Variable Selection in Spline ANOVA Models

Hao Helen Zhang

North Carolina State University

Regression Problems

• Continuous Responses

$$y_i = f(x_i) + \epsilon_i, \quad i = 1, \cdots, n$$

 $x_i = (x_i^1, \cdots, x_i^d) \in R^d$, f(x) is the unknown regression function ϵ_i i.i.d. noise with mean 0 and variance σ^2

• Discrete Responses – Binary case $y_i \in \{0, 1\}$ p(x) = Prob(Y = 1 | X = x), the logit function

$$f(x) = \log\left[\frac{p(x)}{1 - p(x)}\right]$$

- – To estimate f(x) on the product domain $\mathcal{X} = \prod_{\alpha=1}^{\alpha} \mathcal{X}_{\alpha}$,
 - To select the important x's.

Variable Selection in Linear Models

Based on the ordinary least squares (OLS) estimates

- Best subset regression (exhaustive search)
 - expensive computation
 - the leaps and bounds by Furnival(1971) efficient for d < 30.
- Sequential search methods
 - forward selection; backward elimination
 - stepwise regression by Efroymson (1960)
- Criteria for inclusion/deletion
 - adjusted R^2 , Mean Squared Error, Mallow's C_p
 - F-statistic, AIC, BIC

Shrinkage Methods – Penalized Least Squares Estimates

• Bridge regression by Frank & Friedman (1993)

$$\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{d} \beta_j x_i^{(j)})^2 + \lambda \sum_{j=1}^{d} |\beta_j|^q, \quad q \ge 1$$

– LASSO by Tibshirani (1996) q = 1; Ridge regression q = 2.

• Nonnegative garrote by Breiman (1995)

$$\min_{\beta} \frac{1}{n} \sum_{i=1}^n \left(y_i - \sum_{j=1}^d c_j \hat{\beta}_j^{ols} x_i^{(j)} \right)^2 \quad \text{subject to} \quad c_j \ge 0, \sum_{j=1}^d |c_j| \le s.$$

• Smoothly clipped absolute deviation (SCAD) by Fan & Li (2001)

$$\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{d} \beta_j x_i^{(j)})^2 + \lambda \sum_{j=1}^{d} p_j (|\beta_j|)$$

Nonparametric Variable Selection

- Linear models
 - simple, easy to implement, easy to interprete, ...
 - lack of flexibility
- Nonlinear models
 - Classification and Regression Tree (CART)
 - Multivariate Adaptive Regression Spline (MARS)

— · · ·

Smoothing Spline ANOVA Models

In a reproducing kernel Hilbert space (RKHS),

$$\min_{f \in \mathcal{H}_K} \frac{1}{n} \sum_{i=1}^n \mathcal{C}(y_i, f(x_i)) + \lambda J(f)$$

- provides a rigorous nonparametric framework for multivariate functional estimate
- how to add variable selection features?
 - Likelihood basis pursuit (LBP) for regression
 - SVM basis pursuit for classification

Various Penalties in Regularization Framework

- \mathcal{C} is the fit to the data (e.g. least squares, likelihood, other loss functions)
- J(f) is the penalty of the estimator
 - Ordinary smoothing spline model uses the **squared RKHS norm**
 - Likelihood basis pursuit uses the l_1 norm of the basis coefficients
 - COSSO by Lin & Zhang (2002) uses the sum of component
 RKHS norms
- λ is the tuning parameter

Basis Pursuit

- 1. decompose a signal into an overcomplete set of basis functions
- 2. choose the optimal decomposition: the smallest l_1 norm of the coefficients
- Wavelet smoothing
 - Donoho & Johnstone (1994) SURE shrinkage (Stein Unbiased Risk Estimation)
 - Chen & Donoho (1998), Sardy (1997), etc.

Algorithm in Solving the LBP

- Original problem
 - Objective: likelihood plus absolute values of the coefficients
 - The second part is non-differentiable at the origin
- Transformed into a constrained nonlinear optimization
 - Objective: convex and differentiable, nonlinear
 - Polyhedral constraints
- MATLAB, GAMS, MINOS, · · ·

Incorporating Categorical Variables

- Examples: sex, race, drinking/smoking history, marital status
- Categorical predictors: $Z = (Z^1, \dots, Z^r) \in R^r$
- Assume each Z has C categories.
- $\bullet~{\rm The~simplest~case}~C=2.$ Binary responses {T, F}
 - Define a mapping $\Phi:\{T,F\}\longrightarrow \{\frac{1}{2},-\frac{1}{2}\}$ by

$$\Phi(z) = \frac{1}{2} \quad \text{if} \quad z = T \\ = -\frac{1}{2} \quad \text{if} \quad z = F$$

• For C > 2, we need C - 1 mappings.

Main Effects Model (Modified)

The overcomplete set of 1 + d + r + dN basis functions:

$$\{1, b^{\alpha}(x), \Phi^{\gamma}(z) \equiv \Phi(z^{\gamma}), B^{\alpha}_{j*}(x)\},\$$

for
$$\alpha = 1, \cdots, d, j * = 1, \cdots, N, \gamma = 1, \cdots, r$$
.

The likelihood basis pursuit model minimizes

$$\frac{1}{n} \sum_{i=1}^{n} \left[-l(y_i, f_i)\right] + \lambda_{\pi} \left(\sum_{\alpha=1}^{d} |b_{\alpha}| + \sum_{\gamma=1}^{r} |e_{\gamma}|\right) + \lambda_s \sum_{\alpha=1}^{d} \sum_{j=1}^{N} |c_{\alpha j*}|,$$

subject to

$$f(x,z) = b_0 + \sum_{\alpha=1}^d f_\alpha(x^\alpha) + \sum_{\gamma=1}^r e_\gamma \Phi^\gamma(z)$$
$$= b_0 + \sum_{\alpha=1}^d b_\alpha b^\alpha(x) + \sum_{\gamma=1}^r e_\gamma \Phi^\gamma(z)$$
$$+ \sum_{\alpha=1}^d \sum_{j*=1}^N c_{\alpha j*} B_{j*}^\alpha(x)$$

Two-factor Interaction Models (Modified)

Minimize

$$\begin{aligned} &\frac{1}{n} \sum_{i=1}^{n} \left[-l(y_{i}, f_{i})\right] + \lambda \pi \left(\sum_{\alpha=1}^{d} |b_{\alpha}| + \sum_{\gamma=1}^{r} |e_{\gamma}|\right) \\ &+ \lambda_{\pi\pi} \left(\sum_{\alpha<\beta} |b_{\alpha\beta}| + \sum_{\gamma<\theta} |e_{\gamma\theta}| + \sum_{\alpha=1}^{d} \sum_{\gamma=1}^{r} |P_{\alpha\gamma}|\right) \\ &+ \lambda_{\pi s} \left(\sum_{\alpha\neq\beta} \sum_{j*=1}^{N} |c_{\alpha\betaj*}^{\pi s}| + \sum_{\alpha=1}^{d} \sum_{\gamma=1}^{r} \sum_{j*=1}^{N} |c_{\alpha\gammaj*}^{\pi s}|\right) \\ &+ \lambda_{s} \left(\sum_{\alpha=1}^{d} \sum_{j*=1}^{N} |c_{\alphaj*}^{s}|\right) + \lambda_{ss} \left(\sum_{\alpha<\beta} \sum_{j*=1}^{N} |c_{\alpha\betaj*}^{ss}|\right), \end{aligned}$$

subject to

$$\begin{split} f(x,z) &= b_0 + \sum_{\alpha=1}^d b_\alpha b^\alpha(x) + \sum_{\gamma=1}^r e_\gamma \Phi^\gamma(z) + \sum_{\alpha<\beta} b_{\alpha\beta} b^\alpha(x) b^\beta(x) \\ &+ \sum_{\gamma<\theta} e_{\gamma\theta} \Phi^\gamma(z) \Phi^\theta(z) + \sum_{\alpha=1}^d \sum_{\gamma=1}^\theta P_{\alpha\gamma} b^\alpha(x) \Phi^\gamma(z) \\ &+ \sum_{\alpha=1}^d \sum_{j*=1}^N c^s_{\alpha j*} B^\alpha_{j*}(x) + \sum_{\alpha<\beta} \sum_{j*=1}^N c^{ss}_{\alpha\beta j*} B^\alpha_{j*}(x) B^\beta_{j*}(x) \\ &+ \sum_{\alpha\neq\beta} \sum_{j*=1}^N c^{\pi s}_{\alpha\beta j*} B^\alpha_{j*}(x) b^\beta(x) \\ &+ \sum_{\alpha=1}^d \sum_{\gamma=1}^r \sum_{j*=1}^N c^{\pi s}_{\alpha\gamma j*} B^\alpha_{j*}(x) \Phi^\gamma(z) \end{split}$$

Beaver Dam Eye Study (BDES)

- Funded by National Eye Institute (part of NIH)
- Collect information for the prevalence & incidence of age-related cataract, macular degeneration & diabetic retinopathy.
- Between 1987 and 1988, 5925 eligible people (age 43-84) identified in Beaver Dam, WI. Among them, 4926(83.1%) participated in the baseline exam.
- Two five-year follow-ups after the baseline examination

Response Variable Y: Five-year mortality for non-diabetic patients. Y was defined to be 1 if a patient participated the baseline examination and died prior to the start of the first 5-year follow-up.

Continuous Variables

- X_1 : *pky* pack years smoked (packs per day/20)*years
- X_2 : *sch* highest year of school/college completed
- X_3 : *inc* total household personal income
- X_4 : *bmi* body mass index, kg/ m^2
- X_5 : *glu* glucose (serum), mg/dL
- X_6 : *cal* calcium (serum), mg/dL
- X_7 : *chl* cholesterol (serum), mg
- X_8 : hgb hemoglobin (blood), g/dL
- X_9 : sys systolic blood pressure, mmHg
- X_{10} : age age at baseline examination, years

Categorical Variables

- Z_1 : *cv* history of cardiovascular disease. (0 = No, 1 = yes)
- Z_2 : sex sex. (0 = Female, 1 = Male)
- Z_3 : hair hair color. (0 = Blond/Red, 1 = Brown/Black)
- Z_4 : *hist* history of heavy drinking. (0 = Never, 1 = Past/Currently)
- Z_5 : nout winter leisure time. (0 = Spent mostly indoors, 1 = half/mostly spent outdoors)
- Z_6 : mar marital status. (0 = Never/Separated/Divorced/Widowed, 1 = Married)
- Z_7 : sum part of day spent outdoors in summer. (0 = < 1/4 of the day, 1 > = 1/4 of the day)
- Z_8 : *vtm* vitamin use. (0 = Never, 1 = Past/Current)

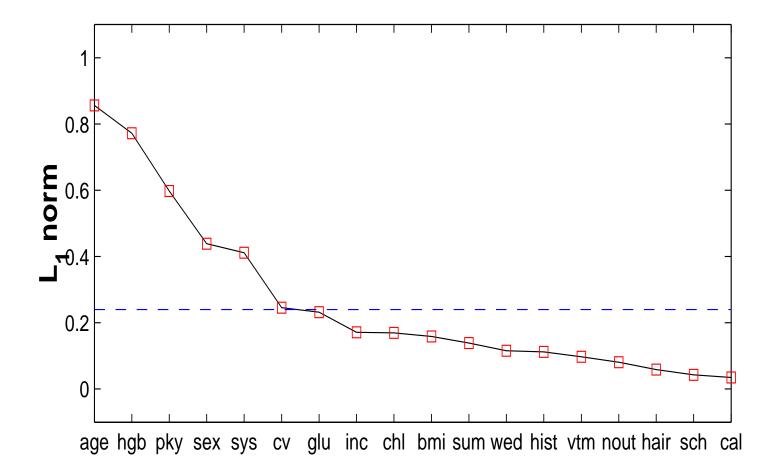


Figure 1: L_1 norm scores for the main effects model (BDES)

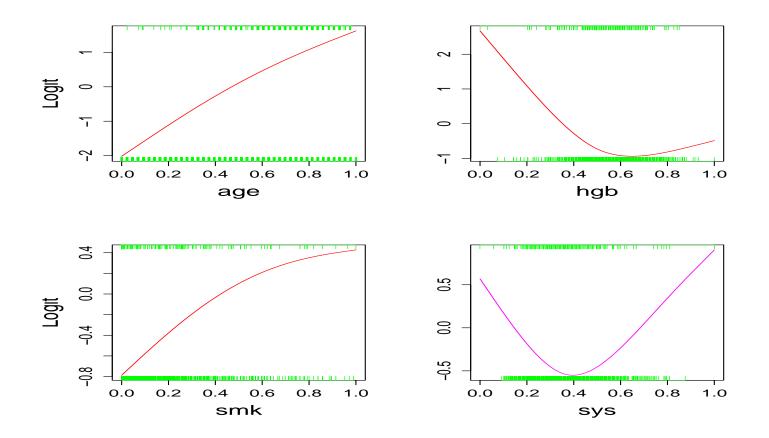


Figure 2: Estimated univariate logit component for important variables (BDES)

Classification Problem

Consider two-category classification first Class label $y_i \in \{-1, 1\}$ $x_i = (x_i^1, \cdots, x_i^d) \in R^d$

Estimate the boundary function f(x)

The classification rule is

$$\operatorname{sign}[f(x)]: R^d \to \{\pm 1\}$$

Support Vector Machines

$$\min_{f \in \mathcal{H}_{K}} \frac{1}{n} \sum_{i=1}^{n} [1 - y_{i} f(x_{i})]_{+} + \lambda ||f||_{\mathcal{H}_{K}}^{2}$$

where $[\tau]_+ = \tau$ if $\tau > 0$; = 0 otherwise.

- The loss function $[1 yf(x)]_+$ is called "hinge-loss".
- The classification rule is sign[f(x)].

SVM Basis Pursuit

• Main effects model

$$\min \frac{1}{n} \sum_{i=1}^{n} [1 - y_i f(x_i)]_+ + \lambda (\sum_{\alpha=1}^d |b_\alpha| + \sum_{\alpha=1}^d \sum_{j*=1}^N |c_{\alpha j*}|), \quad (1)$$

subject to

$$f(x) = b_0 + \sum_{\alpha=1}^d b_\alpha b^\alpha(x) + \sum_{\alpha=1}^d \sum_{j*=1}^N c_{\alpha j*} B_{j*}^\alpha(x),$$

- Two-way interaction model
- Advantage of Computation: Linear programming with linear constraints.

Example 1

- d = 8 covariates, taken uniformly from [0, 1] independently.
- Sample size n = 800 and the basis size N = 50.
- The true logit function is

$$\log\left[\frac{p(x)}{1-p(x)}\right] = \frac{4}{3}x_1 + \pi \sin(\pi x_3) + 8x_6^5 + \frac{2}{e-1}e^{x_8} - 5$$

• Tune the parameter λ in the range of $\log_2(\lambda) \in [-20, -1]$.

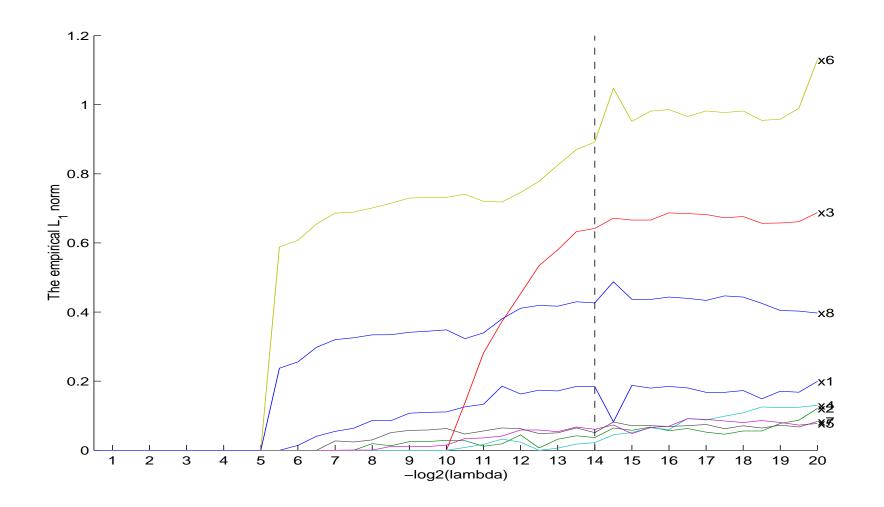


Figure 3: The empirical L_1 norm for the estimated components against λ

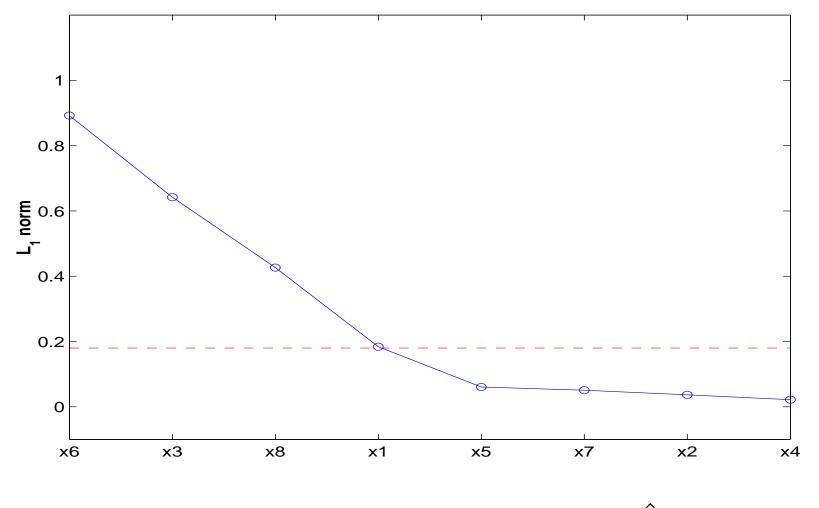


Figure 4: L_1 norm for individual variables (using $\hat{\lambda}_{CV})$

Table 4: The test error given by various classification rules

	Bayes Rule	SVM-BP	SVM
test error	0.2256	0.2400	0.3902

Summary

- Likelihood basis pursuit
 - Spline ANOVA framework
 - Simultaneous estimation and variable/component selection
- SVM basis pursuit
 - Two-category classification
 - Multiple-category classification