consider Ks(t) ≡ K(s, t) as a function of t for each fixed s.

Then, letting < ·, · > be the inner product in HK , for f ∈ HK
we have < f,Ks >= f(s), and < Ks,Kt >= K(s, t).

• The square distance between f and g is denoted as ||f − g||2HK
,

where || · ||2HK
is the square norm in HK .

8 July 23, 2017



Step 1: Embedding densities in an RKHS

Population case: Let p(t), be a density on some domain T , and let

HK be an RKHS with kernel K(·, ·). Then the embedding of p into

HK is given by

f(·) =

∫
t∈T

K(·, t)p(t)dt. (2)

Here f ∈ HK . The sample version of f is given by

fX(·) =
1

k

k∑
j=1

K(Xj , ·) (3)

where X1, . . . , Xk are k iid samples from p. If we were treating p as

an image of, say, an x-ray density, then the Xj would be on some

regular or otherwise designed grid.
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Given a sample from a possibly different distribution q say, we have

gY (·) =
1

`

∑̀
j=1

K(Yj , ·). (4)

Under appropriate conditions on K

[Sejdinovic et al., 2012, Sriperumbudur et al., 2011], two different

distributions will be mapped into two different elements of HK . See

also p. 727 of [Gretton et al., 2012]. The pairwise distances

between these two samples can be taken as

‖fX−gY ‖2Hk
=

1

k2

k∑
i,j=1

K(Xi, Xj)+
1

`2

∑̀
i,j=1

K(Yi, Yj)−
2

kl

k,∑̀
i=1,j=1

K(Xi, Yj).

(5)

Note that if K is a nonnegative, bounded radial basis function,

then (up to scaling) we have mapped fX and gY into Parzen type

density estimates (!).
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Step 2: Using RKE to map densities in Er. Given the

pairwise distances from Step 1 embed the densities in a low

dimensional Euclidean space by by using Regularized Kernel

Estimation (RKE) [Lu et al., 2005] and then use the results in an

SS-ANOVA model.

For a given n× n dimensional positive definite matrix Σ, the

pairwise distance that it induces is d̂ij = Σ(i, i) + Σ(j, j)− 2Σ(i, j)

The RKE problem is as follows: Given observed data dij find Σ to

min
Σ�0

∑
(i,j)∈Ω

|dij − d̂ij |+ λ trace(Σ) (6)

where d̂ij = Σ(i, i) + Σ(j, j)− 2Σ(i, j).
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The data may be noisy/not Euclidean, but the RKE provides a

(non-unique) embedding of the n objects into an r- dimensional

Euclidean space (determined by λ) as follows: Let the spectral

decomposition of Σ be ΓΛΓT . The largest r eigenvalues and

eigenvectors of Σ are retained to give the n× r matrix Z = ΓrΛ
1/2
r .

We let the ith row of Z, an element of Er, be the pseudo-attribute

of the ith subject.
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Thus each subject may be identified with an r-dimensional pseudo

attribute, where the pairwise distances betwen the pseudo

attributes respect (approximately, depending on r) the original

pairwise distances. Even if the original pairwise distances may be

Euclidean, the RKE may be used as a dimension reduction

procedure where the original pairwise distances have been obtained

in a much larger space (e. g. an infinite dimensional RKHS). Note

that if used in a predictive model it is necessary to know how a

“newbie” fits in; this is discussed in [Lu et al., 2005].
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Step 3: SSANOVA models with densities as attributes,

using Radial Basis Function Kernels. Briefly, Smoothing

Spline ANOVA models of functions of d variables are of the form

f(t1, . . . , td) = µ+
∑
α

fα(tα) +
∑
αβ

fαβ(tα, tβ) + · · · (7)

and the terms satisfy ANOVA-like side conditions.

f is assumed to be in a tensor product space

H = Πd
α=1 ⊗Hα.

Each Hα is an RKHS of functions on Tα that admits a

decomposition of the form

Hα = [1(α)]⊕H(α)

with an averaging operator Eα such that Eα1(α) = 1 and Eαfα = 0

for fα ∈ H(α).
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Expanding H gives

H =
d∏

α=1

([1(α)]⊕H(α))

= [1]⊕
∑
α

H(α) ⊕
∑
α<β

[H(α) ⊗H(β)]⊕ · · · , (8)

where [1] denotes the constant functions on T = Πd
α=1 ⊗ Tα. Then

fα ∈ H(α), fαβ ∈ [H(α) ⊗H(β)] and so forth. Extensive literature

and software exists for fitting these models, examples include

[Gu, 2002, Wang, 2011, Wahba et al., 1995].
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To use the pseudo-attributes in Er found via RKE in an RKHS we

must confine ourselves to radial basis function kernels (RBF’s),

which depend only on pairwise distances between the arguments:

thus K(s, t) = k(‖s− t‖). Let H(α) be the RKHS associated with

k(·) and let k be (for example) the multivariate Gaussian with

argument ‖s− t‖. The constant function over Er is not in this

space with the Gaussian RBF kernel. Adjoin [1(α)] to this space

and define the averaging operator Eα needed for the ANOVA

decomposition as

Eαfα = lim
A→∞

1

Ar

∫ A

A

. . .

∫ A

A

fα(s)ds.

See that Eα1(α) = 1 and Eαfα = 0 for fα in H(α). Thus, we have

the decomposition

Hα = [1(α)]⊕H(α)

and this term can be combined into the SSANOVA model.
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Thus training sets with observed or coded pairwise distances as

pseudo-attributes ma be treated like other, direct, observations in

SSANOVA models.

Note that the r-variate Gaussian an be used as a density , or, as a

positive definite function, and any other multivariate density which

is an RBF when condsidered as a function of two arguments would

work.
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The Bottom Line The bottom line is that training sets with

variables (attributes) where you only have pairwise distances

between samples may be included in a Smoothing Spline ANOVA

Model, either addtively or with interactions, and, in particular,

when the attribute is a density, then pairwise distances between

densities may be obtained by embedding the densities in an RKHS

to get pairwise distances, and then mapping the pairwise distances

into a low(er) dimensional Euclidean space to get

pseudo-attributes, and thence into an SSANOVA model.

So Manny’s work on both density kernels and RKHS kernels can be

brought together to include densities/(images?) as attributes in an

SSANOVA model.
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Manny’s 60th Birthday, 1989, College Station, TX. l. to r. Don

Ylvisaker, me, Joe Newton, Marcello Pagano, Randy Eubank,

Manny, Will Alexander, Marvin Zelen, Scott Grimshaw
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