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Support Vector Machines� Classification accuracy� Flexibility - implicit embedding through kernel� Handle high dimensional data - some myth� Sparsity - quadratic programming problem� No probability estimates
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Multicategory SVM� Class codes :yi = (yi1; � � � ; yik) with yij = 1 and � 1k�1 elsewhere if example i

falls into class j.

When k = 3, yi =
8>>><>>>:

(1;�12 ;�12) for class 1(�12 ; 1;�12 ) for class 2(�12 ;�12 ; 1) for class 3� Class separating functions :f(x) = (f1(x); � � � ; fk(x)) with
Pkj=1 fj(x) = 0 for anyx 2 Rd, and fj(x) = hj(x) + bj with hj 2 HK .

e.g. K(x1;x2) = xt1x2, or (1 + xt1x2)2, or exp(�kx1�x2k22�2 )� Classification rule : �(x) = argmaxj fj(x):



� Multicategory SVM formulation :

Find f(x) = (f1(x); � � � ; fk(x)), with sum-to-zero constraint,

minimizing1n nXi=1 kXj=1 L
at(i)j(fj(xi)� yij)+ + �2 kXj=1 khjk2HK

where
at(i): the category of yi and Ljj0 : the cost of misclassifying j as j0.
When Ljj0 = I(j 6= j0),Pkj=1 L
at(i)j(fj(xi)� yij)+ =Pj 6=
at(i)(fj(xi) + 1k�1)+.



Representer theorem for Multicategory SVM

Theorem 1. To find (f1(x); � � � ; fk(x)) 2Qk1(f1g+HK), with the

sum-to-zero constraint, minimizing the MSVM objective function is

equivalent to find (f1(x); � � � ; fk(x)) of the form

fj(x) = bj + nXi=1 
ijK(xi;x) for j = 1; � � � ; k

with the sum-to-zero constraint only at xi for i = 1; � � � ; n, minimizing

the objective function.



How to deal with non-differentiable function (x)+?

Convince yourself that
(x)+ =

8>>><>>>:
min �

subject to x � �� � 0



� Primal problem : Minimize

LP (
;b; �) = 1n kXj=1 Ltj��j + �2 kXj=1 
t�jK
�j

subject to bje+K
�j � y�j � ��j for j = 1; � � � ; k��j � 0 for j = 1; � � � ; k(Pkj=1 bj)e+K(Pkj=1 
�j) = 0
where
�j = (
1j ; � � � ; 
nj)t, K = (K(xi;xj)),Lj = (L
at(1)j ; � � � ; L
at(n)j)t, y�j = (y1j ; � � � ; ynj)t, and��j = (�1j ; � � � ; �nj)t.



Introducing Lagrange multipliers �j for bje+K
�j � y�j � ��j ,� Dual problem : Maximize

LD(�) = � 12n kXj=1(�j � ��)tK(�j � ��)� � kXj=1 �tjy�j

subject to 0 � �j � Lj for j = 1; � � � ; k(�j � ��)te = 0 for j = 1; � � � ; k
Quadratic programming problem



How to determine 
�j and bj from �?� 
�j = � 1n�(�j � ��) for j = 1; � � � ; k.

By Karush-Kuhn-Tucker complementarity conditions, the solution

should satisfy�j ? (bje+K
�j � y�j � ��j) for j = 1; � � � ; k
j = (Lj � �j) ? ��j for j = 1; � � � ; k� If (�i1; � � � ; �ik) = 0, then (
i1; � � � ; 
ik) = 0.

Support Vectors: data points with (
i1; � � � ; 
ik) 6= 0.



Small Round Blue Cell Tumors of Childhood� Khan et al. (2001) in Nature Medicine� Tumor types: neuroblastoma (NB), rhabdomyosarcoma (RMS),

non-Hodgkin lymphoma (NHL) and the Ewing family of tumors (EWS)� Number of genes : 2308� Class distribution of data set

Data set EWS BL(NHL) NB RMS total

Training set 23 8 12 20 63

Test set 6 3 6 5 20

Total 29 11 18 25 83



� Gene selection : Dudoit et al. (2000)

For gene `, the ratio of between classes sum of squares to within class

sum of squares is defined asBSS(`)WSS(`) = Pni=1Pkj=1 I(yi = j)(�x(j)�` � �x�`)2Pni=1Pkj=1 I(yi = j)(xi` � �x(j)�` )2

Pick genes with the largest ratios.
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Figure 1: Observed ratios of between-class SS to within-class SS and the 95 percentiles

of the corresponding ratios for expression levels with randomly permuted class labels.
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Figure 2: Pairwise distance matrices for the training data as the numbers of genes in-

cluded change, and test error rates of MSVM with Gaussian kernel.
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Figure 3: Three principal components of 100 gene expression levels (circles: training

samples, squares: test samples including non SRBCT samples). The tumor types are

distinguished by colors.
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Figure 4: Predicted decision vectors (f1; f2; f3; f4) at the test samples. EWS:(1;�1=3;�1=3;�1=3), BL: (�1=3; 1;�1=3;�1=3), NB: (�1=3;�1=3; 1;�1=3), and

RMS: (�1=3;�1=3;�1=3; 1). The colors indicate the true class identities of the test samples.



Concluding remarks

� Optimization problem in SVM is a quadratic programming problem.� Covariates appear in SVM formulation only through kernel evaluations.� Selective choice of variables would improve accuracy. Integrate

variable selection with learning classification rule.� The effect of the number of variables on classification accuracy

depends on data at hand. (gene expression, text, image data)


