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Uncertainty Quantification in Difficult Risk Models Built on Large

Genetic Vectors

Abstract: We describe an approach to risk modeling in a
biostatistical context. An extremely large number of observed
variables are potentially related to an outcome of interest (yes or
no). If the chance of a correct prediction (yes or no) is too close to
guessing, then it is desired not to predict, but if the odds of being
correct are good, then a prediction will be reported, along with an
estimate of its accuracy. There are three steps: (i) Use Distance
Correlation (DCOR) to select a subset of the variables that, taken
together are related to the outcome of interest. (ii) Use a Support
Vector Machine with Reject Option (SVM-R) to build a prediction
model. (iii) Use a form of multiple cross validation (MCV) to build
and test multiple models that assess the reliability of the variable
selection and prediction process.
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Outline

1. Introduction, application to Ovarian Cancer data with a large
number of candidate variables and weak signals.

2. Variable Selection using Distance Covariance (DCOV)

3. Classification for difficult problems using the Suport Vector
Machine with Reject Option (SVM-R)

4. Application to The Cancer Genome Atlas Ovarian Cancer Data

5. Multiple Cross Validation (MCV) to assess uncertainty

6. Comments and Conclusions

7. References
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Quantifying Uncertainty in Hard Classification Problems With Large

Attribute Vectors

We discuss a three step approach to risk factor modeling (DCOV,
SVM-R, MCV) and build a model based on a cancer example
where the attribute vector consists of 12,042 gene expression values
given for 279 subjects which are known either to respond or to be
resistant to a particular treatment. The approach makes no
distributional assumptions for the attributes, and accommodates
itself to the possibility that some fraction of the population is hard
to classify from the genetic data, a third category “do not classify”
(a. k. a. “reject”) is an option. In the cancer data, a large fraction
are not classified, but for those that are, the results are firm. A
multiple cross validation is used to quantify uncertainty, and we see
a commonly observed conundrum when cross validating through
variable selection given a humongous number of candidates (to be
described).
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Sample Distance Covariance (DCOV)

For a random sample (X, Y ) = {(Xk, Yk) : k = 1, ..., n} of n i.i.d
random vectors (X, Y ) from the joint distribution of random
vectors X in Rp and Y in Rq, the Euclidean distance matrices
(aij) = (|Xi −Xj |p) and (bij) = (|Yi − Yj |q) are computed. Define
the double centering distance matrices

Aij = aij − ai· − a·j + a··, i, j = 1, ..., n,

where

ai· =
1
n

n∑
j=1

aij , a·j =
1
n

n∑
i=1

aij , a·· =
1
n2

n∑
i,j=1

aij ,

similarly for Bij = bij − bi· − b·j + b··, i, j = 1, ..., n.
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Sample Distance Covariance (DCOV) (continued)

The sample distance covariance Vn(X, Y ) is defined by

V2
n(X, Y ) =

1
n2

n∑
i,j=1

AijBij .

The sample distance correlation (DCOR) Rn(X, Y ) is defined by

R2
n(X, Y ) =


V2

n(X, Y )√
V2

n(X)V2
n(Y )

, V2
n(X)V2

n(Y ) > 0;

0, V2
n(X)V2

n(Y ) = 0,

where the sample distance variance is defined by

V2
n(X) = V2

n(X, X) =
1
n2

n∑
i,j=1

A2
ij .
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Population Distance Covariance

Szekely and Rizzo (2009) defined the population distance
covariance between X ∈ Rp and Y ∈ Rq to be

V2(X, Y ) =
1

cpcq

∫
Rp+q

|fX,Y (s, t)− fX(s)fY (t)|2

|s|1+p
p |t|1+q

q

dt ds

where fX,Y (s, t), fX(s), and fY (t) are the characteristic functions of
(X, Y ), X, and Y , respectively, and cp, cq are constants chosen to
produce scale free and rotation invariant measure that doesn’t go to
zero for dependent variables. The idea originates from the property
that the joint characteristic function factorizes under independence
of the two random vectors. This leads to the remarkable property
that V 2(X, Y ) = 0 if and only if X and Y are independent. The
sample version of DCOV is an estimate of the population DCOV.
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Population Distance Covariance: Theorem

Li, Zhong and Zhu (2012) proposed using distance correlation for
feature screening, but did not provide a necessary stopping
criterion. The following theorem will provide a principled way of
choosing a stopping criterion:

Theorem (J. Kong) Suppose we have random vectors
X ∈ Rp1 , Z ∈ Rp2 and Y ∈ Rq, and assume Z is independent of
(X, Y ), then

V 2(X : Z, Y ) ≤ V 2(X, Y ),

where X : Z ∈ Rp1+p2 and V is the population distance covariance
defined above.

Note that there are no distributional assumptions on the variables
and the components may have quite disparate distributions.
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Select Variables using DCOV

1. Calculate marginal sample distance correlations for
xi, i = 1, ..., p with the response.

2. Rank the variables in decreasing order of the sample distance
correlations (DCOR). Denote the ordered variables as
x(1), x(2), ..., x(p). Add x(1) to xS , defined as the set of variables
included so far.

3. For i from 2 to p, keep adding x(i) to xS if V2
n(xS , y), the

sample DCOV, does not decrease. Stop otherwise.
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Apply the Procedure to TCGA Ovarian Cancer Data

We apply the above procedure to The Cancer Genome Atlas
(TCGA) Ovarian cancer data. The TCGA collected high-quality,
high-dimensional, and multi-modal genetic data from women with
ovarian cancer. There were 279 samples with explicit chemostatus
and gene expression (Affymetrix HT-HGU133a) data in the public
set, among which 191 subjects are sensitive to chemotherapy and
88 are chemoresistant. Expression data for 12042 genes after log
transformation are used for analysis. The issue is to explore
whether there are genes whose expression pattern is strongly
correlated with the response, i.e. chemotherapy status. Our feature
screening procedure on the standardized log scale gene expression
data for the 279 patients selects 82 genes, among which 5 were
reported to be related to ovarian cancer in the literature, namely
IGFBP5, GPR3, MAPK4, FZD5, and FGF22.
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Fitted Probabilities of Being Chemoresistant, by Subject Label

Fitted Probabilities for Chemosensitive Subjects
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Fitted probabilities of being chemoresistant for 191 chemosensitive
subjects (left) and 88 chemoresistant subjects (right). (Bernoulli
likelihood additive spline model on the 82 selected genes. R code
gss with default tuning (GACV, Gu and Xiang 2001).
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Fitted Probabilities for Chemosensitive Subjects
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Fitted Probabilities for Chemoresistant Subjects
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Fitted probabilities of being resistant have high density around
small values for sensitive patients and large values for resistant
patients respectively, with overlapping in the middle values. This
suggests that we are less confident about the chemostatus for the
patients in the middle range and may in practice want to withhold
decision for such cases.
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The Support Vector Machine With Reject Option (SVM-R)

The SVM-R was proposed in Bartlett and Wegkamp (2008) (see
also Wegkamp and Yuan (2011), and is a practical way of solving
the problem that there are some subjects for which you would like
to make a decision and others for which you prefer not to, because
the chance of making a mistake is not tolerable.

First, the usual two class SVM has data on n subjects, yi ∈ {−1, 1}
with attribute vectors x ∈ X , and it is desired to obtain a classifier
f ∈ F which will provide a classification as +1 if f(x) is positive
and −1 if f(x) is negative. Letting τ = yf , the loss function is 1 if
τ < 0 and 0 otherwise. The so-called hinge function (1− τ) for
τ < 1 and 0 otherwise (compactly written (1− τ)+) is a convex
upper bound to the desired loss function.
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The Support Vector Machine With Reject Option (SVM-R)

(continued)

The usual SVM finds f in some class F to minimize
n∑

i=1

(1− yif(xi))+ + λJ(f).

where J(f) is some penalty functional. Popular examples include f

in an RKHS with J(f) the RKHS square norm, and f a linear
combination of basis functions with J(f) being the l1 penalty on
the coefficients. Under some general conditions, it is known that
the SVM is actually estimating the sign of the log odds ratio (Lin
et al 2002), which explains why it is so popular.
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The Support Vector Machine With Reject Option (SVM-R)

(continued)

Letting d < 1/2 be the cost of a reject, the SVM-R replaces the
hinge function in the above equation with the generalized hinge
function (1− aτ), τ < 0, and (1− τ)+, 0 ≤ τ , where
a = (1− d)/d > 1. It was shown that the SVM-R is a convex
surrogate for the desired loss function of d for reject, 1 for a
mistake and 0 otherwise.

For application to the Ovarian Cancer data, F consists of linear
combinations of the log gene expressions, with the penalty
functional being the l1 norm of the coefficients.

The optimization problem is fast and easy to compute.
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Gene Expression Data for 279 Patients and 82 Selected Genes
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Gene Expression Data for 279 Patients and 82 Selected Genes
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SVM-R results, d = 1/4. l. to r. Resistant 14 resistant subjects
and 1 sensitive subject; Sensitive, 123 sensitives and 8 resistants,
and Do not classify, 67 sensitives and 66 resistants.
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Multiple Cross Validation (MCV) Train-Tune-Test Models

1. Randomly partition 279 samples: a 2/3× 4/5 = 8/15 training
set, a 1/5 tuning set and a 1/3× 4/5 = 4/15 testing set.

| − − − train−−−−−−−−| − tune− | − −test−−|

2. 12042 genes:, select genes using DCOV on the training set.

3. Build the SVM-R model on the training set with the selected
genes for d = 1/3, 1/4 and 1/5.

4. Use the tuning set to choose the tuning parameter for SVM-R.

5. Use the model with chosen tuning parameter to predict labels
for the testing set.

6. Repeat 1.-5. 50 times.

7. Aggregate the prediction results for the 50 replications and
apply majority votes for each subject.
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Results of train-tune-test and majority voting

testing accuracy # with decision

d = 1/3 0.6936 173

d = 1/4 0.9130 23

d = 1/5 0.9048 21

Testing accuracies for majority votes based on 50 random
replications.

So, for d = 1/4 or 1/5 we can get over 90% verified accuracy at a
rather severe cost of making a decision for only about 7% of the
data set. (These decisions were all chemosensitive)
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Returning to the original penalized likelihood fit on 82 genes

Fitted Probabilities for Chemosensitive Subjects
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Fitted Probabilities for Chemoresistant Subjects
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Pretending this plot is ground truth, for about 90% accuracy, the
rule would be:
Prob ≥ .9 Chemoresistant
Prob ≤ .1 Chemosensitive
Prob ∈ (.1, .9) Do not classify
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Then about 140 of the chemosensitive subjects and 50 of the
chemoresistant subjects, or about 68% of the 279 subjects would be
correctly identified.

Why not use that model? We don’t really know how good it is.
Model uncertainty due to variable selection in sampling 12042
variables with 279 subjects is not accounted for. This issue is
common to selecting variables from a humongous number of
candidates, in the not-low-hanging-fruit situation.

More details:
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50 Sets of MCV Gene Expression Selections

The union of the 50 gene selections before SVM-R modeling
consists of 1245 genes, and includes all 82 genes. 34 out of 1245
genes get selected at least 10 times, where 33 of them appear in the
82 genes, but very few appear in more than 25 runs. For d = 1/5,
after the SVM-R models are run, 787 out of 1245 genes remain.
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Figure 1: Frequency for 1245 genes being selected by DCOV method,
pink color represents numbers deleted by SVM-R.22 March 29, 2014



The following summarizes the mean training and testing accuracy
and the mean number of subjects with decision in the 50 replicates,
along with the previous voting scheme results.

mean training mean testing mean number testing

accuracy(std) accuracy(std) with decision(std)

d = 1/3 0.8606(0.0719) 0.7119(0.0547) 45.3400(12.1867)

d = 1/4 0.9356(0.0362) 0.8034(0.1320) 12.8400(10.2725)

d = 1/5 0.9593(0.0347) 0.8476(0.1181) 11.6600(9.6840)

d = 1/3 voting 0.6936 173

d = 1/4 voting 0.9130 23

d = 1/5 voting 0.9048 21

The voting scheme compares favorably to building an average
model.
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Comments and Conclusions

1. Is it worthwhile to attempt classification when only 7% of the
model building population gets classified. The numbers here
assume that the costs of the two kinds of errors are the same,
something that surely depends on the application, and may
depend on things that are subjective, like quality of life, or
hard to predict, like longevity. Should insurance be required to
pay for a new cancer pill that costs $100,000 per person?
Science meets public policy, just as it does in climate modeling
and global warming.
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2. What about other possibly important variables? In Corrada
Bravo et. al. 2009, in a paper based on the Beaver Dam Eye
study, we argue that genetic, behavioral and clinical variables
combine to predict the disease of interest. In the Ovarian
Cancer study we have two additional variables with complete
data: Cancer grade and cancer stage. Surprisingly, including
these two in our models with genetic data did not affect the
results in any practical way. Unfortunately, in human subjects
data the more possibly-relevant variables are available, the
easier it might be to identify deidentified subjects.
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3. The large number of variables that appear only in a small
number of runs suggests noise in the variable selection
procedure. It could also suggest the conundrum that the “true”
model consists of a large number of variables with modest
effects of which different subsets give rise to roughly equal
prediction ability. Options for further study in this and other
difficult problems include allowing the DCOV stopping criteria
to be modified by some amount δ, and allowing the greedy
variable selection algorithm to be doubly greedy by testing the
next best m of the remaining variables rather than just the
next variable. It remains to obtain theoretical results to guide
exploration in alternate scenarios.

4. Although we have applied these tools (DCOV, SVM-R, MCV)
to biomedical data we argue that they are quite portable across
disciplines, including Atmospheric and Earth sciences.
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