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We review some of the basic facts about reproducing
kernel Hilbert spaces (RKHS), and the solution of var-
ious optimization problems of interest in them.
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♣♣ 1. What is an RKHS?

An RKHS is a Hilbert space (Akhiezer and Glazman:1963)
in which all the point evaluations are bounded linear
functionals. (Unlike L2.) Letting H be a Hilbert space
of functions on some domain T , this means, that for
every t ∈ T there exists an element ηt ∈ H , such
that

f(t) =< ηt, f >, ∀f ∈ H,

where <, > is the inner product in H. Let < ηs, ηt >=

K(s, t). Then K(s, t) is positive definite on T ⊗ T ,
that is, for ∀t1, · · · , tn ∈ T ,

∑
i,j aiajK(ti, tj) ≥ 0.

K is called the reproducing kernel (RK) for H, and
ηt is the ”representer of evaluation” at t. Since ηt ≡

K(t, ·), then < K(t, ·), K(s, ·) >≡ K(s, t), this be-
ing the origin of the term ”reproducing kernel”.
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♣♣ 2. The Moore-Aronszajn Theorem

The Moore-Aronszajn theorem (Aronszajn:1950) the-
orem states that for every positive definite function
K(·, ·) on T ⊗T , there exists a unique RKHS and vice
versa. The Hilbert space associated with K can be
constructed as containing all finite linear combinations
of the form

∑
ajK(tj, ·), and their limits under the

norm induced by the inner product < K(s, ·), K(t, · >=

K(s, t). Norm convergence implies pointwise conver-
gence in a RKHS, as can be seen by observing that

|fn(t) − fm(t)| = | < K(t, ·), fn − fm > |

≤ K(t, t)‖fn − fm‖.

Thus, these limit functions are well defined pointwise.
Nothing has been said about T . The discussion above
applies to any domain on which it is possible to define
a positive definite function, a matrix being a special
case when T has only a countable or finite number of
points.
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♣♣ 3. Gaussian Processes.

Note that, for every positive definite K(·, ·) on T ⊗ T

there exists a zero mean Gaussian process with K

as its covariance. Thus, there is a relation between
Bayes estimates, Gaussian processes and optimiza-
tion problems in RKHS. See Parzen:1970, Kimeldorf
and Wahba:1971, Wahba:1990 and elsewhere.
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♣♣ 4. More RKHS

Tensor sums and products of RK’s are RK’s, which
allow construction of all sorts of spaces (Smoothing
Spline ANOVA spaces as an example Wahba:1990).
Letting s1, t1 ∈ T (1), s2, t2 ∈ T (2), and letting s =

(s1, s2), t = (t1, t2), then

K(s, t) = K1(s1, t1)K(s2, t2)

is an RK on T = T (1) ⊗ T (2) whenever K1 and
K2 are RK’s on their respective domains. Subspaces
of RKHS are also RKHS, and the RK for a subspace
can be obtained by e. g. projecting the representers
of evaluation in H onto the subspace.
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♣♣ 5. The Representer Theorem.

A special but important case of the representer theo-
rem (Kimeldorf:Wahba:1971) is:
The solution to the problem: Find f ∈ H to minimize

n∑
i=1

C(yi, f(ti)) + λ‖f‖2 (1)

where C is convex in f , has a representation as

fλ(·) =
n∑

i=1

ciK(ti, ·). (2)

Then (2) is substituted in (1) and the ci’s are found nu-
merically. When C is quadratic, it is only necessary to
solve a linear system, but otherwise a descent algo-
rithm is used. The general form includes unpenalized
(low-dimensional) subspaces, different λ’s applied to
different subspaces, and other generalizations.
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♣♣ 5. The Representer Theorem (continued).

If we replace f(ti) by Lif , where Li is some bounded
linear functional in the RKHS in

n∑
i=1

C(yi, f(ti)) + λ‖f‖2

then the minimizer has a representation of the form

fλ(·) =
n∑

i=1

ciηi(·)

where ηi is the representer of Li. An important exam-
ple is: let

yi =

∫
H(ti, u)f(u)du + εi

where the εi are i.i.d Gaussian random variables. In
this case C would correspond to least squares. Under
appropriate regularity conditions,

Lif =

∫
H(ti, u)f(u)du,

ηi(s) =

∫
H(ti, u)K(u, s)du.
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and

‖f‖2 =
∑
i,j

cicj < ηi, ηj >

where

< ηi, ηj >=
∫ ∫

H(ti, u)H(tj, v)K(u, v)dudv.

This setup is a generalized version of Tikhonov regu-
larization (Tikhonov:1963, Wahba:1977a,
O’Sullivan:Wahba:1985, Nychka:Wahba:Goldfarb:Pugh:1984)



♣♣ 6. Varieties of Cost Functions (Univariate Case).

C(y, f)

Regression
.........
Gaussian data (y − f)2

Bernoulli, f = log[p/(1 − p)] −yf + log(1 + ef)
Other exponential families other log likelihoods
Data with outliers robust functionals
Quantile functionals ρq(y − f)
.........
Classification: y ∈ {−1,1}
.........
Support vector machines (1 − yf)+
Other ”large margin classifiers” e−yf , log(1 + e−yf),

(1 − yf)2 and numerous
other functions of (yf)

..........

(MV) Density estimation: y ≡ 1 −yf +
∫

ef

(τ)+ = τ, τ ≥ 0,= 0 otherwise,
ρq(τ) = τ(q − I(τ ≤ 0).
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♣♣ 7. The bias-variance tradeoff and adaptive
tuning.

The parameter λ controls the tradeoff between the
size of

∑n
i=1 C(yi, f(ti)) and the size of ‖f‖2 in

n∑
i=1

C(yi, f(ti)) + λ‖f‖2.

More generally there may be other so-called tuning
parameters (such as σ in the Gaussian reproducing
kernel), or, different λ’s penalizing components in dif-
ferent subspaces differently.

Choosing λ reasonably well is usually important.
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♣♣ 8. Methods for choosing λ from the data.

• Gaussian Data: Generalized Cross Validation (GCV),
Generalized Maximum Likelihood (GML)(aka REML),
Unbiassed risk (UBR), others (google ”methods”
(see Wahba:1990). ”choose” ”smoothing param-
eter” gave 2850 hits)

• Bernoulli Data: Generalized Approximate Cross
Validation (GACV) (Xiang:Wahba:96),other earlier
related

• Support Vector Machines: GACV for SVM’s
(Wahba:Lin:Zhang:00) other related, esp. Joachim’s
ξα method.

• Multivariate Density Estimation: GACV for density
estimation. (Wahba:Lin:Leng:02)

• All problems: Leaving-out-one, k-fold cross vali-
dation
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♣♣ 9. Concluding remarks.

Methods for model building, regression and classifi-
cation by solving optimization problems in RKHS are
an important tool for the Engineer, Computer Scientist
and Statistician.

14


