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Abstract

We describe two modern methods for statistical model
building and classification, penalized likelihood meth-
ods and and support vector machines (SVM’s). Both
are obtained as solutions to optimization problems in
reproducing kernel Hilbert spaces (RKHS). A training
set is given, and an algorithm for classifiying future ob-
servations is built from it. The (k-category) multichoto-
mous penalized likelihood method returns a vector of
probabilities (p1(t), - - - pr(t)) where t is the attribute
vector of the object to be classified. The multicate-
gory support vector vachine returns a classifier vec-
tor (f1(¢t),--- fr.(t)) satisfying >, fo(t) = O, where
maxyfp(t) identifies the category. The two category
SVM's are very well known, while the multi-category
SVM (MSVM) described here, which includes modifi-
cations for unequal misclassification costs and unrep-
resentative training sets, is new.



We describe applications of each method: For penal-
ized likelihood, estimating the 10-year probability of
death due to several causes, as a function of several
risk factors observed in a demographic study, and for
MSVM'’s, classifying radiance profiles from the MODIS
Instrument according to clear, water cloud or ice cloud.
Some computational and tuning issues are noted.
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& 0. Regularization Problems in RKHS
from Lecture 1

To set notation: The canonical regularization problem
In RKHS we discussed in the first lecture was: Given

{yiati}a Yi € S7t7, S T?

and {¢1, - ,¢n}, M special functions defined on
7, find f of the form
M
f= Z dvpv + h
vr=1

with h € H - to minimize

1 n
Ta{fouk == 30 Clui (1)) + MhliF
=1

1=
Today y; willjustbe aclass label, y; € S = {1,2,--- , k}
(k classes)



& 1. Optimal Classifi cation and the
Neyman-Pearson Lemma:

h 4
hp

h 4(-), hp(-) densities of ¢ for class .A and class B.
NOTATION:
w4 = prob. next observation (Y) is an A

mg = 1 — m 4 = prob. next observation is a B

p(t) = prob{Y = A|t}
mphA(1)
T Ah A(t) + 7hp(1)




& 1.0Optimal Classification and the
Neyman-Pearson Lemma (cont.).

Let ¢ 4 = cost to falsely call a B an A
cp = cost to falsely callan A a B

Bayes classification rule: Let

o)1 t—{g)

Optimum (Bayes) classifier: (Neyman-Pearson Lemma)
Minimizes the expected cost:

ie _p(t) CA
A TS > &

B otherwise.

PpopT(t) = {



$d 2. Penalized likelihood estimation, two classes.

Let f(t) = logp(t)/(1 — p(t)), the log odds ratio.
Assume (for simplicity only) % =1

Then the optimal classifier is
£(t) > 0 (equivalently, p(t) — % >0)— A
f(t) < 0 (equivalently, p(t) — 5 < 0) — B

To estimate f: Assume (again for simplicity only) that
the relative frequency of A’s in the training set is about
the same as in the general population:
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$d 2. Penalized likelihood estimation,two
classes(cont.).

Code the data as:

1 =A
— Important
Yq 0 B (imp )

The probability distribution function (likelihood) for y | p:

B 1—y __ |D fy=1
L(y,p) = p¥(1 —p) y—{(l_p) fy =0

and the negative log likelihood is

—log[p¥(1 — p)1]
—ylogp — (1 —y)log(1l —p).

Substituting p = e/ /(1 + /) gives
—log L(y, f) = —yf +log(1 +€’).

The penalized log likelihood estimate of f is obtained
by setting

Clyi, F(t:)) = —yif (t:) 4 10g(1 + /(1))
in the optimization problem Z, (f, y).

—log L

11



& 3. The Support Vector Machine, two classes.

1=
Yy = + 2 (note different coding)

Find f(t) = d + h(t) with h € Hj to min

n

S A —yf )+ +MRIF, )

1=1

where (7)1 = 7,7 > 0, = 0O otherwise.

S|

Then

@) =d+ 3 ciK(t, 1), (%)

1=1
Substitute (*) into (**), choose ), given \, find c and d.
The classifier is

(@) >0— A

i) <0—B

12



& 4. Penalized likelihood estimation and the SVM
compared:

Let us relabel y in the likelihood —

_[+1 it a4
T i B
Then

—yf +log(1+e/) — log(1 + e %)

Figure 1 compares

log(1+e ), (1—yf)y and (—yf)«

where

O otherwise.

(7)) = {1 if 7> 0,

(—yf)« is the misclassification counter.
(1 — yf)4 is known as the "hinge function”.

13
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Figure 1. Let C(y;, f(t;)) = c(yif(t)) = c(7).
Comparison of c(7) = (—7)x, (1—7) 4 and logo(1+
e~ 7). Any strictly convex function that goes through 1
at = = O will be an upper bound on the missclassifi-
cation counter (—7%) and will be a looser bound than
some SVM (hinge) function (1 — 7). Many other
"large margin” classifiers. (See [Wahba02]).
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&d 4. Penalized likelihood and the SVM
compared(cont.).

The penalized log likelihood estimate is tuned by a
criteria which chooses A to minimize a proxy for

R(\) = El Z _ynew-if)\(ti) + log(1 + ef)‘(ti))-
=1

[XiangWahba96]. R()\) is the expected ‘distance’ or
negative log likelihood for a new observation with the
samet;. [y, , estimates the log odds ratio log[p/(1 —

p)].

We say the SVM classifier is optimally tuned if we
have a criteria which chooses A\ to minimize a proxy
for

ROD =B >~ (1~ ynewifa(@)) -
1=1

That is, it is choosing A to minimize a proxy for an
an upper bound on the misclassification rate [LeeLin-
Wahba02][Wahba99].
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&d 4. Penalized likelihood and the SVM
compared(cont.).

What is the SVM estimating?
Lemma (Yi Lin [YLIn02])

The minimizer of E(1 — ynewf(t))4 is sign f(t)
(= sign (p(t) — 3) = sign (2p(t) — 1))

where f(t) = log p(t)/(1 — p(t)).

So the SVM, the solution of the problem: Find f\ =
d + h which minimizes

1 n
- S (1 = yif ) + Mlhliz,
i=1

where )\ is chosen to minimize (a proxy for) R()\), is
estimating sign f(¢) - not f(¢) itself, but just what you
need to minimize the misclassification rate.

16



& 4. Penalized likelihood and the SVM
compared(cont.).

15

-1F—-——-—-=- <’/ | — truth
-+ penalized likelihoog
— - SVM

-2 -1 0 1 2

300 Bernoulli random variables were generated, equally
spaced ¢ from p(t) = 0.4sin(0.4xt)+ 0.5 Solid line:
(2p(t) — 1). Dotted line:(2py — 1), py is (optimally
tuned) penalized likelihood estimate of p. Dashed line:
fsom X\ 1S (optimally tuned) SVM. Observe f,,, \ ~
+1, thus p, is estimating p(t), whereas f,,,, ) IS esti-
mating sign(2p—1) = sign(p—1/2)=sign f. (based
on Gaussian K) (plot: Yoonkyung Lee)
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& 5. Multichotomous penalized likelihood[XLin98].

k + 1 categories, k > 1. Let p;(t) be the probability
that a subject with attribute vector ¢ is in category j,
z§=O pj(t) = 1. From [XLin98]: Let

F2(t) =1ogp;(t)/po(t),j =1, -+ k.
Then:
FI(t) .
p]( ) 1+Z§:11 ef](t)7 .7 9 I
t e :
po(?) 1‘|‘Z§=1 oI (t)
Coding:

Yy, — (yila T 7yik)7

y;; = 1 if the ith subject is In category 5 and O other-
wise.
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& 5. Multichotomous penalized likelihood (cont.).

Letting f = (f1,---, f¥) the negative log likelihood
can be written as —logL(y, f)

S () + log(3 1+ P ).

1=1 1=1 1=1
where
M
fl="3" dyjdy+H
I/j:

A|[h[|%, . becomes

k
(12
2 MllA (17
j=1

and the optimization problem becomes: Minimize

k .
L(y, £) = —logL(y, f) + > Xl |3,
J=1

19



& 5. Multichotomous penalized likelihood (cont.).

10 year risk of mortality as a function of t = (z1, xp,x3) =
age, glycosylated hemoglobin, and systolic blood pres-
sure[From XLin98].

1.0
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0.0

x> and x3 set at their medians. The differences be-
tween adjacent curves (from bottom to top) are prob-
abilities p;(¢) for : O:alive, 1: diabetes, 2: heart attack,
3: other causes. f/(x1,x9,x3) =

w4 (1) + fB(@2) + f£xs) + HBalao, 23)
(Smoothing Spline ANOVA model.)
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& 6. Multicategory support vector machines
(MSVMSs).

From [LeeLinWahba02],[LWAOQ3], earlier reports.
k > 2 categories. Coding:

k
yi = (i1, > Yik)> Y Yij =0,

=1
In particular y;; = 1 if the «th subject Is in category j
and y;; = — 1 otherwise. y; = (1, — 327, , —727)

iIndicates y; is from category 1. The MSVM produces
f&) = (f1(8),--- f5(t)), with each f7 = d/ + hJ
with A7 € H -, required to satisfy a sum-to-zero con-
straint

k .
> @) =0,

=1
for all ¢ in 7. The largest component of f indicates
the classification.
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& 6. Multicategory support vector machines
(MSVMs)(cont.).

Let L;. = 1for j # r and O otherwise. The MSVM is
deflned as the vector of functions f,, = (ft, -+, f¥),
with each h* in Hj satisfying the sum-to-zero con-
straint, which minimizes

=1 r=1 ]:1
equivalently

- Z > <t>+—)++/\ Z W |13,

=1 r#cat(z)
where cat(7) is the category of y;.

The £k = 2 case reduces to the usual 2-category
SVM.

The target for the MSVM s f(t) = (f1(t),--- , f*(¢))
with f7(t) = 1 if p] (t) is bigger than the other p;(t)
and fI(t) = — 1 otherwise.

22



& 6. Multicategory support vector machines
(MSVMs)(cont.).

Above: Probabilities and target f7’s for three category
SVM demonstration.(Gaussian Kernel)

The left panel above gives the estimated f1, f2 and
f3. X and o were optimally tuned. (i. e. with the
knowledge of the ‘right’ answer). In the second from
left panel both A and o were chosen by 5-fold cross
validation in the MSVM and in the third panel they
were chosen by GACV. In the rightmost panel the clas-
sification is carried out by a one-vs-rest method.
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& 6. Multicategory support vector
machines(MSVMs)(cont.).

The nonstandard MSVM:

More generally, suppose the sample is not represen-
tative, and misclassification costs are not equal. Let

Ljr = (mj/m)Cr, JFT
Cr 1s the cost of misclassifying a j as an r, Crr =
0, m; Is the prior probability of category j, and wj IS
the fraction of samples from category j in the training
set. Then the nonstandard MSVM has as its target the
Bayes rule, which is to choose the 5 which minimizes

k
Y Cyipe(x)
(=1

24



& 7. Tuning the estimates.

GACYV (generalized approximate cross validation). Pe-
nalized likelihood: [XiangWahba96][XLin98];
SVM[Wahba99], MSVM[Lee02][LeeLinWahba02].

Leaving out one:
_1g 1]
Vo(A) = - > Clyi, /()
i=1
where f>[\i] IS the estimate without the ¢¢th data point.

GACY () == 3" Clyi, £(1)) + Dy, /)
1=1

where

1 2 :
Dy f3) ~ - 3 {Cluis 1)) = Cluis (1) |
i=1
IS obtained by a tailored perturbation argument. Easy
to compute for the SVM, use randomized trace tech-
niques to estimate the perturbation in the likelihood

case.
25



& & 8. The classification of upwelling MODIS
radiance data to clear sky, water clouds or ice clouds.

From [LWAO3].Classification of 12 channels of upwelling
radiance data from the satellite- borne MODIS instru-
ment. MODIS is a key part of the Earth Observing
System (EQOS).

Classify each vertical profile as coming from clear sky,
water clouds, or ice clouds.

Next page: 744 simulated radiance profiles (81 clear-
blue, 202 water clouds-green, 461 ice clouds-purple).
10 samples from clear, from water and from ice:

26
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Classification boundaries on the 374 test set deter-
mined by the MSVM using 370 training examples, two
variables, one is composite. Y. K. Lee Student poster prize AMet-

Soc Satellite Meteorology and Oceanography session.
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& 9. Closing Remarks

We have examined two class and multi-class penal-
ized likelihood estimates and Support Vector Machines,
both of which can be obtained as optimization prob-
lems in an RKHS. Non-representative samples and
unequal misclassification costs can be handled. Newton-
Raphson and Mathematical Programming are used
to solve the optimization problems. Downhill simplex
works well for searching multiple \'s. Convergence
theory of various penalized likelihood models have been
around a long time, convergence theory for the SVM
(to sign f) and MSVM (to its target) is younger. Pe-
nalized likelihood estimates and SVM'’s are just two of
the many examples of optimization problems related
to regularization in RKHS, which have many useful
scientific applications.
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