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Abstract

We review and compare the definition of SVM’s in
their penalty method formulation and analogous pe-
nalized likelihood estimates, when the training set con-
sists of yes-no responses for membership in class A,
along with attribute vectors. SVM’s return a yes-no
response for a new attribute vector x, while penalized
likelihood estimates return an estimate of the probabil-
ity p(x) of membership in class A for a new attribute
vector x. We describe a version of the generalized ap-
proximate cross validation (GACV) for tuning or con-
trolling the bias-variance tradeoff a. k. a. goodness
of fit/complexity tradeoff for the SVM case. A result of
Yi Lin (UW-Madison Statistics Dept TR 1014, 1999)
that the (tuned) SVM in the balanced case is asymp-
totically estimating sign[p(x) − 1/2] is noted. In that
case it can be shown that the GACV is asymptotically
tuning SVM’s against the misclassification rate. The
results are generalized to the unbalanced case where
the fraction of members of class A in the training set
is different than that in the general population, and the
costs of misclassification for the two kinds of errors
are different.
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OUTLINE

1. Review of Optimal Classification.

2. Comparison of penalized likelihood and SVM clas-
sifiers.

3. The standard case SVM – equal cost of misclassi-
fication and representative training set. GACV tuning
for the standard case.

4. Yi Lin’s theorem: The (tuned) SVM is estimating
the sign of the log-odds ratio and minimizing the ex-
pected misclassification rate.

5. Extension to the non-standard case:
Non-representative training set, unequal costs.
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Optimal Classification and the
Neyman-Pearson Lemma:

densities of

for class and class .

NOTATION:

prob. next observation is an

prob. next observation is a
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Let cA = cost to falsely call a B an A

cB = cost to falsely call an A a B

Bayes classification rule: Let

φ(x) : x → {AB}

Expected cost:
E {cA[1 − p(x)] I(φ(x) = A)}

get a B and call it an A

+E {cB[p(x)] I(φ(x) = B)}

get an A and call it B

Optimum (Bayes) classifier:

φOPT(x) =







A if p(x)
1−p(x)

> cA
cB

,

B otherwise.
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To estimate p(x), alternatively let f(x) = log p(x)/(1−

p(x)), the log odds ratio a.k.a. the logit. “Standard”
case: Training set

{yi, xi}
yi ∈ {A,B}

xi ∈ T , some index set
.

Relative frequency of A’s in the training set is about
the same as in the general population.

Penalized log likelihood estimation:

Estimate f by penalized likelihood. If cA/cB = 1,
then the optimal classifier is

f(x) > 0 (equivalently, p(x) − 1
2 > 0) → A

f(x) < 0 (equivalently, p(x) − 1
2 < 0) → B
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♣♣ Penalized log likelihood estimation of the logit f =

log[p/(1 − p)].

y =
1

0

= A

= B
(important)

The probability distribution function (likelihood) for y | p

is: L = py(1 − p)1−y =







p if y = 1

(1 − p) if y = 0

and the negative log likelihood is

− logL = − log[py(1 − p)1−y]

= −y log p − (1 − y) log(1 − p).

Using p = ef/(1 + ef) gives
− logL = −yf + log(1 + ef)
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♣♣ Penalized log likelihood estimation of f (contin-
ued) (special case).

{yi, xi}, yi =
1

0
, xi ∈ T

Find f(x) = d + h(x) with h ∈ HK to min

1

n

n
∑

i=1

[

−yif(xi) + log(1 + ef(xi))
]

+ λ‖h‖2HK

where HK is the reproducing kernel Hilbert space
(RKHS) with reproducing kernel

K(s, t), s, t,∈ T .

Theorem: [KW71]

fλ(x) = d +
n

∑

i=1

ciK(x, xi).
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♣♣ Penalized log likelihood estimation of f (contin-
ued)

fλ(x) = d +
n

∑

i=1

ciK(x, xi)

Find d, c = (c1, . . . , cn) = cλ to minimize

1
n

∑n
i=1

[

−yif(xi) + log(1 + ef(xi))
]

+ λ‖h‖2HK
.

Here

‖h‖2HK
≡

n
∑

i,j=1

cicj K(xi, xj).

Given λ, this is a nice strictly convex optimization prob-
lem. Choose λ by GACV [LWXGKK+00]. Target for
GACV is to minimize the Comparative Kullback-Liebler
(CKL) distance of the estimate from the true distribu-
tion:

R(λ) = Eftrue

n
∑

i=1

−ynew.ifλ(xi)+log(1+efλ(xi)).
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♣♣ Support Vector Machines

y =
+1 =

−1 =

A

B
(note different coding)

Find f(x) = d + h(x) with h ∈ HK to min

1

n

n
∑

i=1

(1 − yif(xi))+ + λ‖h‖2HK
(∗∗)

where (τ)+ = τ, τ > 0,= 0 otherwise.

Then

fλ(x) = d +
n

∑

i=1

ciK(x, xi). (∗)

Substitute (*) into (**), choose λ, given λ, find c and d.
The classifier is

fλ(x) > 0 → A

fλ(x) < 0 → B
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♣♣ Comparison of the penalized log likelihood esti-
mate fλ of the log odds ratio log p/(1 − p) and fλ,
the SVM classifier:

Suspicion: They are related...

Let us relabel y in the likelihood –

ỹ =







+1 if A,

−1 if B.

Then

−yf + log(1 + ef) → log(1 + e−ỹf)

Figure 1 compares

log(1 + e−yf), (1 − yf)+ and (−yf)∗

where

(τ)∗ =







1 if τ > 0,

0 otherwise.

( (−yf)∗ is the misclassification counter).
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tau
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0
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5

1.
0

1.
5

2.
0

2.
5

[-tau]*
[1-tau]+
log(1+exp(-tau))

Adapted from [Wahba99]. Comparison of (−τ)∗,

(1− τ)+ and loge(1 + e−τ). Bin Yu observed at the
talk that log2(1+e−τ) goes through 1 at τ = 0. Any
strictly convex function that goes through 1 at τ = 0

will be an upper bound on the missclassification func-
tion and will be a looser bound than some SVM func-
tion.
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