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ABSTRACT

This work in progress represents an attempt to combine radial basis
functions (RBF’s), sigmoidal basis functions (SBF’s) and basis func-
tions that may be useful in conjunction with tree-structured methods
(TreeBF’s) under a single ‘umbrella’ of a reproducing kernel Hilbert
space. Once this is done, several ways of generating a ‘list’ of basis
functions in which to solve a penalized likelihood problem suggest
themselves. Support vector methods may be used to refine the list.
Given such a list, regularized forward selection methods generalizing
those suggested by Orr and by Luo and Wahba may be used to fit
the model.

Large to very large data sets are assumed (n > 1000). It is envisioned
that the approach could prove useful in building models where more
than three or four but less than, say ten or fifteen predictor variables
are involved, and that the umbrella provides some intuition concern-
ing how the basis functions are related and what they are doing, so as
to give some interpretability to models built from them. Also, some
intuition may be provided as to how to parametrize the basis func-
tions so that the optimization problems to be solved numerically to
obtain the fit are well conditioned in some sense. A ‘super-umbrella’
which also includes smoothing spline ANOVA models, can also be
constructed. Although we are not discussing context here we remind
the listener that the scientific context in which model building takes
place should not be ignored.
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OUTLINE

e Describe RBF’s in a reproducing kernel Hilbert space (RKHS)
setting. The Bayes-RKHS duality. Examples.

e Put TreeBF’s and Sigmoidal BF’s (SBF’s) in an RKHS setting.
Representers and pseudo-representers. Scaling.

e Creating the basis list for RBF’s, TreeBF’s and SBF's.
e Regularized forward basis function selection.

e Smoothing Spline ANOVA, 0-1 data.
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RBF's

s,t € E°

R(s,t) = isotropic covariance

symmetric positive definite function on
E?* x B which only depends on [|s — t]|.

(special case of positive definite functions)

Ri(t) = R(t,t(k)) is an RBF with center t(k).

Example: R(s,t) = e‘”s_t”ﬁ, 0<pB<2

jss
|

= 1 — negative exponential

2
|

= 2 — gaussian
Example: R(s,t) = e =1 P,(||ls —t|]),¢ =0,1,2, ..

Py(t) = 1 — negative exponential
P(r) = 1+
Py(t) = 3437477

Remark: Scale factors: R(s,t) = Ra.(s,t) = R(al|s — t]]).
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THE BAYES-RKHS DUALITY
BAYES: Z(t),t € E', zero-mean gaussian, EZ(s)Z(t) = R(s,t).

RKHS: H i, RKHS with reproducing kernel R.

(Duality: Parzen 1962, Kimeldorf & Wahba 1971, Wahba, 1990)
BAYES MODEL

y, = f(t()) +e€,1= 1,---,n,6’~/\/(0,02]).
Let Ef(s)f(t) = bR(s,t)
E{fOy1, - yn} = fi(t)

where

and

Zntiy = AR(E(), 1))}

Important Remark: If R isisotropic then f) is a linear combination
of RBF’s with centers at the data points.
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PENALIZED LIKELIHOOD, OR, THE VARIATIONAL MODEL, OR,
REGULARIZATION

Theorem (Special case of Kimeldorf & Wahba 1971, see Wahba,
1990). Let || f||r be the norm in Hg. Then:

The solution to the problem: find f € Hp to minimize
(yi — FE@)* + AR (%)

is fy of the previous slide, a linear combination of RBF’s with centers

=

1

1

at the data points.

Important Remark: for large n a good approximation to the mini-
mizer of (x) can be obtained by finding f in span{R; (t), - R;.(t)},
a subset of the RBF’s, to minimize (x). (Wahba 1980)

11, -, = centers”.

Methods to choose centers:
random subsets, stratified subsets (Hutchinson 1984 ...)
stratified subsets (O’Sullivan 1990 ....)
clustering (Xiang 1995 ...)
forward selection with GCV stopping (Friedman 1991)
two stage forward selection (Luo and Wahba 1996)
first order regularized forward selection (Orr 1993)
general regularized forward selection (Diaz 1995)

The methods above the dotted line do not use the responses y;
whereas those below do.
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WHAT DOES || f||% LOOK LIKE?

Example: Let

1
R(s,t) = 56””8‘”‘(3%@!!8 —t|+a’l[s — t]|*)
_d+5

_ /OO /OO ei(s—t)-w(Hw“ZJra?) T dwy - - - dwy

—0o0 — 00

Then, it can be shown that
d+5

1A= [ L lwll® +a®) T | fw)Pdwn - - dwg

where f is the Fourier transform of f. To understand this formula
note that, if /_ -+ />2_ ||w||*"| f(w)|*dw; - - - dwy is finite, then it is
equal to to the thin plate spline penalty functional J,,(f):

[ [ P f (w) P dws - - dwg =
d

d o 00 "
Ez/oo/oo( f

=1 =17 Ox;, -+ 0x;

Vdwy -+ - dwg = J(f).

?

The right hand side is the square integral of the total derivative
of order m. Moody and Rognvaldsson 1996 discuss the use of and
approximations to this kind of penalty functional.
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REPRESENTERS OF INTEGRATION OVER €2

Let Q be a bounded region in E? and suppose

/ /Q u)du + €.

(KW 1971) The minimizer f\ € Hpr of

— [ /Q *+ A fll
1S
K
L) =X ()
=1

where 7. is the representer of integration over ) in Hp, that is,

<np, f>= / /Q w)du, all f € Hg.

i is obtained from the RK as

= / P /Qk R(t,u)du

<1
and c = (S +AI)" 1| i |, where

Zxtie =A<n,m >} = //97 du//Qk dvR(u,v).

The message here is the role of representers in an RKHS, how
they are obtained from the RK and how the inner product between
two of them is obtained from the RK. Note that || f||% = 'Y kc.
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TreeBF's

Assume the predictor variables t(z),7 = 1,---n have been scaled to
sit in [0,1]¢. Generate a tree. This results in a partition of [0, 1]
into {Q,---,Qx} where the boundaries of {2 are parallel to the
coordinate axes. A common way of estimating via a tree is to let

Ik(S) = 1,5 €
]k(s) - O,SQ/Qk

and let .
f(t) = ]}—:1 Ck[k<t).

Then f is obtained by finding ¢ to minimize

K K o
>y — X el (t(i)))”
1=1 k=1

(giving ¢j, = nl—k Tye0, Yi). A regularized tree may be found by
firstly, overgrowing the tree somewhat, since it will be smoothed, and
then, finding f\ = Zle crNk, Where the n;. are as before, to minimize

& US 2 2
El(yz' — 1;—:1 crme(t(@)” + M fllz-

If €2, is a rectangle with boundaries parallel to the coordinate axes,
we will call n; a TreeBF. TreeBF’s and RBF’s may be included in
the same list of basis functions by considering

f)\ — zk: CgreeBFnk + % CEBFRZ[' (Rie(t) — R(tv tiz))

| f|% is readily found by using the fact that < ny,, R;, >= n;(t(is).
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SBF's AND THE PSEUDO-PUNCH LINE

Let v € B, ||lv;]| = 1.
Consider

L;f= / e '/7;“56]. f(u)du  Integration over a half-space.

and

— / e /%_ugbj R(s,u)du  Looks like the representer of L;.

If R(s,t)=r(||s—t]), let
d

= [ [or(X v)dvy - dvy

1/—1
Then
0i(s) = a(bj —}s). AN SBF
THE PSEUDO-PUNCH LINE: Consider

f Z CSBFO'7 + ZCT’I“PPBFn + Z CRBF Z/?

carry on, computing || fi||% as before, given all the inner products.
Unfortunately since the region of integration for the o; is infinite,
< 0,0, > is not finite. For the Bayesians among us, this is the
mathematical equivalent of observing that (since Z(t) is stationary),
Elf-- Lyhuss, Z(u)du]? is infinite. On the other hand all the cross-
inner products between a o; and an 7 or an R;, are well defined,
corresponding to, for example, the finiteness of

E[./"'./y;.ugbj wdul[[ - [, Z(v)dv] =< o), > .

For this reason we call the 0,’s pseudo-representers.

10
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PATCHING THINGS UP

Since we don’t really care about about what happens at infinity, we
should be able to modify things to result in a set of inner products
or similar objects for the pseudo-representers which will result in
reasonable penalty functionals. Two mathematically ‘kosher’ ways
of patching things up but may be messy in practice are:

e Let w(t) be a positive real valued function on E? which is 1 on
a region 0 C E? containing all the ¢ of interest, and satisfies
Joodgaf e Spa R(u, v)w(u)w(v)dudu < oo. Then replace R(u, v)
by R(u,v)w(u)w(v) in the calculation of the inner products.

e Replace the penalty ||f||% by ||Pf]|%, where P is the orthogo-
nal projection operator onto some subspace of Hp contained in
span{R;,t € Q}. This will entail that the penalty only involves
the values of f in €2. One such space is span{ Ry;y,7 = 1,---,n}.

A simple and appealing way of determining a penalty functional is to
replace each representer of integration over a region by the representer
of averaging over the data points (or some subset of them) in the re-
gion, when calculating the penalty. Thus if there are n; observations
in the half space vt < b;, then o} is replaced by ni] % {t(3)~/ (i) <bs) Ry
in the definition of the penalty functional.

Remark: The constraint ||;|| = 1 is meaningful. Usually sigmoidal

functions do not have this restriction. o(b; — v}s) may be replaced
by o(a x (b — 7;s)), but a should be treated as a scale factor.

11
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CREATING THE BASIS LIST

With regard to RBF’s the list of data points {¢(i),7 = 1,---,n} is
an appropriate upper bound to the list of centers to be considered.
Running a tree program with a slightly generous stopping criteria
can provide an upper bound for the list of TreeBF’s to be consid-
ered. Representers of integration over quarter spaces, slabs, and so
forth are also possible. With respect to the pseudo-representers o,
which can be characterized by their boundaries {7/t = b;}, there is
a (in general) many-one map between boundaries and partitions of
the data sets, at most one boundary per partition could be allowed
in the basis list, furthermore the boundaries can be required to pass
through at least one data point. A boundary is a better candidate
if knowing which side of the boundary a data point is on provides
more useful predictive information about its response value. Clever
methods needed. ?

Support vector methods (Vapnik 1995, KW 1971) could be used to
screen out basis functions. Letting {hy,---, hy } be a list of candi-
date basis functions, let f = £ cphy. Use a quadratic optimization
program to find the ¢, to minimize || f]|% = ¢Sxe, say, subject to
ly; — =i exhi(t(d)] < 6,i = 1,---,n. Such programs run fast,
and in practice (Vapnik 1995, Villalobos and Wahba 1987) it has
been found that, even with fairly small 4, many of the ¢; will be
0, suggesting that the basis functions associated with them can be

discarded.

2Added December 9: In the talk in the Error Surfaces Workshop, I suggested generating a very large
number of direction cosines 7y; were chosen by generating random numbers on the d dimensional sphere and
then screened. Reactions both pro and con were registered by the audience.

12
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REGULARIZED FORWARD BASIS FUNCTION SELECTION

Let {hy,- -, hx} be alist of candidate basis functions, as established
previously. Given that hq,---,h; 1 have been selected and A is
(temporarily) fixed, the regularized forward selection problem is to
choose hj from the remaining elements in the list to minimize

n k
Hclf Z (yz — Z Ckhk(t(Z)))Z + )\C,ch
1=1 k=1

where YJ;, is given, for example, ¢'>pc = i ¢ic; < hi,h; > A
general regularized forward selection method would, after selecting
hy., then update A to minimize the GCV function

Vi(A) = [I(1 = Ar(\)ylI*/ (trace(I — Ap(N))%,

where

Ar(\) = Hi(H . Hy + XXg) " H.

Here Hy is the design matrix for {hy,---, ht}. One would continue
to increase k and update A until no useful decrease in V() obtains.

A similar approach was taken in Diaz 1995 thesis in the context
of small density estimation problems. Orr 1966 develops fast meth-
ods for doing this in large data sets, via rank-one updating formulae
in the zero-th order regularization case > = [ and provides Matlab
routines. The general case can be done with matrix decompositions
for relatively small &, but it would be nice to find a fast procedure for
large k£ and very large n, possibly via the randomized trace technique,
see Wahba, Johnson, Gao and Gong 1995 and references there. Luo
and Wahba 1996 used the A = 0 updating formula with a modified
GCV stopping criteria followed by regularization.

13
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SMOOTHING SPLINE ANOVA, NON-GAUSSIAN DATA
Smoothing spline ANOVA models (Wahba, Wang, Gu, Klein and

Klein 1995 and references cited there) can be incorporated into a
super-Hilbert space with Hp as a subspace. In smoothing spline
ANOVA models f(u) = f(uy,- -, uq) is represented as linear com-
binations of functions of u, (main effects), functions of u,, ug (two
factor interactions), etc. These models are based on RK’s for d vari-
ables which are tensor products of d single variable RK’s, and are
relatively easy to interpret. They may have a modest number of dif-
ferent smoothing parameters for the different components. See also
Hastie and Tibshirani 1990. The penalty functional(s) typically have
a non-trivial null space and then the fits shrink towards the nul space
as the smoothing parameter(s) become large.

For Bernoulli (0-1) data, the residual sum of squares can be re-

placed by the log likelihood, with p(t) = prob y; = 1 replaced by the
. of (D) .
logit f(t) = log[p(t)/(1 — p(t)]. Then p(t) = EESGIE where f is a

spline or a spline ANOVA model. See Wahba, Wang, Gu, Klein and
Klein (1995). Approximate unbiased risk methods for smoothing pa-
rameter selection in the Bernoulli and other cases are discussed there.
For the penalized likelihood method, it is assumed that f is ‘smooth’,
as might be expected in some demographic and environmental data
sets. The GACV estimate for the Bernoulli case (related to Moody’s
GPE 1992) is discussed in Xiang and Wahba 1996.

14
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