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5.11.06

1



Abstract

We describe an approach to supervised/semi-supervised
machine learning using Regularized Kernel Estima-
tion, when only noisy dissimilarity data between ob-
jects in the training set is given. A particularly in-
teresting example is provided by the use of BLAST
scores in clustering and classifying protein sequence
data; the BLAST scores give a pairwise dissimilarity
score between protein sequences, labeled or not. A
variant of the problem is appropriate as a dimension
reduction tool for data that sits in a low dimensional
nonlinear manifold in a high dimensional space. Tun-
ing and computation issues and open questions will
be mentioned.



OUTLINE

1. Motivation: To cluster and classify objects for which
only dissimilarity information is known (ex. Protein Se-
quences)

2. Multidimensional Scaling, other related work

3. Dissimilarity information and RKE

4. Special case: l1 loss and trace penalty.

5. The General Convex Cone Problem

6. The ”Newbie” formulation.

7. A numerical trick: subsampling

8. Eigensequence plots, truncation, tuning

9. Clustering and classification of protein sequences
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Classification based on two variables via the multicat-
egory support vector machine of Lee, Lin, Wahba and
Ackerman. Note physical units for the attribute vari-
ables: (x-axis is radiance), y axis is log ratio of two
radiances).
Y. Lee, G. Wahba, and S. Ackerman. Classification of satellite radiance data
by multicategory support vector machines. J. Atmos. Ocean Tech., 21:159–
169, 2004.

Y. Lee, Y. Lin, and G. Wahba. Multicategory support vector machines, theory,
and application to the classification of microarray data and satellite radiance
data. J. Amer. Statist. Assoc., 99:67–81, 2004.
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3D representation of the sequence space for 280 pro-
teins from the globin family. Red:α-globins, blue: β-
globins, purple: myoglobins, green: a heterogeneous
group of proteins from other small subfamilies within
the globin family. Note that there are no units on the
axes. The coordinate system has been derived from
(noisy, scattered, incomplete) dissimilarity data (BLAST
scores) via Regularized Kernel Estimation (RKE).
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♣♣ Motivation: To Cluster and Classify Objects With
Huge or Unconventional Descriptors

In the first figure we saw a multicategory support vec-
tor machine classifying clouds that could be charac-
terized by by a vector of real numbers that could be
scaled to sit in Euclidean d space. (d = 2 in the plot,
but there were actually radiance observations at 12
bandwidths.) Here we are interested in objects like im-
ages, texts, microarray gene chips, protein sequences
and other objects that do not have natural, or useful
easily obtained vectors of real numbers encoding their
attributes. What we do assume we have is some dis-
similarity information which measures how far apart
(in some sense) (a subset of) pairs of objects in the
training set are. These may be crude subjective judg-
ments, as might be obtained from a panel studying im-
ages, counts of matching words, in the case of texts,
projections of extremely large real vectors in the case
of gene chips, or similarity information between pro-
tein sequences as might be obtained from popular
techniques as found in the BLAST algorithms. By the
use of reglarized kernel estimation (RKE) we can turn
the given information into Euclidean vectors.
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♣♣ Multidimensional Scaling, Other Related Work

The work we will talk about is related to Multidimen-
sional Scaling (MDS), a procedure that has been around
for many years. However, the regularized kernel esti-
mate we will obtain will work differently. In MDS pairs
of distances dij, i, j = 1, · · ·N between N objects
are given, generally in a higher dimension than one is
interested in. In MDS a prior choice of dimension is
selected, and one searches for a set d̂ij of Euclidean
distances in the chosen number of dimensions that
best fits the data, typically in a least squares sense,
that is, minimize

∑

i≤j

(dij − d̂ij)
2.

In two or three dimensions, the results can be used
to plot and visualize the N objects and see their rela-
tions. Note that the orientation of the plot is not deter-
mined. MDS is widely used in psychological studies,
an example might be a plot beginning with the percent
of agreement between judges.
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♣♣ Dissimilarity Information and RKE

Given a set of N objects, suppose we have obtained
a measure of dissimilarity, dij, for certain object pairs
(i, j). Regularized Kernel Estimation (RKE): Finds K:

min
K∈SN

∑

(i,j)∈Ω

L
(

dij, d̂ij(K)
)

+ λJ(K), (1)

SN is the convex cone of all real nonnegative definite
matrices of dimension N , Ω is the set of pairs with
dissimilarity information dij, and the induced dissimi-
larity d̂ij is

d̂ij = K(i, i) + K(j, j) − 2K(i, j)

where K(i, j) is the (i, j) entry of K. L measures
the discrepancy between the observed and induced
dissimilarity. L and J are convex in K and λ is a tun-
ing parameter balancing fit to the data and the penalty
or complexity on K.
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No restrictions on the set of pairs other than requiring
that the graph of the objects with pairs connected by
edges be connected.

Observed dissimilarity information may be incomplete,
may not satisfy the triangle inequality, may be noisy.
It also may be crude, as for example when it encodes
a small number of coded levels such as “very close”,
“close”, “distant”, and “very distant”. A dimension is
not specified in advance.

The literature has many examples of methods for es-
timating K from observations for the purpose of clus-
tering and classification. The closest in spirit to the
approach here might be Lancriet et al (2004) in Ma-
chine Learning who assume that K is a linear com-
bination of prespecified kernels and then estimate the
coefficients by semidefinite programming.

8



♣♣ Special Case: l1 loss and trace penalty

The special case used here the l1 loss function and
trace penalty:

min
K�0

∑

(i,j)∈Ω

|dij − d̂ij(K)| + λ trace(K). (2)

This formulation can be posed as a special case of a
general convex cone optimization problem for which
efficient software is available. The sum of squares
loss function with trace penalty can also be solved
with convex cone software.
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♣♣ The General Convex Cone Problem.

Notation:

• Rp is Euclidean p-space

• Pp is the nonnegative orthant in Rp, that is, the
set of vectors in Rp whose components are all
nonnegative.

• Qq is the second-order cone of dimension q, which
is the set of vectors x =

(

x(1), . . . , x(q)
)

∈ Rq

that satisfy the condition x(1) ≥ [
∑q

i=2 x(i)2]1/2.

• Ss is the cone of symmetric positive definite s× s

matrices of real numbers.
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♣♣ The General Convex Cone Problem (cont).

min
Xj,xi,z

ns
∑

j=1

Cj · Xj +

nq
∑

i=1

ci · xi + g · z (3)

s.t.
ns
∑

j=1

Arj · Xj +

nq
∑

i=1

ari · xi + gr · z = br, ∀r

Xj ∈ Ssj

xi ∈ Qqi

z ∈ Pp.

Cj, Arj are real symmetric matrices (not necessarily
positive semidefinite) of dimension sj

ci, ari ∈ Rqi,

g, gr ∈ Rp,

br ∈ R1.
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The solution of a general convex cone problem can be
obtained numerically using publicly available software
such as SDPT3 or DSDP5.

SDPT3: Tütüncü, R. H., Toh, K. C. & Todd, M. J.
(2003) Mathematical Programming 95, 189–217.

DSDP5: Benson, S. J. & Ye, Y. (2004) DSDP5: A
software package implementing the dual-scaling al-
gorithm for semidefinite programming, (Mathematics
and Computer Science Division, Argonne National Lab-
oratory, Argonne, IL), Technical Report ANL/MCS-TM-
255.
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♣♣ The ”Newbie” Formulation

Suppose a solution KN has been found for a ”training”
set of N objects. We wish to augment the optimal
kernel (by one row and column), without changing any
of its existing elements, to account for a new object.
That is, find a new “pseudo-optimal” kernel K̃N+1 of
the form

K̃N+1 =

[

KN bT

b c

]

� 0,

(where b ∈ RN and c is a scalar) that solves the fol-
lowing optimization problem:

minb,c≥0
∑

i∈Ωnewbie

∣

∣

∣di,N+1 − d̂i,N+1(KN+1)
∣

∣

∣

s.t. b ∈ Range(KN), c − bTK
†
Nb ≥ 0.
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K
†
N is the pseudo-inverse of KN and Ωnewbie is a

subset of {1,2, . . . , N}. The constraints in this prob-
lem are the necessary and sufficient conditions for
K̃N+1 to be positive semidefinite. Note that only a
subset of the di,N+1 are required.
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♣♣ Missing Data, Subsampling

The algorithm does not require a full set of dij. With
large data sets it can work quite well with a fraction of
the N(N − 1)/2 possible dij.

Present algorithms require O(m2) storage, where m

is the number of dij. To save on computer storage,
even when a full set is available, a random subset
of the available dissimilarity data is chosen such that
each object i appears with roughly the same frequency
among the (i, j) pairs of Ω. For each i, a fixed num-
ber k of pairs (i, j) with j 6= i is chosen.

The parameter k is verified to be sufficiently large when
the estimated d̂ij from several different random sub-
sets does not vary noticeably.
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♣♣ Eigensequence Plots, Tuning and Truncation

Increasing λ will shrink the eigenvalues of the esti-
mated Kλ. Ideally it will shrink the smaller eigenval-
ues while keeping the larger ones intact, thus pro-
viding clues to the minimum number of dimensions
needed to retain most of the dissimilarity information.

16



♣♣ Eigensequence Plots, Tuning and Truncation
(cont.)
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Log scale eigensequence plots for 5 values of λ. Pro-
tein sequence example with N = 280, k = 55. Right
panel is the λ = 1 case on an expanded scale. Note
natural breaks appear after both the second and the
third eigenvalues. Eyeball method tuning choice: λ =

1, Dimension p = 3.
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Setting all the eigenvalues of K after the largest p to
0 results in the νth coordinates of the ith object as
xi(ν) =

√
λνφν(j), ν = 1,2, . . . , p, i = 1, · · · , N,

where the λν, φν are the first p eigenvalues and eigen-
vectors of K and φν(j) is the j component of φν.

Fora newbie, once d̂i,N+1 are found for sufficiently
many i, the coordinates of the newbie are easily found.

The coordinates of the original set of N objects are al-
ways centered at the origin since the RKE estimate of
K always has the constant vector as a 0 eigenvector.
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♣♣ Clustering and Classification of Protein
Sequences

Challenging problem in biology is inferring molecular
functions of unanotated proteins. One method for do-
ing this is to examine the sequence similarity between
the unannotated protein and a set of annotated pro-
teins - those whose function is understood. The first
problem is the clustering of large numbers of protein
sequences into subfamilies to group similar proteins
together. The second problem is to assign new unan-
notated proteins to the closest class, given labeled or
clustered training data. (Much literature).

Example: 630 Globin sequences. Chose 280 sequences
including three large sub-classis of the globin family
(112 alpha globin, 101 beta globins, 40 myoglobins,
27 globins (a heterogenous category). The Bioconductor

package pairseqsim was used to obtain global pair-
wise alignment scores for all pairs of the N = 280

sequences. k = 55, or about 36% of the total possi-
ble.
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3D representation of the sequence space for 280 pro-
teins from the globin family. Different subfamilies are
encoded with different colors: Red symbols are alpha-
globin subfamily, blue symbols are beta-globins, pur-
ple symbols represent myglobin subfamily, and green
symbols, scattered in the middle, are a heterogeneous
group encompassing proteins from other small sub-
families within the globin family.

20



Here, hemoglobin zeta chains are represented by the
symbol +, fish myglobins are marked by the purple
box symbol symbol, and the diverged alpha-globin
HBAMRANCAis shown by the symbol *. Hemoglobin
alpha-D chains, embedded within the alpha-globin clus-
ter, are highlighted using the the symbol △.
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Positioning test globin sequences in the coordinate
system of 280 training sequences from the globin fam-
ily. The newbie algorithm is used to locate one Hemoglobin
zeta chain (black circle), one Hemoglobin theta chain
(black star), and seventeen Leghemoglobins (black
triangles) into the coordinate system of the training
globin sequence data.
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♣♣ CV2, pairwise cross validation. WORK IN PROGRESS
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Plot of toy (signal) data for test of CV2, pairwise cross-
validation. Noisy data was generated by adding two
dimensions of small Gaussian noise, (σ ≈ .3) then
binning the observed pairwise (four dimensional) dis-
tances into 10 equally spaced bins.
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♣♣ CV2, pairwise cross validation (cont.)
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Normalized “Procrustes Measure” of the distance of
Kλ from K, the Gram matrix of the (toy) signal data:

dK,Kλ
=

trK + trKλ − 2tr[K1/2KλK1/2]1/2

√
trKtrKλ

.

Note mimimum around log10(λ) = 2.25.
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An object space measure of distance between two
kernels is

dKα,Kβ
= minMαβ∈O‖Xα − MαβXβ‖2

where O is the class of rotation matrices and the X ′s
are arrays of the fitted coordinates: X ′

αXα = Kα,
similarly for Xβ. Interestingly enough, this gives the
same result as the unnormalized ”Procrustes Mea-
sure”, (See “Wahba’s Problem”, SIAM Review 8, 384-386 (1966))
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♣♣ CV2, pairwise cross validation.
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Eigensequences as a function of λ for the Kλ for the
noisy toy data. Recall that the minimum of the pro-
crustes measure is log10(λ) ≈ 2.25 − 2.4.
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♣♣ CV2, pairwise cross validation (cont.)

To do CV2, the pairwise crossvalidation, a separate
tuning set with dissimilarity information is needed.

1. Fix λ. Solve the newbie problem separately for
objects r and s in the tuning set to get d̂ir and d̂is

for selected i = i1, · · · , iL.

2. Using d̂ir and d̂is for i1, · · · , iL obtain the newbie
coordinate vectors xr = xr(λ) and xs = xs(λ).

3. Compare the predicted distances |xr − xs| to the
observed dissimilarities drs to get CV (λ):

CV (λ) =
∑

r,s
| |xr(λ) − xs(λ)| − drs|.

4. Increment λ.
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♣♣ CV2, pairwise cross validation.
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Using 95% of the trace to evaluate the CV2.
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♣♣ CV2, pairwise cross validation.
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pairs.
Using only the rank 2 approximation to Kλ to evalu-
ate CV2. (In this toy problem we know that the ”right”
answer is 2.)
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♣♣ Multiple Sources of Information

In the case of proteins, there are other sources of in-
formation than sequence data, namely various kinds
of structure information. The first question that arises
when there are different sources of information might
be: Are they telling you the same thing? When only
(relative) distance information is available, the ”Pro-
crustes” measure provides pairwise dissimilarities be-
tween RKE’s. Alternatively a simple measure of cor-
relation is:

∑

ij d̂
s/2
ijα d̂

s/2
ijβ /((

∑

ij d̂s
ijα)1/2(

∑

ij d̂s
ijβ)

1/2)

where α and β index the different sources of informa-
tion and s is a real number to be chosen.
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♣♣ Combining Multiple Sources of Information

With labeled data, these kernels can further be exam-
ined and combined in an optimal way for classification.
One way to do that follows by letting

K =
p

∑

α=1

µαKα (4)

and tuning the µ to optimize the classification in a
Support Vector machine:

G. Lanckriet, N. Cristianini, P. Bartlett, and ElGahoui. A learning the ker-
nel matrix with semidefinite programming. J. Mach. Learning Res, 5:27–72,
2004.

Numerous proposals have been made for in-sample
tuning of SVM’s, along with those in Lanckriet et al,
see

G. Wahba, Y. Lin, Y. Lee, and H. Zhang. On the relation between the GACV
and Joachims’ ξα method for tuning support vector machines, with extensions
to the non-standard case. Technical Report 1039, Statistics Department Uni-
versity of Wisconsin, Madison WI, 2001.

and elsewhere for references.
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Alternatively, given a fitted kernel for one source of
data, an interesting question is how new information
from a different source is best incorporated. The an-
swer can be expected to be different according to whether
classification (given a labeled training set) or cluster-
ing (with unlabeled data) is the goal.

Numerous open questions.



♣♣ Robust Manifold Unfolding
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λ= 0.002 λ= 0.0025

Unrolling the Wisconsin Roll (a.k.a. ”Swiss Roll”) (a),
(b) ”truth” and truth unrolled, (c), (d) eigenvalues and
flattened manifold, noise case 1, (e), (f) noise case 2.

min
K�0

∑

6−nn pairs(i,j)

|dij − d̂ij(K)| − λ trace(K).

F. Lu, Y. Lin, and G. Wahba. Robust manifold unfolding with kernel regular-
ization. TR 1008, Department of Statistics, University of Wisconsin, Madison
WI, October, 2005.
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