# Different penalties in the method of regularization: two examples

Yi Lin

University of Wisconsin – Madison

#### **Contents**

- 1. Gaussian reproducing kernel penalty in regression.
- 2. Sparsity penalty in nonparametric functional ANOVA.

# The regression problem

$$y_i = f(\mathbf{x}_i) + \epsilon_i, \quad i = 1, \dots, n,$$

f: unknown regression function to be estimated.

 $\mathbf{x}_i = (x_i^{(1)}, ..., x_i^{(d)}) \in \mathbb{R}^d.$ 

 $\epsilon$ : i.i.d. noise with mean 0 and variance  $\sigma^2$ .

# The method of regularization

Find  $f \in \mathcal{H}_K$  minimizing

$$\frac{1}{n}\sum_{i=1}^{n}[y_i - f(\mathbf{x}_i)]^2 + \lambda J(f),$$

where  $\mathcal{H}_K$  is the RKHS corresponding to the reproducing kernel K, and  $J(\cdot)$  is a penalty functional in  $\mathcal{H}_K$ , typically a squared norm or semi-norm.

**Example 1** Cubic smoothing spline: find  $f \in S_2$  minimizing

$$\frac{1}{n}\sum_{i=1}^{n}[y_i - f(x_i)]^2 + \lambda \int_0^1 (f'')^2,$$

where the second order Sobolev Hilbert space  $S_2$  is a RKHS.

# Gaussian reproducing kernel

Gaussian reproducing kernel:  $G(s,t) \equiv G(s-t)$ , where  $G(\cdot)$  is the density function of  $N(0, \omega^2)$ . The corresponding penalty functional is (up to a constant)

$$J_g(f) = \sum_{m=0}^{\infty} \frac{\omega^{2m}}{2^m m!} \int_{-\infty}^{\infty} [f^{(m)}(x)]^2 dx.$$

Periodic Gaussian kernel for estimating periodic functions in  $[-\pi, \pi]$ :  $G^{\infty}(s,t) = G^{\infty}(s-t)$ , where  $G^{\infty}(r) = \sum_{k=-\infty}^{\infty} G(r-2k\pi)$ . The corresponding penalty functional is

$$J_0(f) = \sum_{m=0}^{\infty} \frac{\omega^{2m}}{2^m m!} \int_{-\pi}^{\pi} [f^{(m)}(x)]^2 dx.$$

The corresponding function space  $(H_{\omega}^{\infty})$  can be seen as Sobolev Hilbert space of infinite order.

# The white noise problem

$$Y_n(t) = \int_{-\pi}^t f(u) du + n^{-1/2} B(t), \quad t \in [-\pi, \pi],$$

where B(t) is a standard Brownian motion on  $[-\pi, \pi]$  and we observe  $Y_n = (Y_n(t), -\pi \le t \le \pi)$ .

**Remark 1** There are results on the equivalence between the white noise problem and

Gaussian nonparametric regression (Brown and Low, 1996); density estimation (Nussbaum, 1996); spectral density estimation (Golubev and Nussbaum, 1998); nonparametric generalized regression (Grama and Nussbaum, 1997).

# **Periodic Gaussian regularization**

Lin and Brown (2002):

**Theorem 1** The periodic Gaussian regularization in the white noise model is asymptotically minimax in the infinite order Sobolev ball  $H^{\infty}_{\omega}(Q)$ , if the smoothing parameters are appropriately chosen. **Theorem 2** The periodic Gaussian regularization in the white noise model is asymptotically minimax in the analytical function space ball  $A_{\alpha}(Q)$ , if the smoothing parameters are appropriately chosen.

**Theorem 3** The periodic Gaussian regularization in the white noise model is rate optimal in the m-th order Sobolev Hilbert ball  $H^m(Q)$  for  $m \ge 1$ , if the smoothing parameters are appropriately chosen.

**Theorem 4** The smoothing parameters can be chosen adaptively without loss of asymptotic efficiency.

#### The efficiency in Sobolev balls



# Smoothing spline ANOVA

$$f(\mathbf{x}) = b + \sum_{j=1}^{d} f_j(x^{(j)}) + \sum_{j < k} f_{jk}(x^{(j)}, x^{(k)}) + \cdots,$$

where the identifiability of the terms is assured by side conditions through averaging operators. The sequence is usually truncated to enhance interpretability. [Wahba (1990), Wahba et al. (1995), and Gu (2002)]. SS-ANOVA extends the popular additive model.

# The function space for SS-ANOVA

Let  $H^j$  be the second order Sobolev space of functions of  $x^{(j)}$  over [0,1] with inner product  $(g_1, g_2) = \int_0^1 g_1 \int_0^1 g_2 + \int_0^1 g'_1 \int_0^1 g'_2 + \int_0^1 g''_1 g''_2$ . We can write  $H^j = \{1\} \oplus \overline{H}^j$ . Then

$$\otimes_{j=1}^{d} H^{j} = \{1\} \oplus \sum_{j=1}^{d} \bar{H}^{j} \oplus \sum_{j < k} [\bar{H}^{j} \otimes \bar{H}^{k}] \oplus \cdots$$

In general, we can write  $f = b + \sum_{\alpha=1}^{p} f^{\alpha}$ , with each component function  $f^{\alpha}$  in a different component space  $\mathcal{F}^{\alpha}$  in the above decomposition. Write

$$\mathcal{F} = \{1\} \oplus \left( igoplus_{lpha = 1}^p \mathcal{F}^lpha 
ight).$$

# The COSSO

Smoothing spline: find  $f \in \mathcal{F}$  to minimize

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i))^2 + \tau^2 \sum_{\alpha=1}^{p} \theta_{\alpha}^{-1} \|f^{\alpha}\|^2,$$

where  $\tau$  and  $\theta_{\alpha}$ 's are tuning parameters (confounded). The COSSO (Lin and Zhang, 2002): find  $f \in \mathcal{F}$  to minimize

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i))^2 + \tau^2 \sum_{\alpha=1}^{p} \|f^{\alpha}\|_{x_i}$$

The COSSO reduces to LASSO (Tibshirani, 1996) in linear models, but with a different interpretation of the penalty.

# Theoretical properties of the COSSO

Write  $\mathbf{y} = (y_1, ..., y_n)'$ ,  $\mathbf{f} = (f(\mathbf{x}_1), ..., f(\mathbf{x}_n))$ . Define  $\|\cdot\|_n$  and  $\langle \cdot, \cdot \rangle_n$  in  $\mathbb{R}^n$  as

$$\|\mathbf{f}\|_n^2 = \frac{1}{n} \sum_{i=1}^n f^2(\mathbf{x}_i), \quad \langle \mathbf{f}, \mathbf{g} \rangle_n = \frac{1}{n} \sum_{i=1}^n f(\mathbf{x}_i) g(\mathbf{x}_i);$$

**Theorem 5** Consider the additive model with each component function in a second order Sobolev space. Assume  $\epsilon_i$ 's are i.i.d.  $N(0, \sigma^2)$  noises. Let  $\hat{f}$  be the COSSO estimator. Then we have  $\|\hat{\mathbf{f}} - \mathbf{f}\|_n = O_p(n^{-2/5})$  when  $\tau \sim n^{-2/5}$ .

#### Tensor product design case

The design points are

{
$$(x_{i_1,1}, x_{i_2,2}, ..., x_{i_d,d})$$
 :  $i_k = 1, ..., n_k, k = 1, ..., d$ },

where  $x_{j,k} = j/n_k$ ,  $j = 1, ..., n_k$ , k = 1, ..., d. We assume  $N(0, \sigma^2)$  noises for  $\epsilon$ 's.

It can be shown that the COSSO operates on components in a fashion similar to soft thresholding. If  $\lambda \to 0$  and  $n\lambda \to \infty$ , then with probability tending to one, the COSSO chooses the right model structure.

# An equivalent form of the COSSO

Find  $\theta = (\theta_1, ..., \theta_p) \ge 0$  and  $f \in \mathcal{F}$  to minimize

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i))^2 + \lambda_0 \sum_{\alpha=1}^{p} \theta_{\alpha}^{-1} \|f^{\alpha}\|^2 + \lambda \sum_{\alpha=1}^{p} \theta_{\alpha},$$

where  $\lambda_0$  is a fixed constant, and  $\lambda$  is a tuning parameter. **Lemma 1** Set  $\lambda = \tau^4/(4\lambda_0)$ . (i) Let  $\hat{f}$  be a COSSO estimate. Set  $\hat{\theta}_{\alpha} = \lambda_0^{1/2} \lambda^{-1/2} ||\hat{f}^{\alpha}||$ , then the pair  $(\hat{\theta}, \hat{f})$  minimizes the above.

(ii) On the other hand, if a pair  $(\hat{\theta}, \hat{f})$  minimizes the above, then  $\hat{f}$  is a COSSO estimate.

## The algorithm

It can be shown

$$f(\mathbf{x}) = \sum_{i=1}^{n} c_i R_{\theta}(\mathbf{x}_i, \mathbf{x}) + b,$$

where  $\mathbf{c} = (c_1, ..., c_n)' \in \mathbb{R}^n$ ,  $b \in \mathbb{R}$ , and  $R_{\theta} = \sum_{\alpha=1}^p \theta_{\alpha} R_{\alpha}$ , with  $R_{\alpha}$  being the reproducing kernel of  $\mathcal{F}^{\alpha}$ . Therefore

$$\mathbf{f} = R_{\theta}\mathbf{c} + b\mathbf{1},$$

and COSSO (the equivalent form) is to minimize

$$\|\mathbf{y} - R_{\theta}\mathbf{c} - b\mathbf{1}\|_{n}^{2} + \lambda_{0}\mathbf{c}'R_{\theta}\mathbf{c} + \lambda\sum_{\alpha=1}^{p}\theta_{\alpha},$$

where  $\theta_{\alpha} \geq 0$ ,  $\alpha = 1, ..., p$ .

# The algorithm (cont.)

If  $\theta$ 's were known, then the problem is exactly a smoothing spline problem.

If c and b were known, denote  $g_{\alpha} = R_{\alpha}c$ , and let G be the  $n \times p$  matrix with the  $\alpha$ -th column being  $g_{\alpha}$ . To solve for  $\theta = (\theta_1, ..., \theta_p)'$ ,

 $\min(\mathbf{z} - G\theta)'(\mathbf{z} - G\theta),$ 

subject to  $\theta_{\alpha} \ge 0$ ,  $\alpha = 1, ..., p$ , and  $\sum_{\alpha=1}^{p} \theta_{\alpha} \le M$ , where  $\mathbf{z} = \mathbf{y} - (1/2)n\lambda_0\mathbf{c} - b\mathbf{1}$ . This is the nonnegative garrote.

The algorithm iterates between the smoothing spline and the nonnegative garrote. Can be viewed as iterative improvements on the smoothing spline.

# The one-step update algorithm

For fixed  $\lambda_0$  and M,

- 1. Initialization: fix  $\theta_{\alpha} = 1$ ,  $\forall \alpha = 1, ..., p$ .
- 2. Solve for c and b with smoothing spline.
- 3. For the c and b obtained in step 2, solve for  $\theta$  with nonnegative garrote.
- 4. With the new  $\theta$ , solve for c and b with smoothing spline.

We use 5-fold cross validation to select the tuning parameter. We fix  $\lambda_0$  at the optimal smoothing spline tuning parameter when  $\theta$ 's are fixed at 1. We tune M between 0 and 35.

#### **Basic functions used in simulations**

$$g_1(t) = t;$$
  $g_2(t) = (2t - 1)^2;$   $g_3(t) = \frac{\sin(2\pi t)}{2 - \sin(2\pi t)};$ 

$$g_4(t) = 0.1\sin(2\pi t) + 0.2\cos(2\pi t) + 0.3\sin^2(2\pi t) + 0.4\cos^3(2\pi t) + 0.5\sin^3(2\pi t).$$

#### Plots of the basic functions



# **Distribution of** *X* **in the simulations**

Compound symmetry: Let  $W_1$ , ...,  $W_d$  and U be i.i.d from Unif(0,1), and let  $X_j = (W_j + tU)/(1 + t)$ . Therefore  $corr(X_j, X_k) = t^2/(1 + t^2)$ .

(trimmed) AR(1): Let  $W_1$ , ...,  $W_d$  be i.i.d N(0, 1), and let  $X_1 = W_1$ ,  $X_j = \rho X_{j-1} + (1 - \rho^2)^{1/2} W_j$ , j = 2, ..., d. Trimmed in [-2.5, 2.5] and scaled to [0, 1].

#### Simulation 1

n = 100, d = 10.  $\epsilon \sim N(0, 1.74)$ . Signal to noise ratio is 3:1.

$$f(\mathbf{x}) = 5g_1(x_1) + 3g_2(x_2) + 4g_3(x_3) + 6g_4(x_4).$$

In the uniform setting  $var(5g_1(X_1)) = 2.08$ ,  $var(3g_2(X_2)) = 0.80$ ,  $var(4g_3(X_3)) = 3.30$  and  $var(6g_4(X_4)) = 9.45$ . Both COSSO and MARS are run with additive models.

#### Magnitude of the components



Magnitude of components varying with M. ( $\lambda_0 = 10^{-5}$ )

# **Estimated function components**



The estimated components and the true components. (M = 3.5)

# Mean integrated squared error (MISE)

Estimated mean integrated squared error (ISE =  $E_X[\hat{f}(X) - f(X)]^2$ ) over 100 runs. The numbers in the parentheses are the standard errors.

 $\begin{array}{c|c} \mbox{Compound Symmetry} \\ \hline t = 0 & t = 1 & t = 3 \\ \hline \mbox{COSSO} & 0.80 \ (0.03) & 0.97 \ (0.05) & 1.07 \ (0.06) \\ \mbox{MARS} & 1.57 \ (0.07) & 1.24 \ (0.06) & 1.30 \ (0.06) \\ \hline \mbox{Trimmed AR(1)} \\ \hline \mbox{$\rho = -0.5$} & \mbox{$\rho = 0$} & \mbox{$\rho = 0.5$} \\ \hline \mbox{COSSO} & 1.03 \ (0.06) & 1.03 \ (0.06) & 0.98 \ (0.05) \\ \mbox{MARS} & 1.32 \ (0.07) & 1.34 \ (0.07) & 1.36 \ (0.08) \\ \end{array}$ 

## Term frequencies and model sizes

In the X uniform case, in 100 runs,

| Varia | able | 1   |   | 2  | 3   | 4     | 5     | 6 | 6 | 7  | 8  | 9   | 10 |
|-------|------|-----|---|----|-----|-------|-------|---|---|----|----|-----|----|
| COS   | SO   | 100 | ç | )4 | 100 | 100   | 1     | 1 |   | 3  | 2  | 4   | 2  |
| MAF   | RS   | 100 | 1 | 00 | 100 | 100   | 35    | 3 | 5 | 34 | 39 | 28  | 35 |
|       |      |     |   |    |     |       |       |   |   |    |    |     |    |
|       |      |     |   |    | Ν   | lodel | sizes | 5 |   |    |    |     |    |
|       |      | _   | 3 | 4  | 5   | 6     | 7     | 8 | 9 | 10 | M  | ean |    |
| _     | COS  | SSO | 6 | 84 | 7   | 3     | 0     | 0 | 0 | 0  | 4  | .07 |    |
|       | MA   | RS  | 0 | 4  | 24  | 40    | 26    | 6 | 0 | 0  | 6  | .06 |    |

# Model sizes in various setting

Mean and standard deviation of the size of the models chosen in 100 runs.

|       | Comp.     | symm.     | AR(1)         |            |              |  |
|-------|-----------|-----------|---------------|------------|--------------|--|
|       | t = 1     | t = 3     | $\rho = -0.5$ | $\rho = 0$ | $\rho = 0.5$ |  |
| COSSO | 4.1 (1.2) | 4.4 (1.9) | 4.1 (1.2)     | 4.0 (1.0)  | 3.8 (0.9)    |  |
| MARS  | 6.3 (0.9) | 6.2 (0.9) | 6.1 (1.0)     | 6.1 (0.8)  | 5.9 (0.8)    |  |

#### Simulation 2

 $n = 500, d = 60, \epsilon \sim N(0, 0.5184).$ 

$$f(\mathbf{x}) = g_1(x_1) + g_2(x_2) + g_3(x_3) + g_4(x_4) + 1.5g_1(x_5) + 1.5g_2(x_6) + 1.5g_3(x_7) + 1.5g_4(x_8) + 2g_1(x_9) + 2g_2(x_{10}) + 2g_3(x_{11}) + 2g_4(x_{12}).$$

In the uniform setting  $var(g_1(X_1)) = 0.08$ ,  $var(g_2(X_2)) = 0.09$ ,  $var(g_3(X_3)) = 0.21$  and  $var(g_4(X_4)) = 0.26$ .

Both COSSO and MARS are run with additive models.

100 runs.

#### MISE and model sizes

| Estimated MISE in unit of $10^{-3}$ |       |         |         |              |               |  |  |
|-------------------------------------|-------|---------|---------|--------------|---------------|--|--|
| Comp. symm. AR(1)                   |       |         |         |              |               |  |  |
|                                     |       | t = 0   | t = 1   | $\rho = 0.5$ | $\rho = -0.5$ |  |  |
|                                     | COSSO | 144 (4) | 162 (5) | 153 (4)      | 149 (5)       |  |  |
|                                     | MARS  | 353 (7) | 302 (7) | 286 (6)      | 280 (5)       |  |  |



#### Simulation 3

d = 10, uniform setting,  $\epsilon \sim N(0, 0.065)$ .

$$f(\mathbf{x}) = g_1(x_1) + g_2(x_2) + g_3(x_3) + g_4(x_4) + g_1(x_3x_4) + g_2(\frac{x_1 + x_3}{2}) + g_3(x_1x_2);$$

n = 100n = 200n = 400COSSO0.378 (0.005)0.094 (0.004)0.043 (0.001)MARS0.239 (0.008)0.109 (0.003)0.084 (0.001)

The estimated MISE of COSSO and MARS over 100 runs. Both are run with two-way interaction models.

# Circuit examples (Friedman, 1991)

Dependence of the impedance Z and phase shift  $\phi$  on components in the circuit.

$$Z = [R^{2} + (\omega L - 1/(\omega C))^{2}]^{1/2},$$
  
$$\phi = \tan^{-1} \left[ \frac{\omega L - 1/(\omega C)}{R} \right].$$

Input variables uniform in the range  $0 \le R \le 100$ ,  $40\pi \le \omega \le 560\pi$ ,  $0 \le L \le 1$ , and  $1 \le C \le 11$ .

In the first example,  $\epsilon \sim N(0, 15625)$ . In the second example,  $\epsilon \sim N(0, 0.01)$ . In both examples, signal to noise ratio is 3:1.

# **MISE in circuit examples**

| Estimating Z (in the unit of $10^3$ ). |             |             |             |  |  |  |
|----------------------------------------|-------------|-------------|-------------|--|--|--|
|                                        | n = 100     | n = 200     | n = 400     |  |  |  |
| COSSO                                  | 1.91 (0.12) | 0.85 (0.05) | 0.51 (0.03) |  |  |  |
| MARS                                   | 5.57 (0.41) | 2.47 (0.16) | 1.37 (0.08) |  |  |  |

Estimating  $\phi$  (in the unit of  $10^{-3}$ ).

|       | n = 100      | $n \equiv 200$            | n = 400                  |
|-------|--------------|---------------------------|--------------------------|
| COSSO | 12.98 (0.36) | 7.96 (0.20)               | 5.36 (0.10)              |
| MARS  | 20.59 (0.96) | 12.60 (0.71) <sup>a</sup> | 8.19 (0.14) <sup>b</sup> |

a. Excluded one extreme outlier.

b. Excluded three extreme outliers.

#### **Real examples**

**Ozone data** The daily maximum one-hour-average ozone reading and 8 meteorological variables were recorded in the Los Angeles basin for 330 days of 1976.

**Boston housing data** Housing values in suburbs of Boston. There are 12 input variables. The sample size is 506.

Tecator data Data recorded on a Tecator Infratec Food and Feed Analyzer working in the wavelength range 850-1050 nm by the Near Infrared Transmission (NIT) principle. Each sample contains finely chopped pure meat with different fat contents. The input vector consists of a 100 channel spectrum of absorbances. As recommended in the document, we use the first 13 principal components to predict the fat content. The total sample size is 215.

#### Results on real examples

|       | Ozone        | Boston       | Tecator     |
|-------|--------------|--------------|-------------|
| COSSO | 16.04 (0.06) | 9.89 (0.08)  | 0.92 (0.02) |
| MARS  | 18.24 (0.45) | 14.31 (0.34) | 4.99 (1.07) |

The average prediction error of COSSO and MARS in some real examples as estimated by averaging five 10-fold cross validations. Both COSSO and MARS are run with two-way interaction models.

# Summary

Different penalties can be used in the method of regularization for different purposes.

- 1. The periodic Gaussian kernel regularization adapts to different order of smoothness.
- 2. The COSSO simultaneously does model selection and estimation. It solves a global minimization problem. This is one reason why it can outperform greedy search type algorithms.

#### References

Lin, Y. and Brown, L. D. (2002): Statistical properties of the method of regularization with periodic Gaussian reproducing kernel. Lin, Y. and Zhang, H. (2002): Component selection and smoothing in smoothing spline analysis of variance models.

The papers and software are available at http://www.stat.wisc.edu/~yilin/papers/papers.html.