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The regression problem

yi = f(xi) + εi, i = 1, ..., n,

f : unknown regression function to be estimated.

xi = (x
(1)
i , ..., x

(d)
i ) ∈ Rd.

ε: i.i.d. noise with mean 0 and variance σ2.
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The method of regularization

Find f ∈ HK minimizing

1

n

n
∑

i=1

[yi − f(xi)]
2 + λJ(f),

where HK is the RKHS corresponding to the reproducing kernel K,
and J(·) is a penalty functional in HK , typically a squared norm or
semi-norm.
Example 1 Cubic smoothing spline: find f ∈ S2 minimizing

1

n

n
∑

i=1

[yi − f(xi)]
2 + λ

∫ 1

0

(f ′′)2,

where the second order Sobolev Hilbert space S2 is a RKHS.
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Gaussian reproducing kernel

Gaussian reproducing kernel: G(s, t) ≡ G(s − t), where G(·) is the
density function of N(0, ω2). The corresponding penalty
functional is (up to a constant)

Jg(f) =
∞
∑

m=0

ω2m

2mm!

∫

∞

−∞

[f (m)(x)]2dx.

Periodic Gaussian kernel for estimating periodic functions in [−π, π]:
G∞(s, t) = G∞(s − t), where G∞(r) =

∑

∞

k=−∞
G(r − 2kπ). The

corresponding penalty functional is

J0(f) =
∞
∑

m=0

ω2m

2mm!

∫ π

−π

[f (m)(x)]2dx.

The corresponding function space (H∞

ω ) can be seen as
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The white noise problem

Yn(t) =

∫ t

−π

f(u)du + n−1/2B(t), t ∈ [−π, π],

where B(t) is a standard Brownian motion on [−π, π] and we
observe Yn = (Yn(t),−π ≤ t ≤ π).
Remark 1 There are results on the equivalence between the white
noise problem and
Gaussian nonparametric regression (Brown and Low, 1996);
density estimation (Nussbaum, 1996); spectral density estimation
(Golubev and Nussbaum, 1998); nonparametric generalized
regression (Grama and Nussbaum, 1997).
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Periodic Gaussian regularization

Lin and Brown (2002):
Theorem 1 The periodic Gaussian regularization in the white
noise model is asymptotically minimax in the infinite order Sobolev
ball H∞

ω (Q), if the smoothing parameters are appropriately chosen.
Theorem 2 The periodic Gaussian regularization in the white
noise model is asymptotically minimax in the analytical function
space ball Aα(Q), if the smoothing parameters are appropriately
chosen.
Theorem 3 The periodic Gaussian regularization in the white
noise model is rate optimal in the m-th order Sobolev Hilbert ball
Hm(Q) for m ≥ 1, if the smoothing parameters are appropriately
chosen.
Theorem 4 The smoothing parameters can be chosen adaptively
without loss of asymptotic efficiency.
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The efficiency in Sobolev balls
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Smoothing spline ANOVA

f(x) = b +
d
∑

j=1

fj(x
(j)) +

∑

j<k

fjk(x
(j), x(k)) + · · ·,

where the identifiability of the terms is assured by side conditions
through averaging operators. The sequence is usually truncated to
enhance interpretability. [Wahba (1990), Wahba et al. (1995), and
Gu (2002)]. SS-ANOVA extends the popular additive model.
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The function space for SS-ANOVA

Let Hj be the second order Sobolev space of functions of x(j) over
[0, 1] with inner product (g1, g2) =

∫ 1

0
g1

∫ 1

0
g2 +

∫ 1

0
g′

1

∫ 1

0
g′

2 +
∫ 1

0
g′′

1g
′′

2 .
We can write Hj = {1} ⊕ H̄j. Then

⊗d
j=1H

j = {1} ⊕
d
∑

j=1

H̄j ⊕
∑

j<k

[H̄j ⊗ H̄k] ⊕ · · · .

In general, we can write f = b +
∑p

α=1 fα, with each component
function fα in a different component space Fα in the above
decomposition. Write

F = {1} ⊕

(

p
⊕

α=1

Fα

)

.
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The COSSO

Smoothing spline: find f ∈ F to minimize

1

n

n
∑

i=1

(yi − f(xi))
2 + τ 2

p
∑

α=1

θ−1
α ‖fα‖2,

where τ and θα’s are tuning parameters (confounded).
The COSSO (Lin and Zhang, 2002): find f ∈ F to minimize

1

n

n
∑

i=1

(yi − f(xi))
2 + τ 2

p
∑

α=1

‖fα‖.

The COSSO reduces to LASSO (Tibshirani, 1996) in linear
models, but with a different interpretation of the penalty.
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Theoretical properties of the COSSO

Write y = (y1, ..., yn)′, f = (f(x1), ..., f(xn)). Define ‖ · ‖n and 〈·, ·〉n
in Rn as

‖f‖2
n =

1

n

n
∑

i=1

f 2(xi), 〈f ,g〉n =
1

n

n
∑

i=1

f(xi)g(xi);

Theorem 5 Consider the additive model with each component
function in a second order Sobolev space. Assume εi’s are i.i.d.
N(0, σ2) noises. Let f̂ be the COSSO estimator. Then we have
‖f̂ − f‖n = Op(n

−2/5) when τ ∼ n−2/5.
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Tensor product design case

The design points are

{(xi1,1, xi2,2, ..., xid,d) : ik = 1, ..., nk, k = 1, ..., d},

where xj,k = j/nk, j = 1, ..., nk, k = 1, ..., d. We assume N(0, σ2)
noises for ε’s.
It can be shown that the COSSO operates on components in a
fashion similar to soft thresholding. If λ → 0 and nλ → ∞, then with
probability tending to one, the COSSO chooses the right model
structure.
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An equivalent form of the COSSO

Find θ = (θ1, ..., θp) ≥ 0 and f ∈ F to minimize

1

n

n
∑

i=1

(yi − f(xi))
2 + λ0

p
∑

α=1

θ−1
α ‖fα‖2 + λ

p
∑

α=1

θα,

where λ0 is a fixed constant, and λ is a tuning parameter.
Lemma 1 Set λ = τ 4/(4λ0).

(i) Let f̂ be a COSSO estimate. Set θ̂α = λ
1/2
0 λ−1/2‖f̂α‖, then the

pair (θ̂, f̂) minimizes the above.
(ii) On the other hand, if a pair (θ̂, f̂) minimizes the above, then f̂ is
a COSSO estimate.
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The algorithm

It can be shown

f(x) =
n
∑

i=1

ciRθ(xi,x) + b,

where c = (c1, ..., cn)′ ∈ Rn, b ∈ R, and Rθ =
∑p

α=1 θαRα, with Rα

being the reproducing kernel of Fα. Therefore

f = Rθc + b1,

and COSSO (the equivalent form) is to minimize

‖y − Rθc − b1‖2
n + λ0c

′Rθc + λ

p
∑

α=1

θα,

where θα ≥ 0, α = 1, ..., p.
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The algorithm (cont.)

If θ’s were known, then the problem is exactly a smoothing spline
problem.

If c and b were known, denote gα = Rαc, and let G be the n × p
matrix with the α-th column being gα. To solve for θ = (θ1, ..., θp)

′,

min(z − Gθ)′(z − Gθ),

subject to θα ≥ 0, α = 1, ..., p, and
∑p

α=1 θα ≤ M , where
z = y − (1/2)nλ0c − b1. This is the nonnegative garrote.

The algorithm iterates between the smoothing spline and the
nonnegative garrote. Can be viewed as iterative improvements on
the smoothing spline.
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The one-step update algorithm

For fixed λ0 and M ,

1. Initialization: fix θα = 1, ∀α = 1, ..., p.

2. Solve for c and b with smoothing spline.

3. For the c and b obtained in step 2, solve for θ with nonnegative
garrote.

4. With the new θ, solve for c and b with smoothing spline.

We use 5-fold cross validation to select the tuning parameter. We
fix λ0 at the optimal smoothing spline tuning parameter when θ’s
are fixed at 1. We tune M between 0 and 35.
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Basic functions used in simulations

g1(t) = t; g2(t) = (2t − 1)2; g3(t) =
sin(2πt)

2 − sin(2πt)
;

g4(t) = 0.1 sin(2πt) + 0.2 cos(2πt) + 0.3 sin2(2πt)

+0.4 cos3(2πt) + 0.5 sin3(2πt).
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Plots of the basic functions
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Distribution of X in the simulations

Compound symmetry: Let W1, ..., Wd and U be i.i.d from Unif(0,1),
and let Xj = (Wj + tU)/(1 + t). Therefore
corr(Xj , Xk) = t2/(1 + t2).

(trimmed) AR(1): Let W1, ..., Wd be i.i.d N(0, 1), and let X1 = W1,
Xj = ρXj−1 + (1 − ρ2)1/2Wj, j = 2, ..., d. Trimmed in [-2.5, 2.5]
and scaled to [0, 1].
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Simulation 1

n = 100, d = 10. ε ∼ N(0, 1.74). Signal to noise ratio is 3 : 1.

f(x) = 5g1(x1) + 3g2(x2) + 4g3(x3) + 6g4(x4).

In the uniform setting var(5g1(X1)) = 2.08, var(3g2(X2)) = 0.80,
var(4g3(X3)) = 3.30 and var(6g4(X4)) = 9.45.
Both COSSO and MARS are run with additive models.
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Magnitude of the components
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Estimated function components
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Mean integrated squared error (MISE)

Estimated mean integrated squared error (ISE =
EX [f̂(X)− f(X)]2) over 100 runs. The numbers in the parentheses
are the standard errors.

Compound Symmetry
t = 0 t = 1 t = 3

COSSO 0.80 (0.03) 0.97 (0.05) 1.07 (0.06)
MARS 1.57 (0.07) 1.24 (0.06) 1.30 (0.06)

Trimmed AR(1)
ρ = −0.5 ρ = 0 ρ = 0.5

COSSO 1.03 (0.06) 1.03 (0.06) 0.98 (0.05)
MARS 1.32 (0.07) 1.34 (0.07) 1.36 (0.08)
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Term frequencies and model sizes

In the X uniform case, in 100 runs,

Variable 1 2 3 4 5 6 7 8 9 10

COSSO 100 94 100 100 1 1 3 2 4 2

MARS 100 100 100 100 35 35 34 39 28 35

Model sizes

3 4 5 6 7 8 9 10 Mean

COSSO 6 84 7 3 0 0 0 0 4.07

MARS 0 4 24 40 26 6 0 0 6.06
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Model sizes in various setting

Mean and standard deviation of the size of the models chosen in
100 runs.

Comp. symm. AR(1)

t = 1 t = 3 ρ = −0.5 ρ = 0 ρ = 0.5

COSSO 4.1 (1.2) 4.4 (1.9) 4.1 (1.2) 4.0 (1.0) 3.8 (0.9)

MARS 6.3 (0.9) 6.2 (0.9) 6.1 (1.0) 6.1 (0.8) 5.9 (0.8)
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Simulation 2

n = 500, d = 60, ε ∼ N(0, 0.5184).

f(x) = g1(x1) + g2(x2) + g3(x3) + g4(x4)

+ 1.5g1(x5) + 1.5g2(x6) + 1.5g3(x7) + 1.5g4(x8)

+ 2g1(x9) + 2g2(x10) + 2g3(x11) + 2g4(x12).

In the uniform setting var(g1(X1)) = 0.08, var(g2(X2)) = 0.09,
var(g3(X3)) = 0.21 and var(g4(X4)) = 0.26.

Both COSSO and MARS are run with additive models.

100 runs.
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MISE and model sizes

Estimated MISE in unit of 10−3

Comp. symm. AR(1)
t = 0 t = 1 ρ = 0.5 ρ = −0.5

COSSO 144 (4) 162 (5) 153 (4) 149 (5)
MARS 353 (7) 302 (7) 286 (6) 280 (5)

Model sizes
Comp. symm. AR(1)

t = 0 t = 1 ρ = 0.5 ρ = −0.5

COSSO 12.0 (0.2) 11.7 (1.4) 12.1 (1.4) 11.9 (1.0)
MARS 35.2 (2.3) 36.1 (2.1) 35.2 (2.5) 35.9 (2.4)
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Simulation 3

d = 10, uniform setting, ε ∼ N(0, 0.065).

f(x) = g1(x1) + g2(x2) + g3(x3) + g4(x4)

+g1(x3x4) + g2(
x1 + x3

2
) + g3(x1x2);

n = 100 n = 200 n = 400

COSSO 0.378 (0.005) 0.094 (0.004) 0.043 (0.001)
MARS 0.239 (0.008) 0.109 (0.003) 0.084 (0.001)

The estimated MISE of COSSO and MARS over 100 runs. Both
are run with two-way interaction models.
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Circuit examples (Friedman, 1991)

Dependence of the impedance Z and phase shift φ on components
in the circuit.

Z = [R2 + (ωL − 1/(ωC))2]1/2,

φ = tan−1

[

ωL − 1/(ωC)

R

]

.

Input variables uniform in the range 0 ≤ R ≤ 100, 40π ≤ ω ≤ 560π,
0 ≤ L ≤ 1, and 1 ≤ C ≤ 11.

In the first example, ε ∼ N(0, 15625).
In the second example, ε ∼ N(0, 0.01).
In both examples, signal to noise ratio is 3 : 1.
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MISE in circuit examples

Estimating Z (in the unit of 103).
n = 100 n = 200 n = 400

COSSO 1.91 (0.12) 0.85 (0.05) 0.51 (0.03)
MARS 5.57 (0.41) 2.47 (0.16) 1.37 (0.08)

Estimating φ (in the unit of 10−3).
n = 100 n = 200 n = 400

COSSO 12.98 (0.36) 7.96 (0.20) 5.36 (0.10)
MARS 20.59 (0.96) 12.60 (0.71) a 8.19 (0.14) b

a. Excluded one extreme outlier.

b. Excluded three extreme outliers.
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Real examples

Ozone data The daily maximum one-hour-average ozone reading
and 8 meteorological variables were recorded in the Los
Angeles basin for 330 days of 1976.

Boston housing data Housing values in suburbs of Boston. There
are 12 input variables. The sample size is 506.

Tecator data Data recorded on a Tecator Infratec Food and Feed
Analyzer working in the wavelength range 850-1050 nm by the
Near Infrared Transmission (NIT) principle. Each sample
contains finely chopped pure meat with different fat contents.
The input vector consists of a 100 channel spectrum of
absorbances. As recommended in the document, we use the
first 13 principal components to predict the fat content. The
total sample size is 215.
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Results on real examples

Ozone Boston Tecator
COSSO 16.04 (0.06) 9.89 (0.08) 0.92 (0.02)
MARS 18.24 (0.45) 14.31 (0.34) 4.99 (1.07)

The average prediction error of COSSO and MARS in some real
examples as estimated by averaging five 10-fold cross validations.
Both COSSO and MARS are run with two-way interaction models.
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Summary

Different penalties can be used in the method of regularization for
different purposes.

1. The periodic Gaussian kernel regularization adapts to different
order of smoothness.

2. The COSSO simultaneously does model selection and
estimation. It solves a global minimization problem. This is one
reason why it can outperform greedy search type algorithms.
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