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We describe the Bayes rule for multicategory classi-
fication with unequal costs. Then we make some re-
marks about the two category SVM and other (stan-
dard) large margin classifiers. We describe the non-
standard multicategory SVM, and show how it has
been applied to classification of satellite-observed ra-
diance profiles, to classify the profiles as coming from
clear sky, water clouds or ice clouds.



OUTLINE

1. Multicategory Bayes risk.

2. Two category (standard) SVM’s and other large
margin classifiers.

3. Multicategory penalized likelihood.

4. The (nonstandard) multicategory SVM (MSVM).

5. Application to classification of satellite-observed ra-
diance profiles.

6. Concluding remarks.
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♣♣ 1. Multicategory Bayes risk.

Conskder k populations, each member of which has
a predictor (attribute) variable t ∈ T , (prior) density
of t in the jth population is hj(t), suppose that the
prior probability (relative frequency) of the jth popu-
lation is πj. Let pj(t) be the probability that the next
observation is from population j:

pj(t) =
πjhj(t)

∑k
j=1 πjhj(t)

Let Cjr be the cost of misclassifying a j as an r. Then
the Bayes rule, to minimize the expected cost is to
choose j to minimize

k∑

`=1

C`jpj(t).

Problem: Build a classifier which is targeted at the
Bayes rule, from an unrepresentative training set. This
has been done with the (nonstandard) multicategory
support vector machine (MSVM) of [LeeLinWahba(2002)]
[LeeWahbaAckerman(2003)] [LeeLee(2003)] [ Lee(2002)]
[Wahba(2002)] [WahbaLinLeeZhang(2002)].
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♣♣ 2. Two category (standard) SVM’s and other
large margin classifiers.

Standard, two-category large margin classifiers can
be described as follows: The classifier is obtained by
constructing a function f(t) such that f(t) > 0 labels
a subject with attribute vector t as being in the ” + ”

class, and f(t) < 0 as being in in the ” − ” class.
Given a training set {yi, ti, i = 1, · · · , n, yi = ±1}.
f is obtained as the minimizer in HK of

n∑

i=1

C(yi, f(ti)) + λ‖f‖2HK

where HK is some reproducing kernel space (whose
RK may contain some parameters) and

C(yi, f(ti))) ≡ c(yif(ti)) = c(τ),

say. For the (original) SVM, c(τ) = (1−τ)+. The pe-
nalized log likelihood estimate corresponds to c(τ) =

log(1 + e−τ). Many other c′s have been proposed:
(1 − τ)p, p ≥ 1, which for p = 2 is equivalent to
penalized least squares a.k.a ridge regression, e−τ ,
(1 − τ)+

p and others (some noted in [Wahba2002]).
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Figure 1. Let C(yi, f(ti)) = c(yif(ti)) = c(τ).
Comparison of the misclassification counter c(τ) =

(−τ)∗, the c for the SVM (1 − τ)+, and the penal-
ized log likelihood log2(1 + e−τ). Any strictly convex
function that goes through 1 at τ = 0 will be an upper
bound on (−τ∗) and will be a looser bound than some
SVM (hinge) function (1 − θτ)+. Many other ”large
margin” classifiers.
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♣♣ 2. Two category (standard) SVM’s and other
large margin classifiers (cont.).

The standard, two-category SVM estimates the sign

of the log odds ratio f(t), sign log[p1(t)/p2(t)] ≡
sign f(t). The penalized likelihood (c(τ) = log(1 +

e−τ ) estimates the log odds ratio f(t) itself, and hence
estimates p1(t) ≡ ef(t)/(1 + ef(t)).

All of the reasonable large margin classifiers will esti-
mate some function ˆf(t) sucn that sign ˆf(t) approx-
imates sign log[p1(t)/p2(t)] (or they could be con-
sidered not reasonable).

The various suggestions have differing computational
demands on differing examples, and, if the classes
are easily separable, various classifiers have been shown
to behave similarly, although their behavior on on over-
lapping classes may be different. The various propo-
nents of the different suggestions generally have rea-
sons why their classifier is good, but claims of a uni-
versal best classifier probably will not withstand scrutiny.
Good tuning is at least as important as the particular
choice of c.
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♣♣ 2. Two category (standard) SVM’s and other
large margin classifiers (cont.).
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Demonstration of Yi Lin’s lemma:(Lin2002). 300 Bernoulli
random variables were generated, equally spaced t

from p(t) = 0.4sin(0.4πt)+0.5 Solid line: (2p(t)−

1). Dotted line:(2pλ − 1), where pλ is (optimally
tuned) penalized likelihood estimate of p. Dashed line:
fsvm λ, is (optimally tuned) SVM. Observe fsvm λ ∼

±1, thus pλ is estimating p(t), whereas fsvm λ is esti-
mating sign(2p−1) = sign(p−1/2)= sign f . (based
on Gaussian K) (plot: Yoonkyung Lee)
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♣♣ 3. Multicategory penalized likelihood estimates.

[X. Lin 1998]
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♣♣ 4. Multicategory support vector machines
(MSVMs).

From [LeeLinWahba02] [LeeWahbaAckerman03][LeeLee03]
[Lee02] [WahbaLinLeeZhang02]. k > 2 categories.
In the papers above, the data is coded in a special
way:

yi = (yi1, · · · , yik),
k∑

j=1

yij = 0,

with yij = 1 if the ith subject is in category j and
yij = − 1

k−1 otherwise. yi = (1,− 1
k−1, · · · ,− 1

k−1)

indicates yi is from category 1. The MSVM produces
f(t) = (f1(t), · · · fk(t)), with each f j = dj + hj

with hj ∈ HK , required to satisfy a sum-to-zero con-
straint

k∑

j=1

f j(t) = 0,

for all t in T . The largest component of f indicates
the classification.
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♣♣ 4. Multicategory support vector machines
(MSVMs) (cont.).

Standard case: representative samples, equal miss-
classification costs:

Let Ljr = 1 for j 6= r and 0 otherwise. The MSVM is
defined as the vector of functions fλ = (f1

λ , · · · , fk
λ),

with each hk in HK satisfying the sum-to-zero con-
straint, which minimizes

1

n

n∑

i=1

k∑

r=1

Lcat(i)r(f
r(ti) − yir)+ + λ

k∑

j=1

‖hj‖2HK

equivalently

1

n

n∑

i=1

∑

r 6=cat(i)

(fr(ti) +
1

k − 1
)+ + λ

k∑

j=1

‖hj‖2HK

where cat(i) is the category of yi (i.e. a ”charge” on
fr(ti) if yi is not category r.)

The k = 2 case reduces to the usual 2-category
SVM.
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The target for the MSVM has been shown to be
f(t) = (f1(t), · · · , fk(t)) with f j(t) = 1 if pj(t)

is bigger than the other pl(t) and f j(t) = − 1
k−1

otherwise-that is, it targets the code for the correct
classification.



♣♣ 4. Multicategory support vector
machines(MSVMs)(cont.).

The nonstandard MSVM:

More generally, suppose the sample is not represen-
tative, and misclassification costs are not equal. Let

Ljr = (πj/πs
j)Cjr, j 6= r, = 0, j = r.

where Cjr is the cost of misclassifying a j as an r,
πj is the prior probability of category j, and πs

j is the
fraction of samples from category j in the training set.
The nonstandard MSVM minimizes

1

n

n∑

i=1

∑

r 6=cat(i)

Lcat(i)r(f
r(ti) +

1

k − 1
)+ + λ

k∑

j=1

‖hj‖2HK

subject to the sum-to-zero constraint. As before the
largest component determines the classification. Then
the nonstandard MSVM has as its target the Bayes
rule, which is to choose the j which minimizes

k∑

`=1

C`jp`(x).
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♣♣ 5. The classification of upwelling MODIS
radiance data to clear sky, water clouds or ice clouds.

From [LeeWahbaAckerman03].Classification of 12 chan-
nels of upwelling radiance data from the satellite- borne
MODIS instrument. MODIS is a key part of the Earth
Observing System (EOS).

Classify each vertical profile as coming from clear sky,
water clouds, or ice clouds.

Next page: 744 simulated radiance profiles (81 clear-
blue, 202 water clouds-green, 461 ice clouds-purple).
10 samples from clear, from water and from ice:
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Classification boundaries on the 374 test set deter-
mined by the MSVM using 370 training examples, two
variables, one is composite. Y. K. Lee Student poster prize AMet-

Soc Satellite Meteorology and Oceanography session.
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Classification boundaries determined by the nonstan-
dard MSVM when the cost of misclassifying clear clouds
is 4 times higher than other types of misclassifica-
tions.
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