& Tuning the SVM (part 1).

Recall that the penalized log likelihood estimate was
tuned by a criteria which chose A\ to minimize a proxy
for

1 n
R(M\) = Eﬁ Z ~Ynew-ifa(x;) +109(1 + ef(%))
=1

R()\) is the expected ‘distance’ or negative log like-
lihood for a new observation with the same x;. For
the SVM classifier we will say that it is optimally tuned
If we have a criteria which chooses )\ to minimize a
proxy for

ROD =B >~ (1~ ynewifa(@)) -
1=1

That is, it is choosing A (and possibly other parame-
ters in K) to minimize a proxy for an upper bound on
the misclassification rate.
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& YiLin's Lemma [LIin99]:

The minimizer of E(1 — ynewf(x))4 is sign f(x)

= sign (p(z) — 3)

where f(z) = logp(z)/(1 — p(x)).

AS A CONSEQUENCE: Find fy = d 4+ h which mini-
mizes

1 n
-3 (i @) + AlRlF,
1=1

where ) is chosen to minimize (a proxy for) R(\),

is estimating sign f(z) — EXACTLY WHAT YOU NEED

to minimize the misclassification rate!
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R(M\) = E% Z?:l(l — ynew-if)\(mi))—l—-

E(1 —ynewa) —
p(1 — f)), fr <-1
pP(1—=f)+@A=pA+ ), —-1< fi <+1
(1 -p)(1+ f)), fr > +1.

R(X) is also known as the GCKL()), the Gener-
alized Kullback-Leibler Distance). Since the true p is
only known in a simulation experiment, GCK L is also
only known in experiments.

Experiments to follow are courtesy Yi Lin, reprinted
from [Lin99].
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From [Lin99]. The underlying conditional probability
function p(z) = Prob{y = 1|z} in our simulation.
The function sign [p(x) — 1/2] is 1, for 0.25 < = <
0.75; —1 otherwise.
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From [Lin99]. SVM estimates, Sobolev Hilbert space
kernel (spline kernel), for samples of size 33, 65, 129,
257. The training set is generated using p from the
preceeding slide and the z; equally spaced on [0, 1].
The tuning parameter A\ is chosen to minimize the
GCKL in each case. Note that as the sample size
becomes larger, the curve becomes more like the step
function sign (p(z) — 1/2).
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From [Lin99] For the same n = 257 sample as in the
preceeding figure- the solutions to the SVM regular-
ization n\ = 2—1 272 .. 2725 |eft to right start-
ing with the top row. . We see that solution is close
to sign[p(x) — 1/2] when n\ is in the neighborhood
of 218, 218 was the minimizer of the GCK L, sug-
gesting that it is necessary to tune the SVM to esti-
mate sign (p — 1/2) well.
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. Expected Misclassification Rate:

Let n(x) be any classification function-

n@) —
Then E(1 —yn(x))+
2 X expected misclass. rate
p(z)(1 —n(z)) + (1 —p(z))(1 + n(z))
[Pry=1n(z) = -1] + [Pry = —1|n(z) = +1].
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From [L in99] GCKL (solid line) and 2 x misclass. rate
(dashed line) as a function of \ for the same sample
with n = 257 as before. Larger values of \ corre-
spond to the points on the left. The minimizer of the
GACYV is at about 2—18,
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& The GACV for choosing A\ (and other parameters
In K):

Want a proxy for the (unobservable)
1 n
R(\) = Eﬁ Z (1 — Ynew.i f)\(mz))—l—
i=1

Start with leaving-out-one. Let f/[\_k] be the minimizer
of the form f = d 4+ h with h € H g to min

1

= (1= f@))4 + AlAlE
1 =1
i £k

Let

B = 3 (4 -yl @)y
k=1
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& The GACV for choosing A\ (and other parameters
In K). (continued)

Let
1 & _
Vo) = 3 (1 —wify V@)
k=1
= OBS()\) 4+ D()),
where

1 n
OBS(\) = — > (1 — ypfa(zg)) 4+
N g=1
[WLZ00] showed that

D()\) =~ D(\)
where D()) is given by

1 O fy(x; O fy(x;
Yi vifr(z)el-1,1] 9

| yifa(z;)<1

21



& The GACV for choosing A (and other parameters
in K). (continued)

Vo(A) = OBS(A) + D()),
where D()) is given by

1 dfy(x; Ofy(x;
Ji vifa(z)el-1,1] 9

| yifr(z)<1

(y; Is treated as a continuous variable for this.)

D()\) may be compared to trace A()) in

GCV and unbiased risk estimates.
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& How to interpret afg—(”?'i) ?7?

1

Y1
Let Ky, xn = {K(z;,z;)}, Dy =Diag ( )
Yn
(1)
f(x1) 1
=< : )ch—l—ed,e: -
f(zn) 1
\ 1)

Find (¢, d) to min

S|

1

(1 —yifn(z))+ + A Ke.
—1
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a1
The dual problem is: Find a = ( ; ) to

877}

1 1
max _EO/ (—DyKDy> a+ e a

2nA
[ 0) (1)
0 Q1 1
subjectto | --- <( : )<
0 on, 1
\ 0 \ 1)
where yy'a = 0,
_ 15
= 2nA ye
f(z1) 1
E = Q—KDyoz + ed,
n
f(zn)
Or(i) _ iK(fb‘z'w”lfz')Oéi-
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pVy=>l2 3

| yif(m)<-1

QY

QnAK(%xi)

+ Y LK)
vifa(z)el—1,1] <"

GACV()\) = OBS(\) 4+ D())

(Remark: If the training set can be separated exactly
then the margin ~ is given by

V2 = !quzh(ﬂfi)él i ).
2nA
GACV()\) = Generalized Approximate Cross Valida-
tion, a computable proxy for R(\).
Next: A simulation study to examine GACV(\)
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Example 2: n = 400, f(t) = 0.25*sin(4*pi*t) + 0.5, width = 0.12

—+ T T
- T +
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¥ + +
- F ++ o 4
o+ 4 +

Regions of constant p(x) and training data for the ex-
periment. p(x) = .95,.5, and .05. n = 400. Fig-

ures courtesy Hao Zhang.
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Plot of logoGCKL as a function of log, A and logs o .
(K (s,t) = exp — 2|ls — t]|2)

log2(gacv) for exampl
T T

Plot of logoGACYV as a function of log, A and log» o.
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Example 2: n = 400, log2(sigma) = -3.5
6 T T T T T

log2(gckl) and log2(gacv)
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Tuning \ for fixed 6 = 2735

Example 2: n =400, log2(lambda) = -7.0
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Tuning o for fixed A = 27



Contours for example 2: log2(lambda) = -7, log2(sigma) = -3.5
u T T+ 1 T

Decision surface given by GACYV, along with true bound-
aries.

29



&& The Nonstandard Situation

w4 = prob. an observation in the
population is an A

mg = 1—m 4 = prob. an observation in the
population is a B (as before)

n% = fraction of training set that are A’s

mp = 1—m% = fraction of training set that are B's
Let

mha(z)
5 ha(z) + whp(x)

= Prob.{y* = Alz}

y®=element of training set

ps(z) =
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&& The Nonstandard Situation (continued)

Since ps iIs more directly accessible we re-express
the Bayes classification rule to minimize the expected
cost for a random sample from the population: to get

A if ps(x) > CATATS
= 1—ps(x) CR T T
Pop(z) {B ’ otherwisg : A}
. L(B) = cpmiyms
Letting L(A) = -
gives
doptT(xz) = A if ps(z) — L(_Ll();ll)j(l) >0

= B if ps(x) — L(—l()-l-l)z(l) <0
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& The Nonstandard Situation (continued).
Find f(x) = d + h(x) with h € H g to min

U3 LA~ wif @)y AR
1=1

(only the ratio L(A)/L(B) counts if a constant is ab-
sorbed in \).

Lemma [LLWOO]

The minimizer of

E L(yzew)(l - y?%ewf(fc))—k s

. L(—-1)
s (@)~ 1)
s" — tralggj[ng /repl aces 5
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&& The Nonstandard Situation (continued)

Define

RO = B Y- L)L~ Yol a@)) 4
1=1

(a.k.a GCKL (X)) (Its an upper bound for the expected
cost in the general population). Define

GACV()\) = OBS()\) + D())

where
1 mn
OBS(\) = - > Lyi)(1 —yifa(mi)) 4
i=1
DN 1, Y L) K (e )
= — v;) — K (z;, z;
" | yifa(z)<1 2nA

+ X L, K@)
yifz(z;)€[—1,1]
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& The Nonstandard Situation (continued)

L(-1)
CL(-1)+ L(l)]

Then R()\) — expected cost. Choose X to min GACV(\)
(a proxy for R(\)).

fy(@) — sign [ps

Experiment: Population:

4 % (05 1)
= (3)(5 9)

TA=.1 mg=.9 cy=2cp

Sample:
™ = .4,m3=.6,L(—1) =.36,L(1) = .12.

n = 200 ntune = 200 generated to compare
GACV to the use of a tuning set.
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X2

x1

From [LLWOO] Decision surfaces given by the modi-
fied and standard support vector machines, the Bayes
rule, and the ‘naive’ (standard) Bayes rule. The Bayes
rules are computed using knowledge of the underly-
Ing populations. The standard SVM is tuned using
a second set of observations generated and used for
tuning. The modified support vector machine is imple-
mented both with the tuning set and with the GACV.

35



From [LLWOO] GCKL and GACYV plot as a function of
A when o Is fixed at 1. We can see the minimizer of
GACV is a decent estimate of the minimizer of GCKL.

sssss

From [LLWO0OO] GCKL and GACYV plot as a function
of o when X is fixed at 0.0025. Again we can see
the minimizer of GACV is a decent estimate of the
minimizer of GCKL.
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