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Abstract

After a few historical remarks, I will describe favorite parts of my
career over time which involved serendipitous interactions with
colleagues and studets that provided a solution (“the Ah-Ha
moment”) to some interesting problems. Then I will move to some
recent work involving utilization of pairwise dissimilarity/distance
information.
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Outline

1. A few historical remarks

2. Some “Ah-Ha” moments

3. Two papers on pairwise distances: RKE and DCOR

4. List of references
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A few historical remarks

Times have changed:

1. Bell Telephone Labs Summer intern 1955: (my first job)
Women earned $55/week, men $60

2. Cornell UGrad 1952-56: Two women math majors. Two
women in Prof Kac’s Advanced Calculus class of about 300.
Profs Kac and Rosser were very supportive, however.

3. Operations Research Inc., Silver Spring MD 1959-62. Salary
ratio of 2:1 of men/woman(me).

4. IBM 1962-66 Silver Spring MD, San Jose and Palo Alto: Some
DC/Silver Spring area restaurants would not serve blacks,
including one of my colleagues.

5. Stanford PhD student and Postdoc 1962-67. Few women role
models.
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6. University of Wisconsin Madison 1967-present. 1967: 12 tenure
or tenure track women in a faculty of thousands. 1972: Title
IX, Mary Ellen Rudin and Marigold Melli promoted from
Lecturer to Full Professor as the nepotism rules went down. No
longer did a woman who married an academic have to forget an
academic career for herself.
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Statistical ModelBuilding, Machine Learning, and the Ah-Ha Moment.

See G. Wahba in this: Book available at http//:www.copss.org
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Statistical Model Building, Machine Learning and the Ah-Ha Moment

The “Ah-Ha” moment: these are moments when the main idea just
popped up instantaneously, sparking sequenses of future research
activity- for me they crucially involved discussions and interactions
with colleagues and student-colleagues. Sometimes the idea came
up quickly, sometimes after mulling over the problem from days to
months.
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1. Aha! (Kimeldorf and Wahba 1971) We proposed and proved
the representer theorem. Coffee hour at the Math Research
Center. It essentially turns a problem in an infinite dimensional
Hilbert space into a finite dimensional problem. Its only a four
line proof and at first we thought it was too trivial to publish,
but we wrote it up, submitted it to Numerische Mathematik
and it was accepted within three weeks. That never happened
again. It was important. See Item 6 and Wikipedia.

2. Eureka! Leaving-out-one (Wahba and Wold 1975)

3. GCV (Golub Heath and Wahba 1979, Craven and Wahba 1979)

4. Randomized Trace and the Degrees of Freedom for Signal
(Girard 1987, Hutchinson 1989)

5. SSANOVA ANOVA in RKHS (Grahame Wilkinson visits
Madison) (Gu 2002, Wang 2011)
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6. Penalized Likelihood and the Support Vector Machine (Lin,
Wahba, Zhang and Lee 2002)(Vladimir Vapnik and the Hadley
meeting).

7. The Multicategory SVM (Lee, Lin and Wahba 2004)

8. RKE and DCOR - see below

Advice: Treasure your colleagues, have great students.
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Pairwise Distance/Dissimilarity Information

Many old and new investigations involve pairwise relationships
between subjects or objects, and use of this kind of information is
something of a ‘hot topic’. We will describe two modern ways to
utilize pairwise distances, or, more generally, dissimilarities
between subjects/objects.
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Example 1. Regularized Kernel Estimation RKE

(Lu, Keles, Wright and Wahba 2005)

Given scattered noisy non-metric pairwise dissimilarity information
dij between pairs ij of n objects, embed these objects in a
Euclidean space that attempts to preserve the dissimilrity
information as much as possible. Find an n× n distance encoding
matrix Rdist by solving the convex one optimization problem:

min
R�0

∑
(i,j)∈Ω

|dij − d̂ij(R)|+ λRKEtrace(R) (1)

where R � 0 means R is in the convex cone of all real non-negative
definite matrices of dimension n, Ω is all or a (sufficiently rich)
subset of the

(
n
2

)
pairs of indices, and

d̂ij(R) ≡ R(i, i) + R(j, j)− 2R(i, j), the natural squared distance
induced by R. Robust against dissimilarity data not satisfying the
triangle inequality! Generalizes Multidimensional Scaling
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This optimization problem can be solved numerically using modern
convex cone software.

Small eigenvalues in the fitted Rdist are deleted, leaving r non-zero
eigenvalues. Rdist(i, j) gives a (unique up to rotation) embedding
z(i) in Euclidean r dimensional space of the ith subject by
Rdist = Γn×rΛrΓ′r×n, Zn×r = ΓΛ1/2. The coordinates of the ith
object z(i) are given by the ith row of Z, (z(i), z(j)) = Rdist,ij ,
‖z(i)− z(j)‖2 = d̂ij .
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RKE example: proteins with BLAST scores.
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Figure 1: 3D representation of the sequence space for 280 proteins
from the globin family. Red: α-globin subfamily, blue: β-globins,
purple: myglobin subfamily, and green: a heterogeneous group en-
compassing proteins from other small subfamilies within the globin
family. Note that in this example three, or even two dimensions are
enough to separate the subfamilies.
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Eigenvalues of Rdist from BLAST scores example as λ varies.
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Figure 2: The effect of varying λ on the eigenvalues of Rdist. The
left five images show log-scale eigensequence plots for five values of λ.
As λ increases, smaller eigenvalues begin to shrink. The rightmost
image shows the first 10 eigenvalues of the λ = 1 case displayed on
a larger scale. In this example the plots are insensitive to λ over
several orders of magnitute.
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RKE Embedding Newbies.
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Figure 3: Positioning test globin sequences in the coordinate system
of 280 training sequences. The newbie algorithm is used to locate one
Hemoglobin zeta chain (black circle), one Hemoglobin theta chain
(black star), and seventeen Leghemoglobins (black triagles) into the
coordinate system of the training global sequence data.
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Example 2. Distance Correlation DCOR

(Kong, Klein, Klein, Lee and Wahba 2012)

Does Life Span Run in Families, and If So, Why? The Beaver Dam
Eye study (BDES), starting with about 5000 subjects in 1988 from
ages 43-84 years, and about 2400 had relatives in the study. The
study has a large amount of covariate information, and pedigree
(relationship) information, along with mortality information
through 2011. We compaired pairwise death ages between relatives
and between unrelated subjects and it is clear that mortality runs
in families. Distance Correlation is used to quantify this.

• What is DCOR?

• Variable Descriptions, the Deathage Scoring Model

• Determining DCOR from the Deathage Scoring Model

• DCOR results.
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Distance Correlation (DCOR) (Szekely and Rizzo 2009)

For a random sample (X, Y ) = {(Xk, Yk) : k = 1, ..., n} of n i.i.d
random vectors (X, Y ) from the joint distribution of random
vectors X in Rp and Y in Rq, the Euclidean distance matrices
(aij) = (|Xi −Xj |p) and (bij) = (|Yi − Yj |q) are computed. Define
the double centering distance matrices

Aij = aij − ai· − a·j + a··, i, j = 1, ..., n,

where

ai· =
1
n

n∑
j=1

aij , a·j =
1
n

n∑
i=1

aij , a·· =
1
n2

n∑
i,j=1

aij ,

similarly for Bij = bij − bi· − b·j + b··, i, j = 1, ..., n.
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The sample distance covariance Vn(X, Y ) is defined by

V2
n(X, Y ) =

1
n2

n∑
i,j=1

AijBij .

The sample distance correlation Rn(X, Y ) (DCOR) is defined by

R2
n(X, Y ) =


V2

n(X, Y )√
V2

n(X)V2
n(Y )

, V2
n(X)V2

n(Y ) > 0;

0, V2
n(X)V2

n(Y ) = 0,

where the sample distance variance is defined by

V2
n(X) = V2

n(X, X) =
1
n2

n∑
i,j=1

A2
ij .
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What is the Sample Distance Covariance V2
n(X, Y ) Estimating?

Let fX,Y , fX and fY be the characteristic functions of (X : Y ), X
and Y . (The characteristic function of a distribution FU is
fU (t) =

∫
eitudFU ). Let

V2(X, Y ) =
∫

Rp+q

|fXY (s, t)− fX(t)fY (s)|2ωpq(t, s)dtds

where
ωpq = [cpcq|t|1+p

p |s|1+q
q ]−1.

Amazing Theorem: (Szekely and Rizzo).

V2
n(X, Y ) is the sample version of V2(X, Y )
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Table 1. Variable Descriptions: Fixed:Lifestyle:Diseases (from BDES)

variable units description
deathage years death age
baseage years age at baseline
gender F/M gender
............................................................................
edu years highest year school/college completed
bmi kg/m2 body mass index
smoke yes/no history of smoking
inc yes/no household personal income > 20T
............................................................................
diabetes yes/no history of diabetes
cancer yes/no history of cancer
heart yes/no history of cardiovascular disease
kidney yes/no history of chronic kidney disease
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Death Age Scoring

Death age as a function of fixed, lifestyle and disease variables will
be modeled as

death agei =g0(baseline agei, genderi)+

g1(lifestyle factorsi) + g2(diseasesi),

where g0 is a term involves fixed characteristics, baseline age and
gender for individual i, g1 is a term that includes only lifestyle
factors, namely edu, bmi, smoke, inc, and g2 is a term containing
only disease variables, namely diabetes, cancer, cardiovascular
disease and chronic kidney disease. In the paper, the fitted values
of g1 and g2 are treated as scores for the individuals and to be used
to assess the association with familial relationships. Do g1 and g2

scores, both high and low, run in families, thus partially explaining
why mortality runs in families?
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The SSANOVA Death Age Scoring Model

The SSANOVA death age scoring model is:

deathage =µ + f1(baseage) + βgenderI{gender=F}
}
fixed

+ f2(edu) + f12(baseage : edu) + f3(bmi)

+ βsmokeI{smoke=no} + βincI{inc>20T}

}
lifestyle (g1)

+ βdiabetesI{diabetes=no} + βcancerI{cancer=no}

+ +βheartI{heart=no} + βkidneyI{kidney=no}

}
disease (g2)
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Determining Distance Correlation (DCOR)

All six DCOR values between mortality, pedigree, lifestyle factors
and diseases will be computed.

The lifestyle factor score g1 for an individual is based on the
four-vector of the fitted effects for smoke, bmi, edu and inc.
Similarly the disease score g2 is based on the four-vector of fitted
effects for the four disease variables.

It is well known that the pedigree distance (1− 2φ) based on the
kinship coefficient is Euclidean, so that pairwise pedigree distances
can be used directly in DCOR.
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DCOR Results, Entire Pedigrees

very signif-signif
lifestyle:pedigree
lifestyle:mortality
disease:mortality
mortality:pedigree
disease:lifestyle
disease:pedigree

DCOR results using pedigree distance. Numbers in parens are
significance levels to test independence, based on a permutation
test with 1000 replicates.
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More Questions Than Answers

• We have shown that pairwise differences in lifestyle factors that
run in families correlate well with pairwise differences in death
age that also run in families, partially accounting for the
familial death age effect. This leads to new questions to be
asked about the complex relations between genetics, family
structure, lifestyle factors, and other variables. We provide
here an overall methodological approach which shows promise
to help in answering these questions in future studies.
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Example 3. More DCOR incorporated in SSANOVA

Corrada Bravo, Lee, Klein, Klein, Iyengar and Wahba 2009

Examining the relative influence of familial, genetic and
environmental covariate information in flexible risk models. (Not
discussed here)
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Summary and Conclusions

We have discussed

• Historical Remarks: How things have changed since 1955!

• A few examples of the Ah-Ha moment, when answers popped
out suddenly as a result of conversations with faculty
colleagues and student colleagues.

• Two papers of the use of pairwise dissimilarity information, are
described, a topic of growing importance.

In today’s world, women are enjoying the joys and headaches of
scientific research of all kinds, including in Statistics, often sharing
with partners the solution of the two body problem and the
responsibilities of parenting
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