
Chapter 1

Probability

1.1 Getting Started

I begin with one of my favorite quotes from one my favorite sources.

Predictions are tough, especially about the future.—Yogi Berra.

Probability theory is used by mathematicians, scientists and statisticians to quantify uncertainty
about the future.

We begin with the notion of achance mechanism. This is a two-word technical expression.
It is very important that we use technical expressions exactly as they are defined. In every day
life you may have several meanings for some of your favorite words, for example phat, but in this
class technical expressions mean what they mean. Uniquely.In these notes the first occurrence of
a technical expression/term will be in bold-faced type.

Both words in ‘chance mechanism’ (CM) are meaningful. The second word reminds us that
the CM, whenoperated, produces anoutcome. The first word reminds us that the outcome cannot
be predictedwith certainty.

Several examples will help.

1. CM: A coin is tossed. Outcome: The face that lands up, either heads or tails.

2. CM: A (six-sided) die is cast. Outcome: The face that landsup, either 1, 2, 3, 4, 5 or 6.

3. CM: A man with AB blood and a woman with AB blood have a child.Outcome: The blood
type of the child, either A, B or AB.

4. CM: The next NFL season’s Super Bowl game. Outcome: The winner of the game, which
could be any one of the 32 NFL teams (well, perhaps not my childhood favorite, the Detroit
Lions).

The next idea is thesample space, usually denoted byS. The sample space is the collection
of all possible outcomes of the CM. Below are the sample spaces for the CM’s listed above.

1. CM: Coin.S = {H, T}.
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2. CM: Die.S = {1, 2, 3, 4, 5, 6}.

3. CM: Blood.S = {A, B, AB}.

4. CM: Super Bowl.S = A list of the 32 NFL teams.

An event is a collection of outcomes; that is, it is a subset of the sample space. Events are
typically denoted by upper case letters, usually from the beginning of the alphabet. Below are
some events for the CM’s listed above.

1. CM: Coin.A = {H}, B = {T}.

2. CM: Die.A = {5, 6}, B = {1, 3, 5}.

3. CM: Blood.C = {A, B}.

4. CM: Super Bowl.A = {Vikings, Packers, Bears, Lions}.

Sometimes it is convenient to describe an event with words. As examples of this: For the die,
eventA can described as ‘the outcome is larger than 4,’ and eventB can be described as ‘the
outcome is an odd integer.’ For the Super Bowl, eventA can described as ‘the winner is from the
NFC North Division.’

Here is where I am going with this:Beforea CM is operated, nobody knows what the outcome
will be. In particular, for any eventA that is not the entire sample space, we don’t know whether
the outcome will be a member ofA. After the CM is operated we can determine/see whether the
actual outcome is a member of an eventA; if it is, we say that the eventA hasoccurred; if not, we
say that the eventA hasnot occurred. Below are some examples for our CM’s above.

1. CM: Coin. If the coin lands heads, then eventA has occurred and eventB has not occurred.

2. CM: Die. If the die lands 5, bothA andB have occurred. If the die lands 1 or 3,B has
occurred, butA has not. If the die lands 6,A has occurred, butB has not. Finally, if the die
lands 2 or 4, bothA andB have not occurred.

3. CM: Blood. If the child has AB blood, then the evenC has not occurred.

4. CM: Super Bowl. If the Packers win the Super Bowl, then the eventA has occurred.

Before the CM is operated, theprobability of the eventA, denoted byP (A), is a number that
measures thelikelihood thatA will occur. This incredibly vague statement raises three questions
that we will answer.

1. Howare probabilities assigned to events?

2. What are therulesthat these assignments obey?

3. If I say, for example, thatP (A) = 0.25, what does thismean?
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First, the assignment of probabilities to eventsalwaysis based onassumptionsabout the op-
eration of the world. As such, it is ascientific, not amathematicalexercise. There are always
assumptions, whether they are expressed or tacit; implicitor explicit. My advice is to always do
your best to be aware of any assumptions you make. (This is, I believe, good advice for outside
the classroom too.)

The most popular assumption for a CM is the assumption of theequally likely case (ELC).
As the name suggests, in the ELC we assume that each possible outcome is equally likely to occur.
Another way to say this is that it is impossible to find two outcomes such that one outcome is more
likely to occur than the other. I will discuss the ELC for the four CM’s we have been considering
in this section.

1. CM: Coin. If I select an ordinary coin from my pocket and plan to toss it, I would assume
that the two outcomes, heads and tails, are equally likely tooccur. This seems to be a popular
assumption in our culture b/c ‘tossing a coin’ is often used as a way to decide which of two
persons/teams is allowed to make a choice. For example, football games typically begin
with a coin toss and the winner gets to make a choice involvingdirection of attack or initial
possession of the ball. Note, however, that I wouldnot make this assumption w/o thinking
about it. In particular, the path of a coin is governed by the laws of physics and presumably
if I could always applyexactlythe same forces to the coin it would always land the same
way. I am an extremely minor friend of a famous person named Persi Diaconis. Persi has
been a tenured professor at Stanford, Harvard, Cornell and Stanford again, and he was a
recipient of a MacArthur Foundation ‘no strings attached genius’ fellowship a number of
years ago. More relevant for this discussion is that while a teenager, Persi worked as a small
acts magician. Thus, it is no surprise to learn that Persi hasunusually good control of his
hands and reportedly can make heads much more likely than tails whenhetosses a coin. My
willingness to assume that heads and tails are equally likely whenI toss a coin reflects my
belief about how coins are balanced and my limited ability tocontrol my hands.

2. CM: Die. Again, if I take an ordinary die from a board game I am willing to assume that
the six sides are equally likely to land facing up when I cast the die. Certainly, the casinos
of Las Vegas believe that the ELC is reasonable for their diceb/c their payoffs in the game
of crapscould result in their losing large sums of money if the ELC does not apply. I own,
however, two round cornered dice (ordinary dice have squared corners) which I will tell you
about later in the notes. In particular, based on data I collected, we will conclude that the
ELC is not reasonable for either of my round cornered dice.

3. CM: Blood. The three possible blood types for the child arenot equally likely. There is a
version of the ELC lurking in this problem and we will analyzeit later.

4. CM: Super Bowl. I would certainlynever assume the ELC for ‘who wins the Super Bowl.’
I would like to see my childhood favorite team win, but I believe they are much less likely
to win than say . . . , well, just about any other team.

Please draw the following lessons from the above discussions. We should carefully consider
how (we believe) the world operates and decide whether the ELC seems reasonable. These con-
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siderations are a matter of science, not mathematics.
Let us suppose that we are willing to assume the ELC for a CM. What happens next?
If we assume the ELC, then we assign probabilities to events as follows. For any eventA,

P (A) =
The number of outcomes inA
The number of outcomes inS

.

Let’s see how this formula works.

1. CM: Coin. The probability of obtaining heads is1/2 = 0.50. The probability of obtaining
tails also is1/2 = 0.50.

2. CM: Die. The probability of obtaining the ‘1’ is1/6. The probability of obtaining the ‘2’ is
1/6. In fact, the probability of obtaining any particular integer from 1, 2, . . . 6, is1/6. They
are equally likely and have the same probability of occurring.

When considering this CM earlier, I defined the eventsA = {5, 6}, andB = {1, 3, 5}. We
can now see thatP (A) = 2/6 andP (B) = 3/6.

The obvious question is: If I am not willing to assume the ELC,how do I assign probabilities
to events?

First, we need to discuss the nature of the sample space. For our few examples to date the
sample space has consisted of a finite number of elements. There are actually three possibilities of
interest to us for the nature of the sample space.

• The sample space can consist of a finite number of elements.

• The sample space can consist of a sequence of elements.

• The sample space can consist of an interval of numbers.

Let me give examples of the latter two of these possibilities.

1. CM: I cast a die until I obtain a 6. Outcome: The number of casts I perform.
S = {1, 2, 3, . . .}.

2. CM: I hit a golf ball off a tee with my 9-iron. Outcome: The distance the ball travels before
coming to rest, measured in yards. The sample space can be taken as the interval of numbers
(0, 300).

Let me add a few comments about this last CM. The key feature isthat the outcome is a measure-
ment. Measurements occur often in science, for example distance, weight (or mass), time, area,
and volume are examples of measurements. It is true that we could treat measurements as counts
simply by rounding off the measurement. For example, a person’s weight is a measurement and it
could be (and usually is in our culture) rounded to the nearest pound. It turns out, however, that the
mathematics are actually easier to study for a measurement than for a count. Thus, instead of ap-
proximating a measurement as a count, the temptation is to approximate a count as a measurement.
This issue will be revisited later in this course.
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If you are a golfer or know much about golf, you will realize that nobody hits a golf ball 300
yards with a 9-iron. (Well, unless one is hitting down a very steep hill.) Thus, you might wonder
why I put 300 yards as the upper limit in my sample space. As long as I put a number large enough
to include all possibilities, it does not matter how large I make the upper bound. In fact, curious
as it might seem, usually we don’t worry too much about the upper or, indeed, lower bound. For
example, if I select an adult male at random and measure his height, I would typically take the
sample space to be all numbers larger than 0!

In terms of assigning probabilities to events, measurements require a very different method of
study and they will be discussed later in this course.

Finite and countably infinite—the technical term used by mathematicians for a sample space
that is a sequence—sample spaces are handled the same way. I will describe it now.

It will help if I begin with a new example of a finite sample space with a small number of
elements. Let us once again consider the next NFL season, butnow the outcome will be the team
that wins the NFC North Division title. Note that there will be exactly one team that wins this
title. If a single team has the best record, it is the winner. If two, three or all four teams tie for
the best record, the NFL has atie-breakingprocedure that will determine a unique winner of the
NFC North Division. With this understanding, the sample space consists of four elements: Bears,
Lions, Packers and Vikings, denoted CB, DL, GBP and MV, respectively.

Now it is very important to remember that there is a distinction between mathematics and
science. What I am about to show you is themathematically validway to assign probabilities to
the events. The scientific validity will be discussed later.

First, let me state the obvious, namely that I amnotwilling to assume the ELC for this CM. For
a finite sample space, if I am not willing to assume the ELC, I refer to the situation as thegeneral
case. Here is what I must do in the general case.

1. To every outcome in the sample space, assign a nonnegativenumber, called its probability.
When summed over all outcomes in the sample space, these probabilities yield 1.

2. The probability of any event is equal to the sum of the probabilities of its outcomes.

This is actually quite simple, as I will now demonstrate.

1. I assign the following probabilities to the elements of the sample space: P(CB)=0.10, P(DL)=0.03,
P(GBP)=0.40 and P(MV)=0.47.

2. There are sixteen possible events (including the sample space and the empty event) so I
won’t list all of them, but I will give you a few examples.

P (GBP or MV) = 0.40 + 0.47 = 0.87.

P (CB or GBP or MV) = 0.10 + 0.40 + 0.47 = 0.97.

P (DL or CB) = 0.03 + 0.10 = 0.13.
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The assignments I have made, whether you agree with them or not, are mathematically valid.
So is the following assignment, which a football fan would likely find absurd scientifically:

P (CB) = 0.01, P (DL) = 0.97, P (GBP) = 0.01 andP (MV) = 0.01.

As you can no doubt imagine, if two persons have different assignments of probabilities to
outcomes and if they like to gamble, they can agree on a mutually satisfactory wager.

We now turn to the second of our three questions about probability: What rules do they obey?
B/c these rules are so important, we will number them. By the way, I will prove that Rules 1–3
are true for the ELC and the general case. They also can be proven to be true for our method
of handling measurement outcomes which, as mentioned previously, will be covered later in this
course.

By contrast, Rules 4–6 are logical consequences of Rules 1–3, which means that, for their
proofs, we won’t need to keep referring to how probabilitieswere initially assigned to events.

Rule 1. Called the rule of total probability. The probability of the sample space equals 1. I
will prove this rule for both of our methods of assigning probabilities.

For the ELC, the probability of any event is the number of outcomes in the event divided by the
number of outcomes in the sample space. Apply this definitionwith ‘event’ replaced by ‘sample
space’ and the result is that the numerator and denominator coincide, making the quotient equal
to 1.

For the general case, the probability of the sample space is the sum of the probabilities of all
of its outcomes. By definition, these probabilities sum to 1.

The sample space is often called thecertain event b/c the outcome of the operation of the
CM mustbe a member of the sample space. (By definition, the sample space contains all possible
outcomes.) Rule 1 states that certainty corresponds to a probability of one.

Rule 2. For any event A, 0 ≤ P (A) ≤ 1.

Proof: For the equally likely case,

P (A) =
The number of outcomes inA

The number of outcomes in the sample space
.

The numerator is nonnegative and the denominator is positive; thus, the ratio cannot be negative.
The numerator cannot exceed the denominator, so the ratio isat most one.

For the general case,P (A) equals the sum of the probabilities of its outcomes. By definition,
this sum cannot be negative and it cannot exceed one.

The consequences of Rule 2 are: Probabilities cannot be negative and no event can have more
probability than the certain event.

To summarize, probability is a measure with extremes 0 and 1,where 0 corresponds to an
impossible event and 1 to the certain event.

Before I can state and prove Rule 3, I need to remind you of somedefinitions for set operations.
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If A and B are events, then (A or B) is the event that contains all elements that are in A and/or
B; (A and B) is the event that contains all elements that are inboth A and B. In the old days,
what we call (A or B) was called the union of A and B and what we call (A and B) was called the
intersection of A and B. Also, b/c many of us in the math sciences are lazy/frugal, (A and B) is
typically written as AB.

Two events, A and B, are called disjoint or mutually exclusive if they have no elements in
common; in other words, if AB is the empty set.

Rule 3. Called the addition rule for disjoint events. If A and B are disjoint events, then

P (A or B) = P (A) + P (B).

Proof: For the ELC, the number of elements in (A or B) equals the number inA added to the
number inB and the result follows. For the general case, adding the probabilities of the outcomes
in A to the probabilities of the outcomes inB give us the total of the probabilities of the outcomes
in (A or B).

Here is why Rule 3 is important. Unlike the first two rules, Rule 3 allows us to determine new
probabilities from given probabilities without going backto first principles.

There are three more rules that we will need. I will use Rules 1–3 to prove these rules, so I
won’t need to keep referring to the ELC or the general case.

First, I need to remind you of another definition from sets. IfA is any event, then itscomple-
ment, denotedAc, is the event which consists of all elements that are not inA.

Rule 4. The rule of complements.

P (Ac) = 1 − P (A).

Proof: A andAc are disjoint events whose union is the sample space. Thus, byRule 1,
1 = P (S) = P (A or Ac) = P (A) + P (Ac), by Rule 3, and the result follows.

Like Rule 3, Rule 4 allows us to calculate new probabilities from ones we already know.
If we have two events,A andB, we say thatA is a subset of B if and only if every every

element ofA is in B. (B might have additional elements that are not inA.)

Rule 5. The subset rule. If A is a subset of B, then

P (A) ≤ P (B).

Proof: B is equal to the union ofA andAcB, two disjoint sets. (It might help if you draw a
picture.) Thus,

P (B) = P (A) + P (AcB) ≥ P (A),

b/c by Rule 2 all probabilities are nonnegative.
Rule 5 is important b/c it shows that more likely means largerprobability. EventB is clearly

more likely to occur thanA b/cA occurring implies thatB must occur.
Rule 6, our last rule, is a generalization of Rule 3 to events that are not disjoint.
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Rule 6. The general addition rule for probabilities. For any events A and B,

P (A or B) = P (A) + P (B) − P (AB).

Proof: It will definitely help if you draw a picture. The event(A or B) is the union of the
following three disjoint events:ABc, AB, andAcB. Thus, by Rule 3,

P (A or B) = P (ABc) + P (AB) + P (AcB) =

P (ABc) + P (AB) + P (AcB) + P (AB) − P (AB).

Now, referring to your picture,

P (A) = P (ABc) + P (AB), andP (B) = P (AcB) + P (AB).

The result follows.

1.2 Independent, Identically Distributed Trials

Above we considered the operation of a CM. Many, but not all, CMs can be operated more than
once. For example, a coin can be tossed or a die cast many times. By contrast, the next NFL season
will operate only once.

In this section we consider repeated operations of a CM.
Let us return to the ‘Blood type’ CM of Section 1. Previously,I described the situation as

follows: A man with AB blood and a woman with AB blood will havea child. The outcome is the
child’s blood type. The sample space consists of A, B and AB. Istated that these three outcomes
are not equally likely, but that the ELC is lurking in this problem. We get the ELC by viewing the
problem somewhat differently, namely as two operations of aCM.

The first operation is the selection of the allele that Dad gives to the child. The second operation
is the selection of the allele that Mom gives to the child. Foreach operation, the possible outcomes
are A and B and it seems reasonable to assume that these are equally likely. Consider the following
display of the possibilities for the child’s blood type.

Allele from Mom
Allele from Dad A B

A A AB
B AB B

I am willing to make the following assumption.

• The allele contributed by Dad (Mom) has no influence on the allele contributed by Mom
(Dad).

Based on this assumption, and the earlier assumption of the ELC for each operation of the CM,
I conclude that the four entries in the cells of the table above are equally likely. As a result,
we have the following probabilities for the blood type of thechild: P (A) = P (B) = 0.25 and
P (AB) = 0.50.

Here is another example. I cast a die twice and I am willing to make the following assumptions.
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Table 1.1: All Possible Outcomes For Casting a Pair of Dice.

Number from Number from second cast
first cast 1 2 3 4 5 6

1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Table 1.2: The Probability Distribution of the Outcome Obtained When Casting a Balanced Die.

Value Probability
1 1/6
2 1/6
3 1/6
4 1/6
5 1/6
6 1/6

Total 1

• The number obtained on the first cast is equally likely to be 1,2, 3, 4, 5 or 6.

• The number obtained on the second cast is equally likely to be1, 2, 3, 4, 5 or 6.

• The number obtained on the first (second) cast has no influenceon the number obtained on
the second (first) cast. We summarize this by saying that the outcomes on the two casts are
(statistically) independent.

The 36 possible ordered results of the two casts are displayed in Table 1.1, where, for example,
(5, 3) means that the first die landed 5 and the second die landed 3. This is different from(3, 5).
Just like in the blood type example, b/c of my assumptions, I conclude that these 36 possibilities
are equally likely. We will do a number of calculations now.

For ease of presentation, defineX1 to be the number obtained on the first cast of the die and let
X2 denote the number obtained on the second cast of the die.

We callX1 andX2 random variables, which means that to each possible outcome of the CM
they assign a number. Every random variable has aprobability distribution which is simply a
listing of its possible values along with the probability ofeach value. Note thatX1 andX2 have
the same probability distribution; a fact we describe by saying that they areidentically distributed,
Table 1.2 presents the common probability distribution forX1 andX2. As we have seen,X1 and
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X2 each has its own probability distribution (which happens tobe the same). It is also useful to
talk about theirjoint probability distribution which is concerned with how they interact. I will
illustrate this idea with a number of computations.

P (X1 = 3 andX2 = 4) = 1/36,

b/c, by inspection exactly one of the 36 ordered pairs in the earlier table have a 3 in the first position
and a 4 in the second position.

Before we proceed, I want to invoke my laziness again. It is too much bother to type, say,

P (X1 = 3 andX2 = 4).

It is much easier to type,
P (X1 = 3, X2 = 4).

In fact, provided it is not confusing, it is easier still to type simplyP (3, 4). To summarize: a
comma within a probability statement represents the word ‘and.’

For future reference, note that

P (X1 = 3, X2 = 4) = 1/36, as doesP (X1 = 3)P (X2 = 4).

In words, the word ‘and’ within a probability statement tells us to multiply.
Here is another example.

P (X1 ≤ 4, X2 ≥ 4) = 12/36,

b/c, as you can see from the table below, exactly 12 of the 36 pairs have the required property.

X2

X1 1 2 3 4 5 6
1 X X X
2 X X X
3 X X X
4 X X X
5
6

Note again that

P (X1 ≤ 4, X2 ≥ 4) = 12/36 gives the same answer asP (X1 ≤ 4)P (X2 ≥ 4) = (4/6)(3/6) = 12/36.

This last property is calledthe multiplication rule for independent random variables. It
is a very important result. It says that if we have two random variables that are independent,
then we can compute joint probabilities by using individualprobabilities. In simpler words, if
we want to know the probability ofX1 doing somethingand X2 doing something, then we can
calculate two individual probabilities, one forX1 and one forX2 and then take theproduct of
these two individual probabilities. As we shall see repeatedly in this class, the multiplication rule
for independent random variables is a great labor saving device.

The above ideas for two casts of a die can be extended to any number of casts of a die. In
particular, define
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• X1 to be the number obtained on the first cast of the die;

• X2 to be the number obtained on the second cast of the die;

• X3 to be the number obtained on the third cast of the die;

• and so on, in general,Xk is the number obtained on the ‘kth’ cast of the die.

If we assume that the casts are independent–that is, that no outcome has any influence on another
outcome–then we can use the multiplication rule to calculate probabilities. Some examples are
below.

You might be familiar with the popular dice game Yahtzee. In this game, a player casts five
dice. If all dice show the same number, then the player has achieved a Yahtzee. One of the first
things you learn upon playing the game Yahtzee is that the event Yahtzee occurs only rarely. We
will calculate its probability.

Let’s find the probability of throwing five 1’s when casting five dice. We write this as:

P (1, 1, 1, 1, 1) = (1/6)5.

Now, the probability of a Yahtzee is:

P (Y1 or Y2 or Y3 or Y4 or Y5 or Y6),

where ‘Yk’ means all five dice land with the side ‘k’ facing up; in words, ‘Yk’ means a Yahtzee on
the number ‘k.’ Clearly all of the ‘Yk’ have the same probability. Thus, by Rule 3, the probability
of a Yahtzee is:

6(1/6)5 = 1/1296 = 0.000772.

There is a slicker way to calculate the probability of a Yahtzee. Imagine that you cast the dice
one-at-a-time. (Don’t play Yahtzee this way; it willreally annoy your friends.) No matter how the
first die lands, you can still get a Yahtzee. (An ESPN anchor might announce, ‘Ralph is on pace
for a Yahtzee!’) To obtain a Yahtzee, your last four dice mustmatch your first one. The probability
of this event is(1/6)4 = 0.000772, as above.

Here is our general definition ofindependent and identically distributed trials, abbreviated
i.i.d.:

Random variables X1, X2, X3, . . . all have the same probability distribution and
these random variables are independent.

But how do we know we have independent random variables? Thisquestion is a bit tricky.
Often times, we simply assume it to be true. This is indeed what I did above when I assumed that
the outcome of the first cast of the die has no influence on the outcome of the second cast. In other
problems, however, we will need to work from first principlesto determine whether or not two
random variables are independent. Also, when we try to applythese ideas to scientific problems
that are more complex than tossing coins or casting dice, we will need to give careful consideration
to whether or not independence makes sense scientifically. Finally, we will learn how to use data
to investigate whether the assumption of independence is reasonable. (See Chapter 6.)
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Table 1.3: 10,000 (100,000) Simulated Casts of a Fair Die.

10,000 Casts 100,000 Casts
Rel. Absolute Rel. Absolute

Value Freq. Freq. Prob. Difference Freq. Prob. Difference
1 1,681 0.1681 0.1667 0.00140.1655 0.1667 0.0012
2 1,675 0.1675 0.1667 0.00080.1682 0.1667 0.0015
3 1,676 0.1676 0.1667 0.00090.1644 0.1667 0.0023
4 1,693 0.1693 0.1667 0.00260.1669 0.1667 0.0002
5 1,674 0.1674 0.1667 0.00070.1676 0.1667 0.0009
6 1,601 0.1601 0.1667 0.00660.1674 0.1667 0.0007

Total 10,000 1.0000 1.0002 1.0000 1.0002

I am ready to answer the third of our three questions about probability, posed long ago on
page 2. Namely, if I determine/stateP (A) = 0.25, what does this mean?

There is a famous result in probability theory that answers this question. Sort of. In a limited
situation. It is called theLaw of Large Numbers (LLN). I will try to explain it.

Let X1 be a random variable and letA be some event whose occurrence is determined by the
value ofX1. Let X1, X2, X3, . . .Xn be independent and identically distributed trials. Clearly, for
each ofX2, X3, . . .Xn we can determine whether or not the eventA occurs. Then:

1. Count the number of times thatA occurs in the firstn trials.

2. Divide the frequency you obtained in step 1 byn, to obtain the relative frequency of occur-
rence of eventA in n trials.

The LLN states that in the limit, asn becomes larger without bound, the relative frequency of
occurrence of eventA converges toP (A).

Here is an example. I programmed my computer tosimulate 10,000 independent trials for
casting a balanced die (ELC). Then I had my computer repeat the process, but with 100,000 in-
dependent trials. The results are summarized in Table 1.3. Look at the results for 10,000 casts
first; these are in the five columns to the left of the vertical line segment in the table. We see that
the simulated frequencies ranged from a low of 1,601 for the outcome ‘6’ to a high of 1,693 for
the outcome ‘4.’ Thus, obviously, the relative frequenciesrange from 0.1601 to 0.1693. These
relative frequencies are all ‘close’ to the probability of each outcome: 0.1667. This last statement
is supported by the values in the column ‘Absolute Difference’ which lists the absolute values of
relative frequency minus probability. The largest discrepancy (absolute difference) is 0.0066 for
the outcome ‘6;’ three of the discrepancies are smaller than0.0010. Thus, the LLN seems to be
‘working;’ for a large value ofn, in this case 10,000, the relative frequencies are close to the
probabilities. Well, if you agree with my notion of close.

With 100,000 casts (to the right of the vertical line segmentin the table) the largest discrepancy
is 0.0023 and, again, there are three that are smaller than 0.0010. Generally speaking, this table
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shows that the LLN is better ‘overall’ forn = 100,000 than it is is forn = 10,000, but even this
statement is open to debate. For example, in our table the relative frequencies of 2, 3 and 5 are
all closer to the probability forn = 10,000 than they are forn = 100,000. Learning about the
usefulness and oddities of approximations are an importantpart of this course.

For any event larger than a single outcome, the relative frequency of the event will be the sum
of the appropriate relative frequencies, which, from the table above, will be close to its probability.
For example, consider the eventA = {1, 2, 3}. Given the ELC,P (A) = 3/6 = 0.5000. From the
table above, the relative frequency ofA for n = 10,000 is:0.1681 + 0.1675 + 0.1676 = 0.5032.

To summarize, when we have independent and identically distributed trials, then the proba-
bility of an event is approximately equal to its long-run-relative frequency. This result is used in
‘both directions.’ If we know the probability, we can predict the long-run-relative frequency of
occurrence. If, however, we do not know the probability, we can approximate it by performing a
large computer simulation and calculating the relative frequency of occurrence. This latter use is
much more important to us and we will use it many times in this course.

One of the main users of the ‘first application’ of the LLN are gambling casinos. I will give a
brief example of this.

An American roulette wheel has 38 slots, each slot with a number and a color. For this example,
I will focus on the color. Two slots are colored green, 18 are red and 18 are black. Red is a popular
bet and the casino pays ‘even money’ to a winner.

If we assume that the ELC is appropriate for the roulette wheel, then the probability that a red
bet wins is18/38 = 0.4737. But a gambler is primarily concerned with his/her relativefrequency
of winning. Suppose that one gambler places a very large number, n, of one dollar bets on red.
By the LLN, the relative frequency of winning bets will be very close to 0.4737 and the relative
frequency of losing bets will be very close to1 − 0.4737 = 0.5263. In simpler terms, in the long
run, for every $100 bet on red, the casino pays out2(47.37) = 94.74 dollars, for a net profit of
$5.26 for every $100 bet.

As a side note, when a person goes to a casino, he/she can see that every table game has a
range of allowable bets. For example, there might be a roulette wheel that states that the minimum
bet allowed is $5 and the maximum is $500. Well, a regular person likely pays no attention to
the maximum, but it is very important to the casino. As a sillyand extreme example, suppose
Bill Gates walks into a casino and wants to place a $50 billionbet on red. No casino could/would
accept the bet. Why? And, of course, I have seen no evidence that Mr. Gates would want to place
such a bet either.

1.3 Sums of i.i.d. Random Variables

This section provides you with practice on computing probabilities for i.i.d. random variables and
will illustrate why approximations are so important.

Refer to Table 1.1. As earlier, defineX1 (X2) to be the number that will be obtained on the
first (second) cast. DefineX = X1 + X2; in words,X is the sum of the numbers on the two dice.
We will now learn how to obtain the probability distributionof X; by the way, the probability
distribution ofX is usually called itssampling distribution. The obvious question is: Why do
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statisticians adopt two expressions for the same thing? Answer: The term sampling distribution
is reserved for random variables, likeX, that are functions of two or more (in the present case
two) other random variables, while probability distribution implies that we have a random variable
that is not such a function. Thus, when a statistician hears/reads probability/sampling distribution
he/she knows a bit more about what is going on. We will see other examples of this idea later.

Anyways, a sampling distribution consists of two sets of numbers: a listing of all possible
values of the random variable and a listing of the probabilities of the possible values. Typically,
the first of these lists is far easier to determine.

In the present case, clearly the possible value ofX are: 2, 3, 4, . . . 12. Finding the probabilities
is not difficult, but it is time consuming and tedious. The ingredients we need are: determination,
Table 1.1 and the addition and multiplication rules. I will determine a few of the probabilities and
then, when my determination flags, I will tell you the rest of them.

I begin withP (X = 2). In lecture, I have told you the story of the mathematician inthe kitchen
and it applies now. We write the event of interest,(X = 2), as(1, 1) which means, recall, that the
first and second dice both landed ‘1.’ Now, we can use the multiplication rule:

P (1, 1) = P (X1 = 1)P (X2 = 1) = (1/6)(1/6) = 1/36.

We could easily change1/36 to a decimal,1/36 = 0.0278, but b/c this example is primarily for
illustration, we won’t bother. Next, we note that the event(X = 3) is the same as the event[(1, 2)
or (2, 1)]. Thus,P (X = 3) equals

P ((1, 2) or (2, 1)) = P (1, 2) + P (2, 1) = 1/36 + 1/36 = 2/36.

Again, we could simplify2/36 to 1/18 or write it as a decimal, 0.0556, but we won’t bother.
Next, the event(X = 4) is the same as the event[(1, 3) or (2, 2) or (3, 1)]. Thus,P (X = 4)

equals
P ((1, 3) or (2, 2) or (3, 1)) = P (1, 3) + P (2, 2) + P (3, 1) = 3/36.

Continuing in this way (my determination has flagged), we getthe entire sampling distribution
for X, given below.

x : 2 3 4 5 6 7 8 9 10 11 12
P (X = x) : 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

In principle, the above method can be extended from two castsof the die to any number,n, of
casts. But the method is extremely tedious and time-consuming, even with the aid of a computer.
Here is a quick (?) example. Suppose we want to cast the dien = 5 times and we want to determine
P (X = 9), whereX is the sum of the five numbers obtained.

Well, first, I won’t try to draw a picture like the one we have inTable 1.1 b/c it would be
too tedious and difficult. But here is the important point: with five casts of the die, each of the
65 = 7776 possible five-tuples are equally likely to occur. (Five-tuple is just a generalization of
the words pair, e.g. (1,3) and triple, e.g. (1,3,2); in general, statisticians talk aboutn-tuples for an
ordered list ofn numbers.) Thus, we simply need to count how many of these five-tuples yield a
sum of 9. To do this, we list possibilities. This listing goesmuch better if we are clever.
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Table 1.4: Results from a Computer Simulation with 10,000 Runs for the Value ofX, the Sum of
the Numbers on Five Casts of a Fair Die.

Value: 5 6 7 8 9 10 11 12 13 14 15 16 17
Freq: 1 2 15 38 78 175 250 384 507 699 804 945 1004

Value: 18 19 20 21 22 23 24 25 26 27 28 29 30
Freq: 1012 978 854 720 524 407 286 169 89 28 19 10 2

First, I note that 9 is a pretty small total to obtain when one performs five casts. So, we begin
by considering lots of 1’s in the five-tuples. All 1’s will give us a total of 5, which is no good. Four
1’s will work if they are matched with a 5, such as (1,1,1,1,5). There are5 such five-tuples, one
for each choice of the position of the 5. The next possibilityis to have three 1’s. Three 1’s can
lead to a total of 9 if they are matched with: a 2 and a 4; or two 3’s. There are20 five-tuples that
arrange 1,1,1,2,4 and10 five-tuples that arrange 1,1,1,3,3. Two 1’s can lead to a total of 9 if they
are matched with 2,2,3. There are30 five-tuples that arrange 1,1,2,2,3. Finally, one 1 can lead to a
total of 9 if it is matched with four 2’s; there are5 such five-tuples.

If we sum the counts in bold-faced type in the previous paragraph, we find that there are70
five-tuples that will yield a total of 9 on the five casts. Thus,

P (X = 9) = 70/7776 = 0.0090.

I now will show you a way to approximate thisP (X = 9) and similar probabilities.
Consider the CM: Performn = 5 i.i.d. trials of casting a balanced die; compute the sum of the

five numbers obtained,X. I programmed my computer to operate this CM 10,000 times. I learned
a great deal from thiscomputer simulation; much more than just an approximation toP (X = 9).
Thus, I will present the entire results of it in Table 1.4.

First, note that the total 9 occurred on 78 runs; thus, the computer simulation approximation of
P (X = 9) is 0.0078, the relative frequency of occurrence of 9. Recall, that we determined the ac-
tual probability to be 0.0090. In my opinion (feel free to disagree) 0.0078 is a good approximation
of 0.0090.

Usually in practice, we wouldnot know the true probability ofP (X = 9); we would simply
have its approximation, in this case 0.0078. A natural question is: How close is the approximation
to the truth? Well, obviously, we can give a definitive answerto this questiononly if we know the
truth; knowing the truth I can state, “The approximation is too small by 0.0012.” Not knowing the
truth, below is the best we can do.

Denote our approximation, which is a relative frequency, byr̂. Denote the truth, the actual
probability, byr. Let m denote the number of runs in our computer simulation; in the present
example,m equals 10,000. (Remember that if we don’t like the answer we get below we can
improve it by increasingm.) Calculate the interval:

r̂ ± 3
√

r̂(1 − r̂)/m.
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We can bepretty certainthat the true probability,r, is in this interval. In Chapter 2 the notion of
pretty certainwill be made more precise. Let’s see how this interval works.

In our example,̂r = 0.0078 and the interval is

0.0078 ± 3
√

0.0078(0.9922)/10000 = 0.0078 ± 0.0026 = [0.0052, 0.0104].

In this example, b/c we know thatr = 0.0090 we know that the interval is correct; i.e. it containsr.
As a further example, I supplemented my original computer simulation of 10,000 runs with an

additional 30,000 runs, bringing my total tom equals 40,000 runs. The total 9 occurred 342 times
in these 40,000 runs, giving a relative frequency ofr̂ = 342/40000 = 0.00855 and an interval of

0.00855 ± 3
√

0.00855(0.99145)/40000 = 0.00855 ± 0.00138 = [0.00717, 0.01093].

This interval is correct b/c it containsr = 0.0090. The result of a four-fold increase inm is to
make the interval, roughly, one-half as wide.

The lesson to be learned here: We can use a computer simulation to approximater. We can
always get a more precise approximation by increasing the number of runs in the computer simu-
lation.

I will now give you another example of computing probabilities for a sum. Assume we have
i.i.d. trials with the following probability distribution: the possible values are 0, 1 and 2, with
probabilities 0.5, 0.3 and 0.2, respectively. This is similar to our die example, but easier b/c there
are fewer possible values (3 versus 6), but more difficult b/cwe no longer have the ELC.

Let X be the sum ofn = 3 trials from this probability distribution. We will find the sampling
distribution ofX.

The possible values ofX are 0, 1, 2, 3, 4, 5 and 6. I will calculate one of the probabilities for
you. To findP (X = 4) we note that a total of 4 can occur by: 0,2,2 or 1,1,2.

P (0, 2, 2) = 0.5(0.2)(0.2) = 0.020.

Similarly, P (2, 0, 2) = P (2, 2, 0) = 0.020. Next,

P (1, 1, 2) = 0.3(0.3)(0.2) = 0.018.

Similarly, P (1, 2, 1) = P (2, 1, 1) = 0.018. Adding all of these guys, we find thatP (X = 4) =
0.114. The entire sampling distribution ofX is given in the following table.

x : 0 1 2 3 4 5 6
P (X = x) : 0.125 0.225 0.285 0.207 0.114 0.036 0.008
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