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PreAbstract

This talk is some combination of review and speculation, not the
usual research talk. It began as appreciation of Manny Parzen, my
thesis advisor, who was a key researcher in both density estimation
and Reproducing Kernel Hilbert Spaces, of which we will hear
more. Its an expansion of the talk that I gave at his memorial
session at the 2017 JSM. Next is a picture from 2006.
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Manny and party at the Pfizer Colloquium, 2006. 1. to r. Nitis
Mukhopadhyay, Joe Newton, me, Manny.
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Abstract

We are concerned with the use of personal density functions or
personal sample densities as subject attributes in prediction and
classification models. The situation is particularly interesing when
it is desired to combine other attributes with the personal densities
in a prediction or classification model.

The procedure is (for each subject) to embed their sample density
into a Reproducing Kernel Hilbert Space (RKHS), use this
embedding to estimate pairwise distances between densities, use
Regularized Kernel Estimation (RKE) with the pairwise distances
to embed the subject (training) densities into an Euclidean space,

and use the FEuclidean coordinates as attributes in a Smoothing

Spline ANOVA (SSANOVA) model. Elementary expository
introductions to RKHS, RKE and SSANOVA occupy most of this
talk.
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Outline Partl
e An example of a personal density.

e Introduction to Reproducing Kernel Hilbert Spaces (RKHS)

Outline Part 2 Personal densities as attributes

e Step 1: Embed densities in an RKHS to obtain pairwise

distances between densities.

e Step 2: Use Regularized Kernel Estimation (RKE) to map
densities into £ using pairwise distances to get

pseudo-attributes.

e Step 3: Use Radial Basis Function kernels to include the
pseudo-attributes of densities in SSANOVA Models.

Outline Part 3 Summary and Comments
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An example of a personal density

“A note on the probability distribution function of the surface
electromyogram signal 7. [Nazapour et al., 2013]

A surface electromyogram signal is the electrical manifestation of
neuromuscular activity, recorded at the surface of the skin. The left
figure is the trace at the Abductor Pollicis Brevis, the muscle
whose job is to move the thumb away from the palm. The hand
was restrained, and the signal was measured under four coditions of
activity, amplified, filtered and sampled at 10kHz. Density
estimates were obtained from the four sets of samples using Parzen

kernel density estimates. |[Parzen, 1962b|
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An example (cont.)

K. Nazarpour et al. / Brain Research Bulletin 90 (2013) 88-91
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Other biological time series where useful density information can be
captured by high frequency sampling suggest themselves.
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Introduction to RKHS, a trivial example

Ordinary ridge regression is a trivial example of an RKHS. We
demonstrate a simple form of ridge regression to explain this.

Let y = (y1,92, - ,yq) and f = (f1, f2, -, fa) be d dimensional
vectors and let X be a d x d (strictly) positive definite matrix. We

can define a square norm on vectors in E¢ by || f||4 = fX1f'.
Then the distance in this norm between f and g is

1f=glls=I1f—9)Z(f—9)]

Letting the eigenvectors and eigenvalues of > be ¢,, \,, we have
i = 2521 MA@y (1)0,(7) and we can rewrite the square norm of f

as chjl:l ﬁ_z where fu — (fa ¢1/)

Supposing y = f + e, where e is white Gaussian noise, then the
ridge regression estimate of f is the minimizer of
Z?Zl(yj — )2+ AS ||22 over the domain of d dimensional vectors.
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Introduction to RKHS, continued

Let T be some domain of interest, examples are |0, 1], the d
dimensional unit cube, the sphere, more complex domains to be

discussed. K (s,t) is a (strictly) positive definite kernel on T if

n

Z CLiCLjK(ti,tj) > 0. (1)

i,j=1
for all {a;,a;},t;,t; € T,n=1,2,....

Note that nothing is being assumed about the domain, other than
the existence of a positive definite function on it.
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Introduction to RKHS, continued

Manny was likely the first statistician to seriously introduce RKHSs
to statisticians see [Parzen, 1962a, Parzen, 1963, Parzen, 1970].

e Moore-Aronszajn Theorem:
Let 7 be a domain on which a positive definite kernel,
K(s,t),s,t € T is defined. Then there exists a unique RKHS
‘H i associated with K, and vice versa, for every RKHS there
exists a unique positive definite K. [Aronszajn, 1950] We just

did the case T is (1,2,--- ,d).

e Consider K(t) = K (s,t) as a function of ¢ for each fixed s.
Then, letting < -,- > be the inner product in Hg, for f € Hg
we have < f, Ky > = f(s), and < K4, K; > = K(s,t).

e The square distance between f and g is denoted as ||f — g]|%,
where || - ||% is the square norm in H-.

10 May 1, 2019



The Mercer theorem gives a class of kernels which are analogues of

Y. that appeared in the ridge regession case.

e Mercer Theorem: Let 7 be a compact domain in £?, and K
positive definite on 7. Suppose [ [ K?(s,t)dsdt = C' < oo,

then there exists an eigenfunction- eigenvalue decomposition

— Z )\1/¢1/(S)¢V (t)

Riesz and Nagy, 1955] p243. Here, the A, are eigenvalues and the

¢, (orthonormal) e1genfunet10ns with Y 2 A2 = C < .

Letting f, = fT s)ds the squared norm of f in this case is
o 2
1715 =Y 2
v=1 )\V
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But other reproducing kernels can be quite different, for example so
called radial basis functions (RBF’s), which depend only on the
(Euclidean) distance between pairs of points. The Gaussian RBF is

the most common example:
K(s,t) = e~ oz lls=tl’

Functions in this RKHS are infinitely differentiable. The Matern
class of RBF’s is another useful class of RBF'’s, see

[Bravo et al., 2009] for an example.
The squared norms can be expressed in terms of Fourier transforms.

Irrespective of the nature of the positive definite functions, let K4
be a positive definite function on the domain 7; and K5 be positive
definite function on 75 then K = K| ® K5 is a positive definite
function on the domain 7 = [T; ® Ta].

With S1,t1 € 7-1,82,752 - 7-2, K(Sl,SQ;tl,tg) == K(Sl,tl)K(SQ,tQ).
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Let

where e is white Gaussian noise. The penalized likelihood etimate
fx of f € Hk is the solution to:

n

' i — FE)2+AIF
nin i:1(y F(t:)" + Al fllx

There may be other parameters hidden inside of K

For classification, the sum of squares is replaced by a sum of hinge
functions (sometimes called the “kernel trick”).

In either case, The representer theorem
[Kimeldorf and Wahba, 1971] says that the minimizer will be in the
span of the Ky, (t),i=1,2,--- ,n.
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How to use personal densities as attributes

Step 1: Embedding densities in an RKHS

Population case: Let p(t), be a density on some domain 7, and let
Hx be an RKHS with kernel K (-, ). Then the embedding of p into
H i is given by

f() = K (-, t)p(t)dt.
teT

Here f € Hg. The sample version of f is given by

k
1
fx() =+ > K(X;,)
j=1
where X1,..., X are k iid samples from p. If we were treating p as

an image of, say, an x-ray density, then the X; would be on some

regular or otherwise designed grid.
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Given a sample from a possibly different distribution ¢ say, we have
0
1
=7 Z

Under appropriate conditions on K

[Sejdinovic et al., 2012] Sriperumbudur et al., 2011], two different
distributions will be mapped into two different elements of Hy. See
also p. 727 of [Gretton et al., 2012]. The pairwise distances
between these two samples can be taken as

| fx— gYHK_k2 ZKXZ,X 7 ZK}@,Y Z K(X;,Y;).

1,7=1 1,7=1 %1731

Note that if K is a nonnegative, bounded radial basis function,
then (up to scaling) we have mapped fx and gy into Parzen type

density estimates (!).
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Step 2: Using RKE to map densities in E”. Given the
pairwise distances from Step 1 embed the densities in a low
dimensional Euclidean space by by using Regularized Kernel
Estimation (RKE) [Lu et al., 2005] and then use the results in an
SS-ANOVA model.

For a given n X n dimensional positive definite matrix X, the
pairwise distance that it induces is dj; = 2(4,7) + 2(4, §) — 22(4, §)

The RKE problem is as follows: Given observed data d;; find X to

min di; — di;| + Mtrace(X) (3)

where d;; = X(i,1) + X(4,7) — 25(4, §).
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The data may be noisy/not Euclidean, but the RKE provides a
(non-unique) embedding of the n objects into an r- dimensional
Euclidean space (determined by \) as follows: Let the spectral
decomposition of ¥ be TAT'Y'. The largest r eigenvalues and
eigenvectors of X are retained to give the n X r matrix Z = PTA,}/ 2
We let the ith row of Z, an element of ", be the pseudo-attribute

of the ith subject.
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Thus each subject may be identified with an r-dimensional pseudo
attribute, where the pairwise distances betwen the pseudo
attributes respect (approximately, depending on ) the original
pairwise distances. Even if the original pairwise distances may be
Euclidean, the RKE may be used as a dimension reduction
procedure where the original pairwise distances have been obtained
in a much larger space (e. g. an infinite dimensional RKHS). Note
that if used in a predictive model it is necessary to know how a
“newbie” fits in; this is discussed in [Lu et al., 2005].

18 May 1, 2019



0.3

0.2
01
of »
8 3% o § Tt
0 D&?@?%S’;;;P' ........... 2
° %‘6:0 :
‘ IV ;
’ : 5 SRE e 5
0.3
0.4
1
DN\ B o s g s g
: : ‘ ‘ , . ,
0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4

From [Lu et al., 2005] 3D representation of pairwise dissimilarity
scores between 280 protein sequences obtained from pairwise
alignment scores. RKE was used to get the Euclidean embedding
and \ was chosed to capture 95% of the trace of the fitted matrix.
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Step 3: SSANOVA models with densities as attributes,
using Radial Basis Function Kernels. Briefly, Smoothing
Spline ANOVA models of functions of d variables are of the form

fltrs.ta) =p+ Y falta) + > fapltarts) +---  (4)
e af

and the terms satisfy ANOVA-like side conditions.

f is assumed to be in a tensor product space
H =% 1 Ha.

Each H, is an RKHS of functions on 7, that admits a

decomposition of the form
H, = [1(Oé)] @ H ()

with an averaging operator &£, such that £, 1) =1 and &, fa=0
for f, € H().
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Expanding H gives

d
H (1] @ H @)

@ Z’H(a) s Z ’H(Q) R ”H(B)]

a<f

, ()

where [1] denotes the constant functions on 7 = I1¢_, ® 7. Then
fo € H®, fas € [H() @ HPB)] and so forth. Extensive literature
and software exists for fitting these models, examples include

|Gu, 2002, Wang, 2011, Wahba et al., 1995].

21 May 1, 2019



To use the pseudo-attributes in £” found via RKE in an RKHS we
must confine ourselves to radial basis function kernels (RBF’s),
which depend only on pairwise distances between the arguments:
thus K(s,t) = k(||s — t||). Let #(®) be the RKHS associated with
k(-) and let k be (for example) the multivariate Gaussian with
argument ||s — t||. The constant function over E" is not in this
space with the Gaussian RBF kernel. Adjoin [1(®)] to this space
and define the averaging operator &£, needed for the ANOVA
decomposition as

€afa —JEEOE/ /fa

See that £,1(%) =1 and &, f, = 0 for f, in H(®. Thus, we have

the decomposition

H, = [1(00] a H ()
and this term can be combined into the SSANOVA model.
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Thus training sets with observed or coded pairwise distances as

pseudo-attributes ma be treated like other, direct, observations in

SSANOVA models.

Note that the r-variate Gaussian can be used as a density or as a
positive definite function, and any other multivariate density which
is an RBF when considered as a function of two arguments would

work.
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Summary and Comments

We have given an elementary introduction to RKHS and showed
how it can be used to estimate pairwise distances between
densities. We did not discuss how to choose kernels or how to
choose the tuning parameter(s) and other parameters inside K. We
did not discuss seminorms. We demonstrated how a large set of the
pairwise distances can be mapped into Euclidean space by using
RKE to get pseudo attributes, and how the pseudo attributes can
be used in a Smoothing Spline ANOVA model to incorporate them
along with other attributes in a penalized likelihood estimate for
prediction (or a support vector machine for classification.) It
remains to apply this way of looking at densities as attributes in an
analysis of an observational data set where personal densities can

interact with other variables in complex ways.
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