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PreAbstract

This talk is some combination of review and speculation, not the

usual research talk. It began as appreciation of Manny Parzen, my

thesis advisor, who was a key researcher in both density estimation

and Reproducing Kernel Hilbert Spaces, of which we will hear

more. Its an expansion of the talk that I gave at his memorial

session at the 2017 JSM. Next is a picture from 2006.
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Manny and party at the Pfizer Colloquium, 2006. l. to r. Nitis

Mukhopadhyay, Joe Newton, me, Manny.
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Abstract

We are concerned with the use of personal density functions or

personal sample densities as subject attributes in prediction and

classification models. The situation is particularly interesing when

it is desired to combine other attributes with the personal densities

in a prediction or classification model.

The procedure is (for each subject) to embed their sample density

into a Reproducing Kernel Hilbert Space (RKHS), use this

embedding to estimate pairwise distances between densities, use

Regularized Kernel Estimation (RKE) with the pairwise distances

to embed the subject (training) densities into a Euclidean space,

and use the Euclidean coordinates as attributes in a Smoothing

Spline ANOVA (SSANOVA) model. Elementary expository

introductions to RKHS, RKE and SSANOVA occupy most of this

talk.
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Outline Part1

• An example of a personal density.

• Introduction to Reproducing Kernel Hilbert Spaces (RKHS)

Outline Part 2 Personal densities as attributes

• Step 1: Embed densities in an RKHS to obtain pairwise

distances between densities.

• Step 2: Use Regularized Kernel Estimation (RKE) to map

densities into Er using pairwise distances to get

pseudo-attributes.

• Step 3: Use Radial Basis Function kernels to include the

pseudo-attributes of densities in SSANOVA Models.

Outline Part 3 Summary and Comments
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An example of a personal density

“A note on the probability distribution function of the surface

electromyogram signal ”. [Nazapour et al., 2013]

A surface electromyogram signal is the electrical manifestation of

neuromuscular activity, recorded at the surface of the skin. The left

figure is the trace at the Abductor Pollicis Brevis, the muscle

whose job is to move the thumb away from the palm. The hand

was restrained, and the signal was measured under four coditions of

activity, amplified, filtered and sampled at 10kHz. Density

estimates were obtained from the four sets of samples using Parzen

kernel density estimates. [Parzen, 1962b]
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An example (cont.)

90 K. Nazarpour et al. / Brain Research Bulletin 90 (2013) 88– 91

Fig. 1. (A) Representative example of raw EMG  data recorded from APB muscle at different percentages of MVC and the corresponding PDFs in (B) where the PDF  of a
Gaussian distributed variable of the same length is depicted by a dashed curve. At lower contraction levels the PDF of the EMG  signal is more peaked at zero. Note that for
clear  presentation we standardized the EMG recordings and hence the absolute scale of the vertical axes in (A) and (B) is arbitrary.

4. Concluding remarks

By analysis of the kurtosis of the EMG  signals we showed that at
low contraction levels, EMG  PDFs are more peaked at zero. When
the force level increases, the EMG  PDF tends to a more bell-shaped
Gaussian distribution. Related physiological work have shown that
increasing the force level will not only increase the rate of the
already firing motor units (temporal recruitment), but also recruits
more motor units of same or other types (Fuglevand et al., 1993).
The central limit theorem (CLT) predicts if sufficiently large num-
ber of (independent) motor units fire, the signal recorded from the
surface of the skin will be approximately normally distributed. Our
results are consistent with the predictions of the CLT.

Several earlier studies show that the sEMG signal irrespective of
the contraction force level exhibits a symmetric distribution func-
tion that leads to small skewness Cx

3(m, n) values (see (Nazarpour
et al., 2007) and reference therein). Authors of (Kaplanis et al.,
2000) and (Hussain et al., 2009) overlooked the fact that the so-
called bispectrum index-based Gaussianity test (Hinich, 1982) only
quantifies the skewness of a probability. Therefore, the Gaussian-
ity test in Hinich (1982) may  only be used to reject the Gaussianity
null hypothesis. If the bispectrum index is zero, the Gaussianity
of the process may  not be inferred since fourth and higher-order
cumulants and polyspectra would not necessarily be zero (Mendel,
1991). For instance, if a signal has a Laplacian distribution, the bis-
pectrum and all the odd-ordered polyspectra are zero, however,

Fig. 2. (A, B) present the averaged estimated kurtosis of the EMG  signals in a range of contraction level from four subjects; bars show the standard deviations. Clearly, with
an  increase in the contraction level the kurtosis values decreases. (C, D) depict the averaged values of the estimated mean bicoherence indices for the measured EMG from
the  same muscles. No clear trend for modulation of mean bicoherence index with the contraction.

Other biological time series where useful density information can be

captured by high frequency sampling suggest themselves.
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Introduction to RKHS, a trivial example

Ordinary ridge regression in d dimensions is a trivial example of an

RKHS. We use a simple form of ridge regression to explain this.

Let y = (y1, y2, · · · , yd) and f = (f1, f2, · · · , fd) be d dimensional

vectors and let Σ be a d× d (strictly) positive definite matrix. We

can define a square norm on vectors in Ed by ‖f‖2Σ = fΣ−1f ′.

Let the eigenvectors and eigenvalues of Σ be φν , λν , we have

Σij =
∑d
ν=1 λνφν(i)φν(j). Then

‖f‖2Σ =
d∑
ν=1

f2
ν

λν
where fν = (f, φν). (1)

Supposing y = f + e, where e is white Gaussian noise, then the

ridge regression estimate of f is the minimizer in Ed of

d∑
j=1

(yj − fj)2 + λ‖f‖2Σ. (2)
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Some geometry which will generalize from matrices to

kernels

Let < f, g >≡ f ′Σ−1g , let σj be the jth column of Σ, and let σjk

be the jk entry.

Σ−1Σ = I ⇒ Σ−1σj = (0, .., 0, 1, 0, .., 0)′ (3)

with 1 in the jth position, and

f ′Σ−1σj ≡< f, σj >= fj . (4)

σj is the “representer” of the value of the jth component of f .

Furthermore,

< σj , σk >= σjk. (5)

This is the “reproducing” property (!). Our vector space Ed is the

span of the representers. Next: From matrices to kernels.
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Introduction to RKHS, continued

Let T be some domain of interest, examples are [0, 1], the d

dimensional unit cube, the sphere, more complex domains to be

discussed. K(s, t) is a (strictly) positive definite kernel on T if

n∑
i,j=1

aiajK(ti, tj) > 0. (6)

for all {ai, aj}, ti, tj ∈ T , n = 1, 2, ....

Note that nothing is being assumed about the domain, other than

the existence of a positive definite function on it.
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Introduction to RKHS, continued

Manny was likely the first statistician to seriously introduce RKHSs

to statisticians. [Parzen, 1962a, Parzen, 1963, Parzen, 1970].

Moore-Aronszajn Theorem:

Let T be a domain on which a positive definite kernel,

K(s, t), s, t ∈ T is defined. Then there exists a unique RKHS HK
associated with K, and vice versa, for every RKHS there exists a

unique positive definite K. [Aronszajn, 1950] We just did the case

T is (1, 2, · · · , d).

More:
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Let Ks(t) ≡ K(s, t) as a function of t for each fixed s. Then, letting

< ·, · > be the inner product in HK , for f ∈ HK we have

< f,Ks > = f(s), (7)

Ks is the “representer” of the value of f at s and

< Ks,Kt > = K(s, t). (8)

This is the “reproducing” property of K.

The RKHS HK is the closure of the span of the representers.
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The Mercer theorem gives a class of kernels which are analogues of

Σ that appeared in the ridge regession case.

Mercer Theorem: Let T be a compact domain in Ed, and K

positive definite on T . Suppose
∫
T
∫
T K

2(s, t)dsdt = C <∞, then

there exists an eigenfunction-eigenvalue decomposition

K(s, t) =
∞∑
ν=1

λνφν(s)φν(t). (9)

[Riesz and Nagy, 1955] p243. Here, the λν are eigenvalues and the

φν (orthonormal) eigenfunctions with
∑∞
ν=1 λ

2
ν = C <∞.

The squared norm of f in this case is

‖f‖2K =

∞∑
ν=1

f2
ν

λν
, where fν =

∫
T
f(s)φν(s)ds. (10)
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Other reproducing kernels can be quite different, for example so

called radial basis functions (RBF’s), which depend only on the

(Euclidean) distance between pairs of points- e.g. the Gaussian

RBF:

K(s, t) = e−
1
σ2
‖s−t‖2 . (11)

Functions in this RKHS are infinitely differentiable. The Matern

class of RBF’s is a useful class of RBF’s, see [Bravo et al., 2009].

The squared norms can be expressed in terms of Fourier transforms.

Irrespective of the nature of the positive definite functions, let K1

be a positive definite function on the domain T1 and K2 be a

positive definite function on T2 then K = K1 ⊗K2 is a positive

definite function on the domain T = [T1 ⊗ T2].

With s1, t1 ∈ T1, s2, t2 ∈ T2, K(s1, s2; t1, t2) = K(s1, t1)K(s2, t2).

14 September 3, 2020



Let

yi = f(ti) + ei, i = 1, 2, · · · , n; ti ∈ T (12)

where e is white Gaussian noise. The penalized likelihood estimate

fλ of f ∈ HK is the solution to:

min
f∈HK

n∑
i=1

(yi − f(ti))
2 + λ‖f‖2K (13)

There may be other parameters hidden inside of K. For

classification, the sum of squares is replaced by a sum of hinge

functions (sometimes called the “kernel trick”). Or, it can be

replaced by a log likelihood from the exponential family.

In all these cases, the representer theorem

[Kimeldorf and Wahba, 1971] says that the minimizer will be in the

span of the Kti(t), i = 1, 2, · · · , n.
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How to use personal densities as attributes

Step 1: Embedding densities in an RKHS

Population case: Let p(t), be a density on some domain T , and let

HK be an RKHS with kernel K(·, ·). Then the embedding of p into

HK is given by

f(·) =

∫
t∈T

K(·, t)p(t)dt. (14)

Here f ∈ HK . The sample version of f is given by

fX(·) =
1

k

k∑
j=1

K(Xj , ·) (15)

where X1, . . . , Xk are k iid samples from p. If we were treating p as

an image of, say, an x-ray density, then the Xj would be on some

regular or otherwise designed grid.
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Given a sample from a possibly different distribution q say, we have

gY (·) =
1

`

∑̀
j=1

K(Yj , ·). (16)

Under appropriate conditions on K

[Sejdinovic et al., 2012, Sriperumbudur et al., 2011], two different

distributions will be mapped into two different elements of HK . See

also p. 727 of [Gretton et al., 2012]. The pairwise distances

between these two samples is taken as ‖fX − gY ‖K , which is:

1

k2

k∑
i,j=1

K(Xi, Xj) +
1

`2

∑̀
i,j=1

K(Yi, Yj)−
2

kl

k,∑̀
i=1,j=1

K(Xi, Yj). (17)

Note that if K is a nonnegative, bounded radial basis function,

then (up to scaling) we have mapped fX and gY into Parzen type

density estimates (!).
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Step 2: Using RKE to map densities in Er. Given the

pairwise distances from Step 1 embed the densities in a low

dimensional Euclidean space by by using Regularized Kernel

Estimation (RKE) [Lu et al., 2005] and then use the results in an

SS-ANOVA model.

For a given n× n dimensional positive definite matrix Σ, the

pairwise distance that it induces is

d̂ij = Σ(i, i) + Σ(j, j)− 2Σ(i, j). (18)

The RKE problem is as follows: Given observed data dij find Σ to

min
Σ�0

∑
(i,j)∈Ω

|dij − d̂ij |+ λ trace(Σ). (19)
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The data may be noisy/not Euclidean, but the RKE provides a

(non-unique) embedding of the n objects into an r- dimensional

Euclidean space (determined by λ) as follows: Let the spectral

decomposition of Σ be ΓΛΓT . The largest r eigenvalues and

eigenvectors of Σ are retained to give the n× r matrix Z = ΓrΛ
1/2
r .

We let the ith row of Z, an element of Er, be the pseudo-attribute

of the ith subject.
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Thus each subject may be identified with an r-dimensional pseudo

attribute, where the pairwise distances betwen the pseudo

attributes respect (approximately, depending on r) the original

pairwise distances. Even if the original pairwise distances may be

Euclidean, the RKE may be used as a dimension reduction

procedure where the original pairwise distances have been obtained

in a much larger space (e. g. an infinite dimensional RKHS). Note

that if used in a predictive model it is necessary to know how a

“newbie” fits in; this is discussed in [Lu et al., 2005].
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From [Lu et al., 2005] 3D representation of pairwise dissimilarity

scores between 280 protein sequences obtained from pairwise

alignment scores. RKE was used to get the Euclidean embedding

and λ was chosed to capture 95% of the trace of the fitted matrix.
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The effect of varying λ on the eigenvalues of the regularized

estimate of Σ, log scale.
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Step 3: SSANOVA models with densities as attributes,

using Radial Basis Function Kernels. Briefly, Smoothing

Spline ANOVA models of functions of d variables are of the form

f(t1, . . . , td) = µ+
∑
α

fα(tα) +
∑
αβ

fαβ(tα, tβ) + · · · (20)

and the terms satisfy ANOVA-like side conditions.

f is assumed to be in a tensor product space

H = ⊗dα=1Hα. (21)

Each Hα is an RKHS of functions on Tα that admits a

decomposition of the form

Hα = [1(α)]⊕H(α) (22)

with an averaging operator Eα such that Eα1(α) = 1 and Eαfα = 0

for fα ∈ H(α).
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Expanding H gives

H =
d∏

α=1

([1(α)]⊕H(α))

= [1]⊕
∑
α

H(α) ⊕
∑
α<β

[H(α) ⊗H(β)]⊕ · · · , (23)

where [1] denotes the constant functions on T = Πd
α=1 ⊗ Tα. Then

fα ∈ H(α), fαβ ∈ [H(α) ⊗H(β)] and so forth. Extensive literature

and software exists for fitting these models, examples include

[Gu, 2002, Wang, 2011, Wahba et al., 1995].
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To use the pseudo-attributes in Er found via RKE in an RKHS we

must confine ourselves to radial basis function kernels (RBF’s),

which depend only on pairwise distances between the arguments:

thus K(s, t) = k(‖s− t‖). Let H(α) be the RKHS associated with

k(·) and let k be (for example) the multivariate Gaussian with

argument ‖s− t‖. The constant function over Er is not in this

space with the Gaussian RBF kernel. Adjoin [1(α)] to this space

and define the averaging operator Eα needed for the ANOVA

decomposition as

Eαfα = lim
A→∞

1

Ar

∫ A/2

−A/2
. . .

∫ A/2

−A/2
fα(s)ds. (24)

See that Eα1(α) = 1 and Eαfα = 0 for fα in H(α). Thus, we have

the decomposition

Hα = [1(α)]⊕H(α) (25)

and this term can be combined into the SSANOVA model.

25 September 3, 2020



Thus training sets with observed or coded pairwise distances as

pseudo-attributes may be treated like other, direct, observations in

SSANOVA models.

Note that the r-variate Gaussian can be used as a density or as a

positive definite function, and any other multivariate density which

is an RBF when considered as a function of two arguments would

work.
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Summary and Comments

We have given an elementary introduction to RKHS and showed

how it can be used to estimate pairwise distances between

densities. We did not discuss how to choose kernels or how to

choose the tuning parameter(s) and other parameters inside K. We

did not discuss seminorms. We demonstrated how a large set of the

pairwise distances can be mapped into Euclidean space by using

RKE to get pseudo attributes, and how the pseudo attributes can

be used in a Smoothing Spline ANOVA model to incorporate them

along with other attributes in a penalized likelihood estimate for

prediction (or a support vector machine for classification.) It

remains to apply this way of looking at densities as attributes in an

analysis of an observational data set where personal densities can

interact with other variables in complex ways.
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