
♣♣ Tuning the SVM (part 1).

Recall that the penalized log likelihood estimate was
tuned by a criteria which chose λ to minimize a proxy
for

R(λ) = E
1

n

n
∑

i=1

−ynew·ifλ(xi) + log(1 + ef(xi)).

R(λ) is the expected ‘distance’ or negative log like-
lihood for a new observation with the same xi. For
the SVM classifier we will say that it is optimally tuned
if we have a criteria which chooses λ to minimize a
proxy for

R(λ) = E
1

n

n
∑

i=1

(1 − ynew·ifλ(xi))+.

That is, it is choosing λ (and possibly other parame-
ters in K) to minimize a proxy for an upper bound on
the misclassification rate.
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♣♣ Yi Lin’s Lemma [Lin99]:

The minimizer of E(1 − ynewf(x))+ is sign f(x)

= sign (p(x) − 1
2)

where f(x) = log p(x)/(1 − p(x)).

AS A CONSEQUENCE: Find fλ = d + h which mini-
mizes

1

n

n
∑

i=1

(1 − yif(xi))+ + λ‖h‖2HK

where λ is chosen to minimize (a proxy for) R(λ),

is estimating sign f(x) – EXACTLY WHAT YOU NEED

to minimize the misclassification rate!
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R(λ) = E1
n

∑n
i=1(1 − ynew·ifλ(xi))+.

E(1 − ynewfλ) =










p(1 − fλ), fλ < −1
p(1 − fλ) + (1 − p)(1 + fλ), − 1 < fλ < +1
(1 − p)(1 + fλ), fλ > +1.











R(λ) is also known as the GCKL(λ), the Gener-
alized Kullback-Leibler Distance). Since the true p is
only known in a simulation experiment, GCKL is also
only known in experiments.

Experiments to follow are courtesy Yi Lin, reprinted
from [Lin99].
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From [Lin99]. The underlying conditional probability
function p(x) = Prob{y = 1|x} in our simulation.
The function sign [p(x) − 1/2] is 1, for 0.25 < x <

0.75;−1 otherwise.
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From [Lin99]. SVM estimates, Sobolev Hilbert space
kernel (spline kernel), for samples of size 33, 65, 129,
257. The training set is generated using p from the
preceeding slide and the xi equally spaced on [0,1].
The tuning parameter λ is chosen to minimize the
GCKL in each case. Note that as the sample size
becomes larger, the curve becomes more like the step
function sign (p(x) − 1/2).
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From [Lin99] For the same n = 257 sample as in the
preceeding figure- the solutions to the SVM regular-
ization nλ = 2−1,2−2, . . . ,2−25, left to right start-
ing with the top row. . We see that solution is close
to sign[p(x) − 1/2] when nλ is in the neighborhood
of 2−18. 2−18 was the minimizer of the GCKL, sug-
gesting that it is necessary to tune the SVM to esti-
mate sign (p − 1/2) well.
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♣♣. Expected Misclassification Rate:

Let η(x) be any classification function-

η(x) →
+1

−1
.

Then E(1 − yη(x))+
= 2 × expected misclass. rate
= p(x)(1 − η(x)) + (1 − p(x))(1 + η(x))
= [Pr y = 1|η(x) = −1] + [Pr y = −1|η(x) = +1].
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From [L in99] GCKL (solid line) and 2×misclass. rate
(dashed line) as a function of λ for the same sample
with n = 257 as before. Larger values of λ corre-
spond to the points on the left. The minimizer of the
GACV is at about 2−18.
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♣♣ The GACV for choosing λ (and other parameters
in K):

Want a proxy for the (unobservable)

R(λ) = E
1

n

n
∑

i=1

(1 − ynew.i fλ(xi))+.

Start with leaving-out-one. Let f
[−k]
λ be the minimizer

of the form f = d + h with h ∈ HK to min

1

n

∑

i = 1
i 6= k

(1 − f(xi))+ + λ‖h‖2K.

Let

V0(λ) =
1

n

n
∑

k=1

(1 − ykf
[−k]
λ (xk))+.

20



♣♣ The GACV for choosing λ (and other parameters
in K). (continued)

Let

V0(λ) ≡
1

n

n
∑

k=1

(1 − ykf
[−k]
λ (xk))+

≡ OBS(λ) + D(λ),

where

OBS(λ) =
1

n

n
∑

k=1

(1 − ykfλ(xk))+.

[WLZ00] showed that

D(λ) ≈ D̂(λ)

where D̂(λ) is given by

1

n







∑

yifλ(xi)<1

2
∂fλ(xi)

∂yi
+

∑

yifλ(xi)∈[−1,1]

∂fλ(xi)

∂yi






.
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♣♣ The GACV for choosing λ (and other parameters
in K). (continued)

V0(λ) ≈ OBS(λ) + D̂(λ),

where D̂(λ) is given by

1

n







∑

yifλ(xi)<1

2
∂fλ(xi)

∂yi
+

∑

yifλ(xi)∈[−1,1]

∂fλ(xi)

∂yi






.

(yi is treated as a continuous variable for this.)

D̂(λ) may be compared to trace A(λ) in

GCV and unbiased risk estimates.
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♣♣ How to interpret ∂fλ(xi)
∂yi

??

Let Kn×n = {K(xi, xj)}, Dy =Diag







y1
. . .

yn







=







f(x1)
...

f(xn)






= Kc + ed , e =



















1

1

· · ·

1

1



















.

Find (c, d) to min

1

n

n
∑

i=1

(1 − yifλ(xi))+ + λc′Kc.
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The dual problem is: Find α =







α1
...

αn






to

max−
1

2
α′
(

1

2nλ
DyKDy

)

α + e′α

subject to



















0

0

· · ·

0

0



















≤







α1
...

αn






≤



















1

1

· · ·

1

1



















where y′α = 0,

c =
1

2nλ
Dyα







f(x1)
...

f(xn)






=

1

2nλ
KDyα + ed,

∂f(xi)

∂yi
=

1

2nλ
K(xi, xi)αi.
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D̂(λ) =
1

n






2

∑

yifλ(xi)<−1

αi

2nλ
K(xi, xi)

+
∑

yifλ(xi)∈[−1,1]

αi

2nλ
K(xi, xi)







GACV(λ) = OBS(λ) + D̂(λ)

(Remark: If the training set can be separated exactly
then the margin γ is given by

γ2 =

[∑

yifλ(xi)≤1 αi

2nλ

]−1

).

GACV(λ) = Generalized Approximate Cross Valida-
tion, a computable proxy for R(λ).
Next: A simulation study to examine GACV(λ)
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 Example 2: n = 400, f(t) = 0.25*sin(4*pi*t) + 0.5, width = 0.12

Regions of constant p(x) and training data for the ex-
periment. p(x) = .95, .5, and .05. n = 400. Fig-
ures courtesy Hao Zhang.
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aries.
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♣♣ The Nonstandard Situation

πA = prob. an observation in the
population is an A

πB = 1−πA = prob. an observation in the
population is a B (as before)

πs
A = fraction of training set that are A’s

πs
B = 1−πs

A = fraction of training set that are B’s ,
Let

ps(x) =
πs
AhA(x)

πs
AhA(x) + πs

BhB(x)

= Prob.{ys = A|x}

ys=element of training set
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♣♣ The Nonstandard Situation (continued)

Since ps is more directly accessible we re-express
the Bayes classification rule to minimize the expected
cost for a random sample from the population: to get

φOPT(x) =

{

A if ps(x)
1−ps(x)

> cA
cB

πs
A

πs
B

πB
πA

B otherwise

}

Letting
L(B) = cAπs

AπB
L(A) = cBπs

BπA
gives
φOPT(x) = A if ps(x) −

L(−1)
L(−1)+L(1)

> 0

= B if ps(x) −
L(−1)

L(−1)+L(1)
< 0
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♣♣ The Nonstandard Situation (continued).

Find f(x) = d + h(x) with h ∈ HK to min

1

n

n
∑

i=1

L(yi)(1 − yif(xi))+ + λ‖h‖2K

(only the ratio L(A)/L(B) counts if a constant is ab-
sorbed in λ).

Lemma [LLW00]

The minimizer of

E L(ys
new)(1 − ys

newf(x))+ is

sign

(

ps(x) −
L(−1)

L(−1) + L(1)

)

“s” – training
set

↗
replaces 1

2
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♣♣ The Nonstandard Situation (continued)

Define

R(λ) = E
1

n

n
∑

i=1

L(ys
new·i)(1 − ys

new·ifλ(xi))+

(a.k.a GCKL (λ)) (Its an upper bound for the expected
cost in the general population). Define

GACV(λ) = OBS(λ) + D̂(λ)

where

OBS(λ) =
1

n

n
∑

i=1

L(yi)(1 − yifλ(xi))+

D̂(λ) =
1

n






2

∑

yifλ(xi)<1

L(yi)
αi

2nλ
K(xi, xi)

+
∑

yifλ(xi)∈[−1,1]

L(yi)
αi

2nλ
K(xi, xi)






.
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♣♣ The Nonstandard Situation (continued)

fλ(x) → sign

[

ps −
L(−1)

L(−1) + L(1)

]

Then R(λ) → expected cost. Choose λ to min GACV(λ)

(a proxy for R(λ)).

Experiment: Population:

A : N
(

0

0

)

,

(

1 0

0 1

)

B : N
(

2

2

)

,

(

2 0

0 1

)

πA = .1 πB = .9 cA = 2cB

Sample:

πs
A = .4, πs

B = .6, L(−1) = .36, L(1) = .12.

n = 200 ntune = 200 generated to compare
GACV to the use of a tuning set.
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From [LLW00] Decision surfaces given by the modi-
fied and standard support vector machines, the Bayes
rule, and the ‘naive’ (standard) Bayes rule. The Bayes
rules are computed using knowledge of the underly-
ing populations. The standard SVM is tuned using
a second set of observations generated and used for
tuning. The modified support vector machine is imple-
mented both with the tuning set and with the GACV.
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From [LLW00] GCKL and GACV plot as a function of
λ when σ is fixed at 1. We can see the minimizer of
GACV is a decent estimate of the minimizer of GCKL.
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From [LLW00] GCKL and GACV plot as a function
of σ when λ is fixed at 0.0025. Again we can see
the minimizer of GACV is a decent estimate of the
minimizer of GCKL.
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