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Grace Wahba NIPS.96 Model Complexity Workshop Talk December 2, 1996ABSTRACTThis work in progress represents an attempt to combine radial basisfunctions (RBF's), sigmoidal basis functions (SBF's) and basis func-tions that may be useful in conjunction with tree-structured methods(TreeBF's) under a single `umbrella' of a reproducing kernel Hilbertspace. Once this is done, several ways of generating a `list' of basisfunctions in which to solve a penalized likelihood problem suggestthemselves. Support vector methods may be used to re�ne the list.Given such a list, regularized forward selection methods generalizingthose suggested by Orr and by Luo and Wahba may be used to �tthe model.Large to very large data sets are assumed (n > 1000). It is envisionedthat the approach could prove useful in building models where morethan three or four but less than, say ten or �fteen predictor variablesare involved, and that the umbrella provides some intuition concern-ing how the basis functions are related and what they are doing, so asto give some interpretability to models built from them. Also, someintuition may be provided as to how to parametrize the basis func-tions so that the optimization problems to be solved numerically toobtain the �t are well conditioned in some sense. A `super-umbrella'which also includes smoothing spline ANOVA models, can also beconstructed. Although we are not discussing context here we remindthe listener that the scienti�c context in which model building takesplace should not be ignored.
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Grace Wahba NIPS.96 Model Complexity Workshop Talk December 2, 1996OUTLINE� Describe RBF's in a reproducing kernel Hilbert space (RKHS)setting. The Bayes-RKHS duality. Examples.� Put TreeBF's and Sigmoidal BF's (SBF's) in an RKHS setting.Representers and pseudo-representers. Scaling.� Creating the basis list for RBF's, TreeBF's and SBF's.� Regularized forward basis function selection.� Smoothing Spline ANOVA, 0-1 data.
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Grace Wahba NIPS.96 Model Complexity Workshop Talk December 2, 1996RBF'ss; t 2 EdR(s; t) � isotropic covariance� symmetric positive de�nite function onEd �Ed which only depends on ks� tk.(special case of positive de�nite functions)Rk(t) � R(t; t(k)) is an RBF with center t(k).Example: R(s; t) = e�ks�tk� , 0 < � � 2� = 1� negative exponential� = 2� gaussianExample: R(s; t) = e�ks�tkPq(ks� tk); q = 0; 1; 2; ::P0(� ) = 1 � negative exponentialP1(� ) = 1 + �P2(� ) = 3 + 3� + � 2� � � � � �Remark: Scale factors: R(s; t)! R�(s; t) = R(�ks� tk).
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Grace Wahba NIPS.96 Model Complexity Workshop Talk December 2, 1996THE BAYES-RKHS DUALITYBAYES: Z(t); t 2 Et; zero-mean gaussian; EZ(s)Z(t) = R(s; t).RKHS: HR, RKHS with reproducing kernel R.(Duality: Parzen 1962, Kimeldorf & Wahba 1971, Wahba, 1990)BAYES MODELyi = f(t(i)) + �i; i = 1; � � � ; n; �0 � N (0; �2I):Let Ef(s)f(t) = bR(s; t)Eff(t)jy1; � � � yng = f�(t)where f�(t) = nXi=1 ciR(t; t(i))c = (�n + �I)�1 0BBBBB@ y1...yn
1CCCCCA ; � = �2=nbandf�ngi;j = fR(t(i); t(j))gImportantRemark: IfR is isotropic then f� is a linear combinationof RBF's with centers at the data points.
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Grace Wahba NIPS.96 Model Complexity Workshop Talk December 2, 1996PENALIZED LIKELIHOOD, OR, THE VARIATIONAL MODEL, OR,REGULARIZATIONTheorem (Special case of Kimeldorf & Wahba 1971, see Wahba,1990). Let kfkR be the norm in HR. Then:The solution to the problem: �nd f 2 HR to minimizenXi=1(yi � f(t(i)))2 + �kfk2R (�)is f� of the previous slide, a linear combination of RBF's with centersat the data points.Important Remark: for large n a good approximation to the mini-mizer of (�) can be obtained by �nding f in spanfRi1(t); � � �RiK(t)g,a subset of the RBF's, to minimize (�). (Wahba 1980)i1; � � � ; iK = "centers".Methods to choose centers:random subsets, strati�ed subsets (Hutchinson 1984 ...)strati�ed subsets (O'Sullivan 1990 ....)clustering (Xiang 1995 ...)....................forward selection with GCV stopping (Friedman 1991)two stage forward selection (Luo and Wahba 1996)�rst order regularized forward selection (Orr 1993)general regularized forward selection (Diaz 1995)The methods above the dotted line do not use the responses yiwhereas those below do. 6



Grace Wahba NIPS.96 Model Complexity Workshop Talk December 2, 1996WHAT DOES kfk2R LOOK LIKE?Example: LetR(s; t) = 1�5e��ks�tk(3 + 3�ks� tk + �2ks� tk2)= Z 1�1 � � � Z 1�1 ei(s�t)�!(k!k2 + �2)�d+52 d!1 � � � d!dThen, it can be shown thatkfk2R = Z 1�1 � � � Z 1�1(k!k2 + �2)d+52 j ~f(!)j2d!1 � � � d!dwhere ~f is the Fourier transform of f . To understand this formulanote that, if R1�1 � � � R1�1 k!k2mj ~f(!)j2d!1 � � � d!d is �nite, then it isequal to to the thin plate spline penalty functional Jm(f):Z 1�1 � � � Z 1�1 k!k2mj ~f(!)j2d!1 � � � d!d =dXi1=1 � � � dXim=1 Z 1�1 � � � Z 1�1( @mf@xi1 � � � @xim )2d!1 � � � d!d = Jm(f):
The right hand side is the square integral of the total derivativeof order m. Moody and Rognvaldsson 1996 discuss the use of andapproximations to this kind of penalty functional.
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Grace Wahba NIPS.96 Model Complexity Workshop Talk December 2, 1996REPRESENTERS OF INTEGRATION OVER 
kLet 
k be a bounded region in Ed and supposezk = Z � � � Z
k f(u)du + �k:(KW 1971) The minimizer f� 2 HR ofKXk=1(zk � Z � � � Z
k f(u)du)2 + �kfk2Ris f�(t) = KXk=1 ck�k(t)where �k is the representer of integration over 
k in HR, that is,< �k; f >= Z � � � Z
k f(u)du; all f 2 HR:�k is obtained from the RK as�k(t) = Z � � � Z
k R(t; u)duand c = (�K + �I)�1 0BBBBB@ z1...zK
1CCCCCA, wheref�Kgj;k = f< �j; �k >g = Z � � � Z
j du Z � � � Z
k dvR(u; v):The message here is the role of representers in an RKHS, howthey are obtained from the RK and how the inner product betweentwo of them is obtained from the RK. Note that kfk2R = c0�Kc.
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Grace Wahba NIPS.96 Model Complexity Workshop Talk December 2, 1996TreeBF'sAssume the predictor variables t(i); i = 1; � � �n have been scaled tosit in [0; 1]d. Generate a tree. This results in a partition of [0; 1]dinto f
1; � � � ;
Kg where the boundaries of 
k are parallel to thecoordinate axes. A common way of estimating via a tree is to letIk(s) = 1; s 2 
kIk(s) = 0; s 62 
kand let f(t) = KXk=1 ckIk(t):Then f is obtained by �nding c to minimizeKXi=1(yi � KXk=1 ckIk(t(i)))2:(giving ck = 1nk Pyi2
k yi). A regularized tree may be found by�rstly, overgrowing the tree somewhat, since it will be smoothed, andthen, �nding f� = PKk=1 ck�k, where the �k are as before, to minimizenXi=1(yi � KXk=1 ck�k(t(i))2 + �kfk2R:If 
k is a rectangle with boundaries parallel to the coordinate axes,we will call �k a TreeBF. TreeBF's and RBF's may be included inthe same list of basis functions by consideringf� = Xk cTreeBFk �k + X̀ cRBF` Ri`: (Ri`(t) = R(t; ti`))kfk2R is readily found by using the fact that < �k; Ri` >= �k(t(i`).9



Grace Wahba NIPS.96 Model Complexity Workshop Talk December 2, 1996SBF's AND THE PSEUDO-PUNCH LINELet j 2 Ed; kjk = 1.ConsiderLjf = Z � � � Z0ju�bj f(u)du Integration over a half-space:and�j(s) = Z � � � Z0ju�bj R(s; u)du Looks like the representer of Lj:If R(s; t) = r(ks� tk), let�(� ) = Z ��1 Z 1�1 � � � Z 1�1 r( dX�=1 v2�)dv1 � � � dvd:Then �j(s) = �(bj � 0js): AN SBFTHE PSEUDO-PUNCH LINE: Considerf� = Xj cSBFj �j +Xk cTreeBFk �k + X̀ cRBF` Ri`;carry on, computing kf�k2R as before, given all the inner products.Unfortunately since the region of integration for the �j is in�nite,< �j; �j > is not �nite. For the Bayesians among us, this is themathematical equivalent of observing that (since Z(t) is stationary),E[R � � � R0ju�bj Z(u)du]2 is in�nite. On the other hand all the cross-inner products between a �j and an �k or an Ri` are well de�ned,corresponding to, for example, the �niteness ofE[Z � � � Z0ju�bj Z(u)du][Z � � � Z
k Z(v)dv] �< �j; �k > :For this reason we call the �j's pseudo-representers.10



Grace Wahba NIPS.96 Model Complexity Workshop Talk December 2, 1996PATCHING THINGS UPSince we don't really care about about what happens at in�nity, weshould be able to modify things to result in a set of inner productsor similar objects for the pseudo-representers which will result inreasonable penalty functionals. Two mathematically `kosher' waysof patching things up but may be messy in practice are:� Let w(t) be a positive real valued function on Ed which is 1 ona region 
 � Ed containing all the t of interest, and satis�esR � � � REd R � � � REd R(u; v)w(u)w(v)dudu <1. Then replaceR(u; v)by R(u; v)w(u)w(v) in the calculation of the inner products.� Replace the penalty kfk2R by kPfk2R, where P is the orthogo-nal projection operator onto some subspace of HR contained inspanfRt; t 2 
g. This will entail that the penalty only involvesthe values of f in 
. One such space is spanfRt(i); i = 1; � � � ; ng.A simple and appealing way of determining a penalty functional is toreplace each representer of integration over a region by the representerof averaging over the data points (or some subset of them) in the re-gion, when calculating the penalty. Thus if there are nj observationsin the half space 0jt � bj, then �j is replaced by 1nj Pft(i):0jt(i)�bjgRt(i)in the de�nition of the penalty functional.Remark: The constraint kjk = 1 is meaningful. Usually sigmoidalfunctions do not have this restriction. �(bj � 0js) may be replacedby �(�� (bj � 0js)), but � should be treated as a scale factor.
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Grace Wahba NIPS.96 Model Complexity Workshop Talk December 2, 1996CREATING THE BASIS LISTWith regard to RBF's the list of data points ft(i); i = 1; � � � ; ng isan appropriate upper bound to the list of centers to be considered.Running a tree program with a slightly generous stopping criteriacan provide an upper bound for the list of TreeBF's to be consid-ered. Representers of integration over quarter spaces, slabs, and soforth are also possible. With respect to the pseudo-representers �j,which can be characterized by their boundaries f0jt = bjg, there isa (in general) many-one map between boundaries and partitions ofthe data sets, at most one boundary per partition could be allowedin the basis list, furthermore the boundaries can be required to passthrough at least one data point. A boundary is a better candidateif knowing which side of the boundary a data point is on providesmore useful predictive information about its response value. Clevermethods needed. 2Support vector methods (Vapnik 1995, KW 1971) could be used toscreen out basis functions. Letting fh1; � � � ; hN g be a list of candi-date basis functions, let f = Pk ckhk. Use a quadratic optimizationprogram to �nd the ck to minimize kfk2R = c0�Nc, say, subject tojyi � PNk=1 ckhk(t(i))j � �; i = 1; � � � ; n. Such programs run fast,and in practice (Vapnik 1995, Villalobos and Wahba 1987) it hasbeen found that, even with fairly small �, many of the ck will be0, suggesting that the basis functions associated with them can bediscarded.
2Added December 9: In the talk in the Error Surfaces Workshop, I suggested generating a very largenumber of direction cosines j were chosen by generating random numbers on the d dimensional sphere andthen screened. Reactions both pro and con were registered by the audience.12



Grace Wahba NIPS.96 Model Complexity Workshop Talk December 2, 1996REGULARIZED FORWARD BASIS FUNCTION SELECTIONLet fh1; � � � ; hNg be a list of candidate basis functions, as establishedpreviously. Given that h1; � � � ; hk�1 have been selected and � is(temporarily) �xed, the regularized forward selection problem is tochoose hk from the remaining elements in the list to minimizeinfc nXi=1(yi � kXk=1 ckhk(t(i)))2 + �c0�kcwhere �k is given, for example, c0�kc = Pi;j cicj < hi; hj >. Ageneral regularized forward selection method would, after selectinghk, then update � to minimize the GCV functionVk(�) = k(I �Ak(�))yk2=(trace(I � Ak(�))2;where Ak(�) = Hk(H 0kHk + ��K)�1H 0k:Here Hk is the design matrix for fh1; � � � ; hkg. One would continueto increase k and update � until no useful decrease in Vk(�) obtains.A similar approach was taken in Diaz 1995 thesis in the contextof small density estimation problems. Orr 1966 develops fast meth-ods for doing this in large data sets, via rank-one updating formulaein the zero-th order regularization case � = I and provides Matlabroutines. The general case can be done with matrix decompositionsfor relatively small k, but it would be nice to �nd a fast procedure forlarge k and very large n, possibly via the randomized trace technique,see Wahba, Johnson, Gao and Gong 1995 and references there. Luoand Wahba 1996 used the � = 0 updating formula with a modi�edGCV stopping criteria followed by regularization.13



Grace Wahba NIPS.96 Model Complexity Workshop Talk December 2, 1996SMOOTHING SPLINE ANOVA, NON-GAUSSIAN DATASmoothing spline ANOVA models (Wahba, Wang, Gu, Klein andKlein 1995 and references cited there) can be incorporated into asuper-Hilbert space with HR as a subspace. In smoothing splineANOVA models f(u) � f(u1; � � � ; ud) is represented as linear com-binations of functions of u� (main e�ects), functions of u�; u� (twofactor interactions), etc. These models are based on RK's for d vari-ables which are tensor products of d single variable RK's, and arerelatively easy to interpret. They may have a modest number of dif-ferent smoothing parameters for the di�erent components. See alsoHastie and Tibshirani 1990. The penalty functional(s) typically havea non-trivial null space and then the �ts shrink towards the nul spaceas the smoothing parameter(s) become large.For Bernoulli (0-1) data, the residual sum of squares can be re-placed by the log likelihood, with p(t) � prob yi = 1 replaced by thelogit f(t) = log[p(t)=(1� p(t)]. Then p(t) = ef(t)(1+ef(t)), where f is aspline or a spline ANOVA model. See Wahba, Wang, Gu, Klein andKlein (1995). Approximate unbiased risk methods for smoothing pa-rameter selection in the Bernoulli and other cases are discussed there.For the penalized likelihood method, it is assumed that f is `smooth',as might be expected in some demographic and environmental datasets. The GACV estimate for the Bernoulli case (related to Moody'sGPE 1992) is discussed in Xiang and Wahba 1996.
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