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Part 1. Regularized Kernel Estimation RKE

Given scattered noisy non-metric pairwise dissimilarity information
dij between pairs ij of n objects, embed these objects in a
Euclidean space that attempts to preserve the dissimilrity
information as much as possible. Find an n× n distance encoding
matrix Rdist by solving the convex one optimization problem:

min
R�0

∑
(i,j)∈Ω

|dij − d̂ij(R)|+ λRKEtrace(R) (1)

where R � 0 means R is in the convex cone of all real non-negative
definite matrices of dimension n, Ω is all or a (sufficiently rich)
subset of the

(
n
2

)
pairs of indices, and

d̂ij(R) ≡ R(i, i) + R(j, j)− 2R(i, j), the natural squared distance
induced by R. Robust against dissimilarity data not satisfying the
triangle inequality!
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Small eigenvalues in the fitted Rdist are deleted, leaving r non-zero
eigenvalues. Rdist(i, j) gives a (unique up to rotation) embedding
z(i) in Euclidean r dimensional space of the ith subject by
Rdist = Γn×rΛrΓ′r×n, Zn×r = ΓΛ1/2. The coordinates of the ith
object z(i) are given by the ith row of Z, (z(i), z(j)) = Rdist,ij ,
‖z(i)− z(j)‖2 = d̂ij .
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RKE example: proteins with BLAST scores.
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Figure 1: 3D representation of the sequence space for 280 proteins
from the globin family. Red: α-globin subfamily, blue: β-globins,
purple: myglobin subfamily, and green: a heterogeneous group en-
compassing proteins from other small subfamilies within the globin
family. Note that in this example three, or even two dimensions are
enough to separate the subfamilies.
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Eigenvalues of Rdist from BLAST scores example as λ varies.
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Figure 2: The effect of varying λ on the eigenvalues of Rdist. The
left five images show log-scale eigensequence plots for five values of λ.
As λ increases, smaller eigenvalues begin to shrink. The rightmost
image shows the first 10 eigenvalues of the λ = 1 case displayed on
a larger scale. In this example the plots are insensitive to λ over
several orders of magnitute.
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In this BLAST example the results may be similar to what one
might get using multidimensional scaling with a specified
dimension of two or three, but perhaps more fault-tolerant. In the
next section we will use the RKE in an entirely different context:
Wwe have a population from a demographic study of eye diseases
where one-third of the population has at least one relative in the
study. There is an outcome (pigmentary abnormalities-PA, Yes or
No), and attribues-genetic markers, environmental/clinical(E/C)
data, and pedigrees. The RKE will be used to embed the subjects
in a Euclidean space using the pedigree information, (siblings close,
niece-aunt not so close, etc) and the resulting coordinates will be
added to the genetic and E/C attributes in a penalized logistic
regression Smoothing Spline ANOVA model estimating the risk of
PA. From reference 2. Switch gears now to model building with
this data.
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Part 2. Smoothing Spline ANOVA SS-ANOVA Models.

The Log Likelihood for Bernoulli responses:

• Given: yi, x(i), i = 1, 2, · · · , n, y ∈ {0, 1}
x = (x1, x2, · · · , xd)
Estimate: p(x) = Prob(y = 1|x)

• The log odds ratio (logit): f(x) = log p(x)
1−p(x)

The negative log likelihood:

L(y, f) =
n∑

i=1

−yif(x(i)) + log(1 + ef(x(i)))

• Recover p(x) = ef(x)/(1 + ef (x)).
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Penalized Log Likelihood Estimate

The penalized log likelihood estimate of f is obtained by finding f

in some prescribed function space to minimize

I(f) = L(y, f) + λJ(f)

where J(f) is a penalty functional on f and λ is a tuning
parameter which balances fit to the data and complexity/wiggliness
of f . We will fit f in a function space which admits a useful
ANOVA decomposition-a Reproducing Kernel Hilbert Space
RKHS, using an SS-ANOVA model.
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Reproducing Kernel Hilbert Spaces RKHS

• f will be in an RKHS. What is an RKHS?

• Let K(s, t) be a positive definite function on T ⊗ T . This
means for any t1, · · · , tk,

∑k
r,s=1 K(tr, ts) ≥ 0.

• Moore-Aronszajn Theorem: To every positive definite function
K(·, ·) there corresponds a unique RKHS HK and vice versa.

• K(·, t∗) ∈ HK , all t∗ ∈ T . < K(·, s),K(·, t) >= K(s, t).

• All linear combinations of the K(·, t), t ∈ T and their limits in
the norm induced by the inner product constitute HK .

• < f(·),K(·, t∗) >= f(t∗) for all f ∈ HK . Important!
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To understand Smoothing Spline ANOVA Models:

ANOVA Decomposition of Functions of Several Variables

x ≡ (x1, · · · , xd) ∈ X ≡ X (1) ⊗ · · · ⊗ X (d)

f(x) = f(x1, · · · , xd).

Let dµα be a probability measure on X (α) and define the averaging
operator Eα on X by

(Eαf)(x) =
∫
X (α)

f(x1, · · · , xd)dµα(xα).
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ANOVA Decomposition of Functions of Several Variables (continued)

The averaging operators Eα give a (unique) ANOVA decomposition
of f :

f(x1, · · · , xd) = µ +
∑
α

fα(xα) +
∑
αβ

fαβ(xα, xβ) + · · ·

where

µ =
∏
α

Eαf =
∫
· · ·

∫
f(x1, · · · , xd)dµ1(x1) · · · dµd(xd)

fα = (I − Eα)
∏
β 6=α

Eβf

fαβ = (I − Eα)(I − Eβ)
∏

γ 6=α,β

Eγf

...
... Eαfα = 0, EαEβfαβ = 0, etc.
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ANOVA Decomposition of Functions of Several Variables (continued)

f(x) = µ +
d∑

α=1

fα(xα) +
∑
α≤β

fαβ(xα, xβ) + · · ·

• The series is truncated at some point.

• Terms satisfy ANOVA-like side conditions (identifiable).

• SS-ANOVA representation with weights on kernels :

f(·) =
m∑

j=1

djφj(·) +
n∑

j=1

cjKθ(·, x(j)),

φj are unpenalized components (parametric part) and

Kθ(·, ·) =
d∑

α=1

θαKα(·, ·),+
∑
α≤β

θαβKαβ(·, ·) + · · ·

• Kernels depend only on components of x in the subscripts.
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The SS-ANOVA penalty functional has the form

J(f) =
n∑

i,j=1

cicj

 d∑
α=1

θ−1
α Kα(x(i), x(j)) +

∑
α≤β

θ−1
αβKαβ(x(i), x(j)) + · · ·


since ‖f‖2

HθK
= θ−1‖f‖2

HK
. The θs are tuning parameters with an

identifiability constraint along with λ. We tune this Bernoulli
model with RKHS squared norm penalties using the GACV.
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SS-ANOVA Model in the Beaver Dam Eye Study

• The Beaver Dam Eye Study (BDES) is an ongoing
population-based study of age related ocular disorders, begun
in 1988.

• An SS-ANOVA model for association of a number of
environmental/clinical (E/C) variables based on 2585 women
with complete E/C data appears in Lin, Wahba et. al. Ann.
Statist. 28 (2000).

• 684 women have at least one relative also in the study.
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• The predictor variables of present interest are:

code units description

horm yes/no current usage of hormone replacement therapy

hist yes/no history of heavy drinking

bmi kg/m2 body mass index

age years age at baseline

sysbp mmmHg systolic blood pressure

chol mg/dL serum cholesterol

smoke yes/no history of smoking

Table 1: E/C covariates for BDES pigmentary abnormalities SS-
ANOVA model
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• The fitted E/C model that we are using in the present study is

f(t) = µ + f1(sys) + f2(chol) + f12(sys, chol)

+ dage · age + dbmi · bmi

+ dhorm · I1(horm) + ddrin · I2(drin) + dsmoke · I3(smoke)

• This is the same model that was fitted in Ann. Statist. 2000
with the exception that smoke was not included there.

• f1, f2 and f12 are splines.
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Fig. 9. Estimated probability of pigmentary abnormality as a function of cholesterol by three
levels of bmi and age and four levels of sys, horm=no, drin=no.

Estimated probability from an SS- ANOVA logistic regression
model. Each x-axis is cholesterol, each set of four lines is four values
of systolic blood pressure, each plot fixes body mass index and age
to the shown values. hist=0, horm =0. From Ann. Stat. 2000.
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Modeling E/C, genetic and pedigree data in an extended SS-ANOVA

model

f(t) = µ + dSNP1,1 · I(X1 = 12) + dSNP1,2 · I(X1 = 22)

+ dSNP2,1 · I(X2 = 12)dSNP2,2 · I(X2 = 22)

+ f1(sysbp) + f2(chol) + f12(sysbp, chol)

+ dage · age + dbmi · bmi

+ dhorm · I1(horm) + ddrin · I2(drin) + dsmoke · I3(smoke)

+ fped(z(t)).

• First two lines: Genetic (SNP) data. Two SNPS each with
three levels, (1,1), (1,2), (2,2). (SNP IDs in TR1148)

• Next three lines E/C variables

• Last line: Pedigree/relationship data goes here. Will explain.
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A Pedigree from BDES

16

2

3

9

15

1

4

10

30

14

5

11

29

13

6

17

22

7

18

21

8

19

32

12

41

31

20

42

34

23

28

33

35

25

36

24

37 39 38 26 27 40 27 20

Example pedigree from the Beaver Dam Eye Study. Red nodes-with
pigmentary abnormalities, blue nodes-without pigmentary
abnormalities. Circles are females, rectangles are males.
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A Relationship (Sub)Graph From the Pedigree
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Relationship graph for subjects in the pedigree. Edge labels are
distances defined by the kinship coefficient. Persons 26 and 35 are
siblings [1], persons 8 and 10 are aunt and niece [2] and persons 26
and 40 are cousins [3]. Unrelated pairs have dashed lines.

21 May 30, 2010



Relationship Data Encoded with RKE

• To include relationship/pedigree data into an SS-ANOVA
model, we encode it with the Regularized Kernel Estimation
algorithm (RKE). (Lu et al, PNAS 2005)

• Given n objects and pairwise dissimilarity measures dij

between a sufficient number of the
(
n
2

)
pairs, the RKE encodes

this information in an n× n positive definite matrix Rdist(i, j)
defined on the n objects. The dij are obtained based on the
relationship coefficients (1, 2, 3, 4, 5, L), where L is “no
relation” by a biologically motivated transformation.
(dij = −2log2(2φij)) where φ is Malecot’s kinship coefficient).
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Embedding of Pedigree by RKE
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z(i) for the five persons in the relationship graph. The x-axis of
this plot is order of magnitudes larger than the other two axes. The
unrelated edges in the relationship graph occur along this
dimension, while the other two dimensions encode the relationship
distance.
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Relationship Data Encoded With RKE (continued)

The RKE embedding is unique up to rotation, but only the
distances d̂ij are relevant. These distances can be used with any RK
that only depends on ‖z(i)− z(j)‖, that is, a radial basis function
(RBF), Kped(z(i), z(j)) = Kped(‖z(i)− z(j)‖). We use a Matern
RBF in the present work. Recall that without the pedigree data,

f(·) =
m∑

j=1

djφj(·) +
n∑

j=1

cjKθ(·, x(j)). (2)

The pedigree data enters the model by

Kθ(·, ·) → Kθ(·, ·) + θpedKped(·, ·). (3)

The Matern family is a two-parameter family, and the parameters
are to be chosen along with λ and the θs.
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Qualitative Results

An important goal of the study is to explore the relative
contribution of each source of data. Since there three sources of
information: (S=SNPS, P=Pedigrees,C= Environmental/Clinical)
there are seven models we can consider:

• S = SNPS (genetic data) only

• C = Environmental/Clinical (E/C) data only

• S + C

• P = Pedigrees only

• S + P

• C + P

• S + C + P

Compare models by evaluating the AUC (Area Under the Curve).
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Comparing Models by Their Area Under the (ROC) Curve (AUC)

ROC curves for models with two or all three data sources
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ROC curves for the models with two data sources. Plot is
constructed by classifying each person in a test set by thresholding
their value of p(x). As the threshold goes from 0 to 1, plot “True
positive rate” against “False positive rate”. Dashed line-random
classification.
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Results

S−only C−only S+C P−only S+P C+P S+C+P

Mean AUC for each model
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Figure 9: AUC comparison of models. S-only is a model with only genetic markers, C-only is a model with only environ-
mental covariates and S+C is a model containing both data sources. P-only is a model with only pedigree data, P+S is
a model with both pedigree data and genetic marker data, P+C is a model with both pedigree data and environmental
covariates, P+S+C is a model with all three data sources. Error bars are one standard deviation from the mean. Yellow
bars indicate models containing pedigree data. For models containing pedigrees, the best AUC score for each model is
plotted. All AUC scores are given in Table 2.

ROC curves for models with two data sources
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Figure 10: ROC curves for models with two data sources. Although all three models have comparative AUC (shown in
parenthesis in the legend), the relationship between the curves varies across ROC space. The S+C model dominates the
low false positive rate portion of space, while models including pedigree data dominate in the high true positive rate
portion.

10 H. Corrada Bravo et al.

The mean AUC for each of the seven models is given in the plot
above, in order: Red: S-only, C-only and S+C. Pedigrees are added
in yellow: P-only, S+P, C+P and S+C+P.
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Part 3. Partly Missing Covariates.

In the third reference, methods for handling partly missing
covariates in parametric models have been extended to Smoothing
Spline ANOVA models (robustly!).
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Fig 7. Probability curves estimated from the full data analysis. This figure is adapted from
Figures 9 and 10 from Lin, Wahba, Xiang, Gao, Klein and Klein (2000)[28]. Each panel
plots the estimated probability of pigmentary abnormalities as a function of cholesterol,
for four different values of sys. The six panels correspond to different values of age and
horm, when drin=no and bmi=27.5 are fixed.
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Figure 3: Repeat of the bmi=27.5 row of the earlier figure from Ann.
Stat. 2000. This model includes horm,hist,bmi,age,sysbp,chol.
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To test the proposed method, 517 subjects out of the n = 2585
original subjects with chol between 250 and 350 have one or more
of their covariates sys,bmi,horm deleted. 30 subjects missed
sys,bmi,horm, 109 subjects missed sys,bmi, 118 subjects missed
sys,horm and 260 subjects missed one attribute.
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Fig 9. Probability curves obtained from the naive method. Each panel plots the estimated
probability of pigmentary abnormalities as a function of cholesterol, for four different val-
ues of sys. The six panels correspond to different values of age and horm, when drin=no
and bmi=27.5 are fixed. 2 May 29, 2010

Figure 4: Model using only the 2068 subjects with no missing data
in the method test data set. Note the missing ‘bump’.
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Quadrature Penalized Likelihood Estimation QPLE

The QPLE method for missing data in SS-ANOVA models
generalizes results on missing data for parametric models (many
references). It begins by assuming conditional probability
distributions for each cluster of missing observations, conditional
on available observations, with parameters to be estimated. The
probability distributions for continuous data appear in integrals for
the penalized log likelihood. The integrals are replaced by
quadrature formulae. Thus, the continuous prior probability
distributions are replaced by distributions (weights) on mass
points, and (updated) parameters of the distributions are used to
update the weights via the EM algorithm. The process is carried
out for each trial set of tuning parametera and at convergence a
tuning score (GACV) can be obtained in a manner similar to that
for complete data.

30 May 30, 2010



In this example the conditional distribution for sys,bmi given
age,chol was chosed as bivariate normal with means linear in
age,chol, with unknown coefficients and unknown bivariate
covariance matrix, and horm was modeled conditional on age,

chol,sys,bmi, as the conditional logit linear in these variables
with unknown coefficients.
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Here is the resulting model

34 MA, DAI, KLEIN, KLEIN, LEE AND WAHBA
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Fig 8. Probability curves obtained from QPLE. Each panel plots the estimated probability of
pigmentary abnormalities as a function of cholesterol, for four different values of sys. The
six panels correspond to different values of age and horm, when drin=no and bmi=27.5
are fixed. 3 May 29, 2010

which can be compared with the model with complete data:.
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Fig 7. Probability curves estimated from the full data analysis. This figure is adapted from
Figures 9 and 10 from Lin, Wahba, Xiang, Gao, Klein and Klein (2000)[28]. Each panel
plots the estimated probability of pigmentary abnormalities as a function of cholesterol,
for four different values of sys. The six panels correspond to different values of age and
horm, when drin=no and bmi=27.5 are fixed.
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The result is rather amazing, but depends on the attributes being
well correlated, very common in medical data.
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Summary and Conclusions

In Part 1 we have described the RKE estimate which embeds noisy,
non-metric, incomplete dissimilarity information into a Euclidean
space. In Part 2 we first reviewed penalized log likelihood estimates
for Bernoulli responses. Then we showed how pedigree data could
be embedded into a Euclidean space via an RKE estimate, and
then combined with genetic and environmentl/clinical variables to
build a penalized logistic regression Smoothing Spline ANOVA
model. Part 3 notes recent work dealing with partially missing
covariate data in Smoothing Spline ANOVA models using a
Quadrature Penalized Estimate QPLE in a robust manner.

Robustness is everywhere and we thank the organizers for
prompting us to think along these lines!
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