Chapter 1
Probability

1.1 Getting Started

| begin with one of my favorite quotes from one my favorite sms.
Predictions are tough, especially about the future.—Yaagra&

Probability theory is used by mathematicians, scientistssdatisticians to quantify uncertainty
about the future.

We begin with the notion of ahance mechanism. This is a two-word technical expression.
It is very important that we use technical expressions é&xas they are defined. In every day
life you may have several meanings for some of your favoribeds, for example phat, but in this
class technical expressions mean what they mean. Uniduelyese notes the first occurrence of
a technical expression/term will be in bold-faced type.

Both words in ‘chance mechanism’ (CM) are meaningful. Theosd word reminds us that
the CM, wheroperated, produces aoutcome. The first word reminds us that the outcome cannot
be predictedvith certainty

Several examples will help.

1. CM: A coin is tossed. Outcome: The face that lands up, eltbads or tails.
2. CM: A (six-sided) die is cast. Outcome: The face that lamgsither 1, 2, 3, 4, 5 or 6.

3. CM: A man with AB blood and a woman with AB blood have a chizuitcome: The blood
type of the child, either A, B or AB.

4. CM: The next NFL season’s Super Bowl game. Outcome: Theaeviof the game, which
could be any one of the 32 NFL teams (well, perhaps not my kbdd favorite, the Detroit
Lions).

The next idea is theample space, usually denoted by. The sample space is the collection
of all possible outcomes of the CM. Below are the sample spfzehe CM'’s listed above.

1. CM: Coin.S = {H,T}.



2. CM: Die.§ ={1,2,3,4,5,6}.
3. CM: Blood.S = {A, B, AB}.
4. CM: Super Bowl.S = A list of the 32 NFL teams.

An event is a collection of outcomes; that is, it is a subset of the dammpace. Events are
typically denoted by upper case letters, usually from thgirb@ng of the alphabet. Below are
some events for the CM’s listed above.

1. CM: Coin.A={H},B={T}.

2. CM: Die. A = {5,6}, B = {1,3,5}.

3. CM: Blood.C = {A, B}.

4. CM: Super Bowl.A = {Vikings, Packers, Bears, Liohs

Sometimes it is convenient to describe an event with wordsexXamples of this: For the die,
eventA can described as ‘the outcome is larger than 4, and elgenan be described as ‘the
outcome is an odd integer.” For the Super Bowl, evérman described as ‘the winner is from the
NFC North Division.

Here is where | am going with thi®eforea CM is operated, nobody knows what the outcome
will be. In particular, for any eventl that is not the entire sample space, we don’t know whether
the outcome will be a member of. Afterthe CM is operated we can determine/see whether the
actual outcome is a member of an evdnif it is, we say that the evert hasoccurred; if not, we
say that the evemt hasnot occurred. Below are some examples for our CM’s above.

1. CM: Coin. If the coin lands heads, then evdrhas occurred and eveBthas not occurred.

2. CM: Die. If the die lands 5, botld and B have occurred. If the die lands 1 or B, has
occurred, butd has not. If the die lands 6} has occurred, buB has not. Finally, if the die
lands 2 or 4, bottkd and B have not occurred.

3. CM: Blood. If the child has AB blood, then the ev€rhas not occurred.
4. CM: Super Bowl. If the Packers win the Super Bowl, then thenéA has occurred.

Before the CM is operated, thgobability of the eventA, denoted byP(A), is a number that
measures thikelihoodthat A will occur. This incredibly vague statement raises threestgions
that we will answer.

1. How are probabilities assigned to events?
2. What are theulesthat these assignments obey?

3. If I say, for example, thaP(A) = 0.25, what does thisnear?
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First, the assignment of probabilities to evealwaysis based orassumptiongbout the op-
eration of the world. As such, it is scientific not amathematicakexercise. There are always
assumptions, whether they are expressed or tacit; implicgxplicit. My advice is to always do
your best to be aware of any assumptions you make. (This islidu®, good advice for outside
the classroom t0o0.)

The most popular assumption for a CM is the assumption ottjully likely case (ELC).

As the name suggests, in the ELC we assume that each possitbere is equally likely to occur.
Another way to say this is that it is impossible to find two ames such that one outcome is more
likely to occur than the other. | will discuss the ELC for tleuf CM’s we have been considering
in this section.

1. CM: Coin. If | select an ordinary coin from my pocket andrpta toss it, | would assume
that the two outcomes, heads and tails, are equally likebgtair. This seems to be a popular
assumption in our culture b/c ‘tossing a coin’ is often use@ avay to decide which of two
persons/teams is allowed to make a choice. For examplehdth@ames typically begin
with a coin toss and the winner gets to make a choice involdirgction of attack or initial
possession of the ball. Note, however, that | woodd make this assumption w/o thinking
about it. In particular, the path of a coin is governed by thed of physics and presumably
if I could always applyexactlythe same forces to the coin it would always land the same
way. | am an extremely minor friend of a famous person namedi Beaconis. Persi has
been a tenured professor at Stanford, Harvard, Cornell aadf@d again, and he was a
recipient of a MacArthur Foundation ‘no strings attachedigs’ fellowship a number of
years ago. More relevant for this discussion is that whikeesager, Persi worked as a small
acts magician. Thus, it is no surprise to learn that Persiunasually good control of his
hands and reportedly can make heads much more likely tHamtaenhetosses a coin. My
willingness to assume that heads and tails are equallyylikblenl toss a coin reflects my
belief about how coins are balanced and my limited abilitgdgatrol my hands.

2. CM: Die. Again, if | take an ordinary die from a board gamen willing to assume that
the six sides are equally likely to land facing up when | chstdie. Certainly, the casinos
of Las Vegas believe that the ELC is reasonable for their bicegheir payoffs in the game
of crapscould result in their losing large sums of money if the ELC sloet apply. | own,
however, two round cornered dice (ordinary dice have squeoeners) which | will tell you
about later in the notes. In particular, based on data | ctate we will conclude that the
ELC is not reasonable for either of my round cornered dice.

3. CM: Blood. The three possible blood types for the childraweequally likely. There is a
version of the ELC lurking in this problem and we will analyizéater.

4. CM: Super Bowl. | would certainlpever assume the ELC for ‘who wins the Super Bowl.
| would like to see my childhood favorite team win, but | bekethey are much less likely
to win than say ..., well, just about any other team.

Please draw the following lessons from the above discussi@e should carefully consider
how (we believe) the world operates and decide whether the §#ems reasonable. These con-
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siderations are a matter of science, not mathematics.
Let us suppose that we are willing to assume the ELC for a CMatWhppens next?
If we assume the ELC, then we assign probabilities to eventslws. For any event,

B The number of outcomes iA
~ The number of outcomes i’

P(A)

Let’s see how this formula works.

1. CM: Coin. The probability of obtaining headslis2 = 0.50. The probability of obtaining
tails also isl /2 = 0.50.

2. CM: Die. The probability of obtaining the ‘1’ is/6. The probability of obtaining the ‘2" is
1/6. In fact, the probability of obtaining any particular inegdrom 1, 2, ... 6, id /6. They
are equally likely and have the same probability of occuyrin

When considering this CM earlier, | defined the evests- {5,6}, andB = {1,3,5}. We
can now see that(A) = 2/6 andP(B) = 3/6.

The obvious question is: If I am not willing to assume the EbhGw do | assign probabilities
to events?

First, we need to discuss the nature of the sample space. UFdew examples to date the
sample space has consisted of a finite number of elementse @reeactually three possibilities of
interest to us for the nature of the sample space.

e The sample space can consist of a finite number of elements.
e The sample space can consist of a sequence of elements.

e The sample space can consist of an interval of numbers.

Let me give examples of the latter two of these possibilities

1. CM: I cast a die until | obtain a 6. Outcome: The number ofschperform.
S=1{1,2,3,...}.

2. CM: | hit a golf ball off a tee with my 9-iron. Outcome: Thesthnce the ball travels before
coming to rest, measured in yards. The sample space candredakhe interval of numbers
(0, 300).

Let me add a few comments about this last CM. The key featutatghe outcome is a measure-

ment. Measurements occur often in science, for examplartist weight (or mass), time, area,

and volume are examples of measurements. It is true that uld teat measurements as counts
simply by rounding off the measurement. For example, a pésseeight is a measurement and it

could be (and usually is in our culture) rounded to the negr@snd. It turns out, however, that the

mathematics are actually easier to study for a measuremantfor a count. Thus, instead of ap-

proximating a measurement as a count, the temptation iggi@aipnate a count as a measurement.
This issue will be revisited later in this course.
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If you are a golfer or know much about golf, you will realizeatmobody hits a golf ball 300
yards with a 9-iron. (Well, unless one is hitting down a vetgep hill.) Thus, you might wonder
why | put 300 yards as the upper limitin my sample space. Ag &l put a number large enough
to include all possibilities, it does not matter how large dka the upper bound. In fact, curious
as it might seem, usually we don’t worry too much about theenmw, indeed, lower bound. For
example, if | select an adult male at random and measure fagthe would typically take the
sample space to be all numbers larger than 0!

In terms of assigning probabilities to events, measuresenjuire a very different method of
study and they will be discussed later in this course.

Finite and countably infinite—the technical term used byheataticians for a sample space
that is a sequence—sample spaces are handled the same vilagiebaribe it now.

It will help if I begin with a new example of a finite sample spaweith a small number of
elements. Let us once again consider the next NFL seasonphuthe outcome will be the team
that wins the NFC North Division title. Note that there wikk lexactly one team that wins this
title. If a single team has the best record, it is the winnétwb, three or all four teams tie for
the best record, the NFL hagia-breakingprocedure that will determine a unique winner of the
NFC North Division. With this understanding, the samplecgpeonsists of four elements: Bears,
Lions, Packers and Vikings, denoted CB, DL, GBP and MV, regpely.

Now it is very important to remember that there is a distimctbetween mathematics and
science. What | am about to show you is thathematically validvay to assign probabilities to
the events. The scientific validity will be discussed later.

First, let me state the obvious, namely that | motwilling to assume the ELC for this CM. For
a finite sample space, if | am not willing to assume the ELCfdrr# the situation as thgeneral
case. Here is what | must do in the general case.

1. To every outcome in the sample space, assign a nonnegativeer, called its probability.
When summed over all outcomes in the sample space, thesahrobs yield 1.

2. The probability of any event is equal to the sum of the pbdiiges of its outcomes.

This is actually quite simple, as | will now demonstrate.

1. lassignthe following probabilities to the elements @ sample space: P(CB)=0.10, P(DL)=0.03,
P(GBP)=0.40 and P(MV)=0.47.

2. There are sixteen possible events (including the sangaeesand the empty event) so |
won't list all of them, but | will give you a few examples.

P(GBP or MV) = 0.40 + 0.47 = 0.87.

P(CB or GBP or MV) = 0.10 + 0.40 + 0.47 = 0.97.
P(DL or CB) = 0.03 + 0.10 = 0.13.
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The assignments | have made, whether you agree with thentcargomathematically valid.
So is the following assignment, which a football fan woulckly find absurd scientifically:

P(CB) = 0.01, P(DL) = 0.97, P(GBP) = 0.01 andP(MV) = 0.01.

As you can no doubt imagine, if two persons have differenigassents of probabilities to
outcomes and if they like to gamble, they can agree on a mytsetisfactory wager.

We now turn to the second of our three questions about protyabWhat rules do they obey?
B/c these rules are so important, we will number them. By thg,wwill prove that Rules 1-3
are true for the ELC and the general case. They also can bemptovbe true for our method
of handling measurement outcomes which, as mentionedqusglyi will be covered later in this
course.

By contrast, Rules 4—6 are logical consequences of RulesWhigh means that, for their
proofs, we won'’t need to keep referring to how probabilitiesre initially assigned to events.

Rule 1. Called therule of total probability. The probability of the sample space equals1. |
will prove this rule for both of our methods of assigning pabldities.

For the ELC, the probability of any event is the number of outes in the event divided by the
number of outcomes in the sample space. Apply this definitith ‘event’ replaced by ‘sample
space’ and the result is that the numerator and denominatocide, making the quotient equal
to 1.

For the general case, the probability of the sample spadeisum of the probabilities of all
of its outcomes. By definition, these probabilities sum to 1.

The sample space is often called eetain event b/c the outcome of the operation of the
CM mustbe a member of the sample space. (By definition, the sampte gmentains all possible
outcomes.) Rule 1 states that certainty corresponds tokapiidy of one.

Rule 2. For any event 4,0 < P(A) < 1.

Proof: For the equally likely case,

The number of outcomes iA

P(A) = . :
(4) The number of outcomes in the sample space

The numerator is nonnegative and the denominator is pesitius, the ratio cannot be negative.
The numerator cannot exceed the denominator, so the ratan®st one.

For the general casé)(A) equals the sum of the probabilities of its outcomes. By dédimj
this sum cannot be negative and it cannot exceed one.

The consequences of Rule 2 are: Probabilities cannot beinegad no event can have more
probability than the certain event.

To summarize, probability is a measure with extremes 0 anghiere O corresponds to an
impossible event and 1 to the certain event.

Before | can state and prove Rule 3, | need to remind you of stefiritions for set operations.
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If A and B are events, then (A or B) is the event that contaihelaments that are in A and/or
B; (A and B) is the event that contains all elements that areoith A and B. In the old days,
what we call (A or B) was called the union of A and B and what wi (@aand B) was called the
intersection of A and B. Also, b/c many of us in the math scesnare lazy/frugal, (A and B) is
typically written as AB.

Two events, A and B, are called disjoint or mutually exclesi¥they have no elements in
common; in other words, if AB is the empty set.

Rule 3. Called the addition rule for digoint events. If A and B aredigoint events, then
P(Aor B) = P(A) + P(B).

Proof: For the ELC, the number of elements i ¢r B) equals the number id added to the
number inB and the result follows. For the general case, adding thegimtibes of the outcomes
in A to the probabilities of the outcomes i give us the total of the probabilities of the outcomes
in (A or B).

Here is why Rule 3 is important. Unlike the first two rules, &@lallows us to determine new
probabilities from given probabilities without going baikfirst principles.

There are three more rules that we will need. | will use Rule3 tb prove these rules, so |
won't need to keep referring to the ELC or the general case.

First, | need to remind you of another definition from setsAlis any event, then itsomple-
ment, denotedA¢, is the event which consists of all elements that are net.in

Rule 4. Therule of complements.
P(A°) =1— P(A).

Proof: A and A are disjoint events whose union is the sample space. ThiRulgyl,
1 =P(S)=P(AorA°) = P(A) + P(A°), by Rule 3, and the result follows.
Like Rule 3, Rule 4 allows us to calculate new probabilitiesrf ones we already know.
If we have two eventsA and B, we say thatd is asubset of B if and only if every every
element of4 is in B. (B might have additional elements that are notli

Rule5. Thesubset rule. If A isasubset of B, then
P(A) < P(B).

Proof: B is equal to the union ofi and A°B, two disjoint sets. (It might help if you draw a
picture.) Thus,
P(B)=P(A)+ P(A°B) > P(A),

b/c by Rule 2 all probabilities are nonnegative.

Rule 5 is important b/c it shows that more likely means lagg@bability. EventB is clearly
more likely to occur thamd b/c A occurring implies tha3 must occur.

Rule 6, our last rule, is a generalization of Rule 3 to evdms are not disjoint.
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Rule 6. The general addition rule for probabilities. For any events A and B,
P(Aor B) = P(A)+ P(B) — P(AB).

Proof: It will definitely help if you draw a picture. The eve( or B) is the union of the
following three disjoint eventsd B¢, AB, and A°B. Thus, by Rule 3,

P(AorB)=P(AB°)+ P(AB) + P(A°B) =
P(AB®) + P(AB) + P(A°B) + P(AB) — P(AB).
Now, referring to your picture,
P(A) = P(AB°) + P(AB), andP(B) = P(A°B) + P(AB).

The result follows.

1.2 Independent, Identically Distributed Trials

Above we considered the operation of a CM. Many, but not dlscCan be operated more than
once. For example, a coin can be tossed or a die cast many fiypesntrast, the next NFL season
will operate only once.

In this section we consider repeated operations of a CM.

Let us return to the ‘Blood type’ CM of Section 1. Previoudhdescribed the situation as
follows: A man with AB blood and a woman with AB blood will hagechild. The outcome is the
child’s blood type. The sample space consists of A, B and Adated that these three outcomes
are not equally likely, but that the ELC is lurking in this ptem. We get the ELC by viewing the
problem somewhat differently, namely as two operations Giva

The first operation is the selection of the allele that Da@giw the child. The second operation
is the selection of the allele that Mom gives to the child. &ach operation, the possible outcomes
are A and B and it seems reasonable to assume that these ally ékely. Consider the following
display of the possibilities for the child’s blood type.

Allele from Mom

Allele from Dad A B
A A AB

B AB B

| am willing to make the following assumption.

e The allele contributed by Dad (Mom) has no influence on thelaltontributed by Mom
(Dad).

Based on this assumption, and the earlier assumption of ltkef& each operation of the CM,
| conclude that the four entries in the cells of the table &axe equally likely. As a result,
we have the following probabilities for the blood type of ttleld: P(A) = P(B) = 0.25 and
P(AB) = 0.50.

Here is another example. | cast a die twice and | am willing ékethe following assumptions.

8



Table 1.1: All Possible Outcomes For Casting a Pair of Dice.

Number from Number from second cast

first cast 1 2 3 4 5 6
1,1)] (1,2 (@3 (14|15 (1,6)
2,11 (2,2)| (2,3)| (2,4) | (2,5) | (2,6)
3,1) (3,2 | (3,3)| (3,4 | (3,5 (3,6)
4,142 (4,3)]| (4,4 | (4,5 | (4,6)
(5,1)| (5,2)| (65,3)| (5,4)| (55)] (5,6)
(6,1)| (6,2)| (6,3)| (6,4)| (6,5)| (6,6)

OO, WNBE

Table 1.2: The Probability Distribution of the Outcome Qbé&al When Casting a Balanced Die.

Value Probability
1/6
1/6
1/6
1/6
1/6
1/6
Total 1

OOk, WN PR

e The number obtained on the first cast is equally likely to b2, B, 4, 5 or 6.
e The number obtained on the second cast is equally likely th Be 3, 4, 5 or 6.

e The number obtained on the first (second) cast has no influemtee number obtained on
the second (first) cast. We summarize this by saying that wbhebmes on the two casts are
(statistically) independent.

The 36 possible ordered results of the two casts are display&able 1.1, where, for example,
(5,3) means that the first die landed 5 and the second die landedi8isTdifferent from(3, 5).
Just like in the blood type example, b/c of my assumptionsnictude that these 36 possibilities
are equally likely. We will do a number of calculations now.

For ease of presentation, defiXg to be the number obtained on the first cast of the die and let
X, denote the number obtained on the second cast of the die.

We call X; and X, random variables, which means that to each possible outcome of the CM
they assign a number. Every random variable hasaability distribution which is simply a
listing of its possible values along with the probabilityesich value. Note that; and X, have
the same probability distribution; a fact we describe byrsgyhat they arédentically distributed,
Table 1.2 presents the common probability distributionXgrand X,. As we have seen¥; and
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X, each has its own probability distribution (which happendéahe same). It is also useful to
talk about theijoint probability distribution which is concerned with how they interact. | will
illustrate this idea with a number of computations.

P(X; =3andX, = 4) = 1/36,

b/c, by inspection exactly one of the 36 ordered pairs in trber table have a 3 in the first position
and a 4 in the second position.
Before we proceed, | want to invoke my laziness again. Itasmmich bother to type, say,

P(Xl =3 anng = 4)
It is much easier to type,
P(X1 - 3,X2 = 4)

In fact, provided it is not confusing, it is easier still tops simply P(3,4). To summarize: a
comma within a probability statement represents the wand.'a
For future reference, note that

P(X1=3,X,=4)=1/36, as doesP (X, = 3)P(X, = 4).

In words, the word ‘and’ within a probability statement $alis to multiply.
Here is another example.

b/c, as you can see from the table below, exactly 12 of the 86 pave the required property.

X5

X;1112|3, 45| 6
1 X | XX
2 XXX
3 XXX
4 X | XX
5

6

Note again that
P(X; <4,X5 >4)=12/36 gives the same answer 88X, < 4)P(X, > 4) = (4/6)(3/6) = 12/36.

This last property is callethe multiplication rule for independent random variables. It
is a very important result. It says that if we have two randamables that are independent,
then we can compute joint probabilities by using individpebdbabilities. In simpler words, if
we want to know the probability ok; doing somethingind X, doing something, then we can
calculate two individual probabilities, one fdf; and one forX, and then take theroduct of
these two individual probabilities. As we shall see repaigten this class, the multiplication rule
for independent random variables is a great labor savingdev

The above ideas for two casts of a die can be extended to anperumh casts of a die. In
particular, define
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e X, to be the number obtained on the first cast of the die;

o X, to be the number obtained on the second cast of the die;

e X5 to be the number obtained on the third cast of the die;

e and so on, in generak’;, is the number obtained on the ‘kth’ cast of the die.

If we assume that the casts are independent—that is, thaitnoroe has any influence on another
outcome—then we can use the multiplication rule to caleupabbabilities. Some examples are
below.

You might be familiar with the popular dice game Yahtzee. His game, a player casts five
dice. If all dice show the same number, then the player haeasth a Yahtzee. One of the first
things you learn upon playing the game Yahtzee is that thetexehtzee occurs only rarely. We
will calculate its probability.

Let’s find the probability of throwing five 1's when castingdidice. We write this as:

P(1,1,1,1,1) = (1/6)°.
Now, the probability of a Yahtzee is:
P(YiorYs,orYsorY,orYsorYs),

where Y}’ means all five dice land with the sidé’*facing up; in words, Y}, means a Yahtzee on
the numberk. Clearly all of the Y’ have the same probability. Thus, by Rule 3, the probability
of a Yahtzee is:

6(1/6)° = 1/1296 = 0.000772.

There is a slicker way to calculate the probability of a Yaetzimagine that you cast the dice
one-at-a-time. (Don't play Yahtzee this way; it widally annoy your friends.) No matter how the
first die lands, you can still get a Yahtzee. (An ESPN anchghtmannounce, ‘Ralph is on pace
for a Yahtzee!’) To obtain a Yahtzee, your last four dice mmatch your first one. The probability
of this eventig1/6)* = 0.000772, as above.

Here is our general definition ehdependent and identically distributed trials, abbreviated
ii.d.

Random variables X, X5, X3, ... all have the same probability distribution and
these random variables are independent.

But how do we know we have independent random variables? duestion is a bit tricky.
Often times, we simply assume it to be true. This is indeedtWhtal above when | assumed that
the outcome of the first cast of the die has no influence on tteome of the second cast. In other
problems, however, we will need to work from first principkesdetermine whether or not two
random variables are independent. Also, when we try to aphyege ideas to scientific problems
that are more complex than tossing coins or casting dice, We&ed to give careful consideration
to whether or not independence makes sense scientificatiglly; we will learn how to use data
to investigate whether the assumption of independencasorable. (See Chapter 6.)
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Table 1.3: 10,000 (100,000) Simulated Casts of a Fair Die.

10,000 Casts 100,000 Casts
Rel. Absolute, Rel. Absolute

Value Freq. Freq. Prob. Differenge Freq. Prob. Difference

1 1,681 0.1681 0.1667 0.0014.1655 0.1667 0.0012

2 1,675 0.1675 0.1667 0.0008).1682 0.1667 0.0015

3 1,676 0.1676 0.1667 0.0009.1644 0.1667 0.0023

4 1,693 0.1693 0.1667 0.0026).1669 0.1667 0.0002

5 1,674 0.1674 0.1667 0.000M.1676 0.1667 0.0009

6 1,601 0.1601 0.1667 0.0066).1674 0.1667 0.0007
Total 10,000 1.0000 1.0002 1.0000 1.0002

| am ready to answer the third of our three questions aboutgintity, posed long ago on
page 2. Namely, if | determine/stat A) = 0.25, what does this mean?

There is a famous result in probability theory that answieis question. Sort of. In a limited
situation. It is called th& aw of Large Numbers (LLN). | will try to explain it.

Let X; be a random variable and ldtbe some event whose occurrence is determined by the
value of X;. Let X1, X5, X3,... X, be independent and identically distributed trials. Chgedr
each ofX,, X3, ... X, we can determine whether or not the evdnmccurs. Then:

1. Count the number of times thdtoccurs in the first trials.

2. Divide the frequency you obtained in step 1/yto obtain the relative frequency of occur-
rence of event in n trials.

The LLN states that in the limit, a8 becomes larger without bound, the relative frequency of
occurrence of ever converges ta’(A).

Here is an example. | programmed my computesitaulate 10,000 independent trials for
casting a balanced die (ELC). Then | had my computer repeaptbcess, but with 100,000 in-
dependent trials. The results are summarized in Table 1d®k lat the results for 10,000 casts
first; these are in the five columns to the left of the vertiogad Isegment in the table. We see that
the simulated frequencies ranged from a low of 1,601 for tinieame ‘6’ to a high of 1,693 for
the outcome ‘4. Thus, obviously, the relative frequencai@sge from 0.1601 to 0.1693. These
relative frequencies are all ‘close’ to the probability aic outcome: 0.1667. This last statement
is supported by the values in the column ‘Absolute Diffeesrnghich lists the absolute values of
relative frequency minus probability. The largest disenmegy (absolute difference) is 0.0066 for
the outcome ‘6;’ three of the discrepancies are smaller th@010. Thus, the LLN seems to be
‘working;’ for a large value ofn, in this case 10,000, the relative frequencies are closédo t
probabilities. Well, if you agree with my notion of close.

With 100,000 casts (to the right of the vertical line segmettiie table) the largest discrepancy
is 0.0023 and, again, there are three that are smaller ti@@10. Generally speaking, this table
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shows that the LLN is better ‘overall’ for = 100,000 than it is is fon = 10,000, but even this

statement is open to debate. For example, in our table thévwelfrequencies of 2, 3 and 5 are
all closer to the probability for. = 10,000 than they are for = 100,000. Learning about the
usefulness and oddities of approximations are an impop@riof this course.

For any event larger than a single outcome, the relativeugaqy of the event will be the sum
of the appropriate relative frequencies, which, from thddabove, will be close to its probability.
For example, consider the evesit= {1, 2, 3}. Given the ELC,P(A) = 3/6 = 0.5000. From the
table above, the relative frequency #ffor n = 10,000 is:0.1681 + 0.1675 4+ 0.1676 = 0.5032.

To summarize, when we have independent and identicallyiloliséd trials, then the proba-
bility of an event is approximately equal to its long-runatese frequency. This result is used in
‘both directions.” If we know the probability, we can pretltbe long-run-relative frequency of
occurrence. If, however, we do not know the probability, va@ epproximate it by performing a
large computer simulation and calculating the relativediency of occurrence. This latter use is
much more important to us and we will use it many times in tiisrse.

One of the main users of the “first application’ of the LLN arntpling casinos. | will give a
brief example of this.

An American roulette wheel has 38 slots, each slot with a remahbd a color. For this example,
| will focus on the color. Two slots are colored green, 18 & and 18 are black. Red is a popular
bet and the casino pays ‘even money’ to a winner.

If we assume that the ELC is appropriate for the roulette Wwhken the probability that a red
bet wins is18/38 = 0.4737. But a gambler is primarily concerned with his/her relafireguency
of winning. Suppose that one gambler places a very large Bumbpof one dollar bets on red.
By the LLN, the relative frequency of winning bets will be yeariose to 0.4737 and the relative
frequency of losing bets will be very close 1o- 0.4737 = 0.5263. In simpler terms, in the long
run, for every $100 bet on red, the casino pays2{df.37) = 94.74 dollars, for a net profit of
$5.26 for every $100 bet.

As a side note, when a person goes to a casino, he/she camnasewdhy table game has a
range of allowable bets. For example, there might be a reuwdteel that states that the minimum
bet allowed is $5 and the maximum is $500. Well, a regulargeiikely pays no attention to
the maximum, but it is very important to the casino. As a sihyd extreme example, suppose
Bill Gates walks into a casino and wants to place a $50 billienon red. No casino could/would
accept the bet. Why? And, of course, | have seen no evideatéMh Gates would want to place
such a bet either.

1.3 Sumsof i.i.d. Random Variables

This section provides you with practice on computing prolitéds for i.i.d. random variables and
will illustrate why approximations are so important.

Refer to Table 1.1. As eatrlier, defin€, (X5) to be the number that will be obtained on the
first (second) cast. Defin& = X; + X»; in words, X is the sum of the numbers on the two dice.
We will now learn how to obtain the probability distributiai X; by the way, the probability
distribution of X is usually called itssampling distribution. The obvious question is: Why do
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statisticians adopt two expressions for the same thingAvAnsThe term sampling distribution
is reserved for random variables, like, that are functions of two or more (in the present case
two) other random variables, while probability distrirtiimplies that we have a random variable
that is not such a function. Thus, when a statistician hesads probability/sampling distribution
he/she knows a bit more about what is going on. We will seer@kamples of this idea later.

Anyways, a sampling distribution consists of two sets of berms: a listing of all possible
values of the random variable and a listing of the probaédiof the possible values. Typically,
the first of these lists is far easier to determine.

In the present case, clearly the possible valu& @re: 2, 3, 4, ... 12. Finding the probabilities
is not difficult, but it is time consuming and tedious. Thergdjents we need are: determination,
Table 1.1 and the addition and multiplication rules. | witdrmine a few of the probabilities and
then, when my determination flags, | will tell you the restloén.

| begin with P(X = 2). Inlecture, | have told you the story of the mathematiciatiakitchen
and it applies now. We write the event of interdst, = 2), as(1, 1) which means, recall, that the
first and second dice both landed ‘1." Now, we can use the pligétion rule:

P(1,1) = P(X; = 1)P(Xs = 1) = (1/6)(1/6) = 1/36.

We could easily changé/36 to a decimal,l /36 = 0.0278, but b/c this example is primarily for
illustration, we won'’t bother. Next, we note that the evékit= 3) is the same as the evdlt, 2)
or(2,1)]. Thus,P(X = 3) equals

P((1,2) or(2,1)) = P(1,2) + P(2,1) = 1/36 + 1/36 = 2/36.

Again, we could simplify2/36 to 1/18 or write it as a decimal, 0.0556, but we won'’t bother.
Next, the even{X = 4) is the same as the eveit, 3) or (2,2) or (3,1)]. Thus,P(X = 4)
equals
P((1,3)0r(2,2)or(3,1)) = P(1,3) + P(2,2) + P(3,1) = 3/36.

Continuing in this way (my determination has flagged), wetlyetentire sampling distribution
for X, given below.

x: 2 3 4 5 6 7 8 9 10 11 12
P(X =x): 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

In principle, the above method can be extended from two cdgte die to any numben, of
casts. But the method is extremely tedious and time-consgmeiven with the aid of a computer.
Here is a quick (?) example. Suppose we want to cast the €ié times and we want to determine
P(X =9), whereX is the sum of the five numbers obtained.

Well, first, 1 won't try to draw a picture like the one we have Table 1.1 b/c it would be
too tedious and difficult. But here is the important pointthwiive casts of the die, each of the
6° = 7776 possible five-tuples are equally likely to occur. (Fiveltujs just a generalization of
the words pair, e.g. (1,3) and triple, e.g. (1,3,2); in gahestatisticians talk about-tuples for an
ordered list ofn. numbers.) Thus, we simply need to count how many of thesdipkes yield a
sum of 9. To do this, we list possibilities. This listing gaasach better if we are clever.
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Table 1.4: Results from a Computer Simulation with 10,000Rior the Value ofX, the Sum of
the Numbers on Five Casts of a Fair Die.

Value: 5 6 7 8 9 10 11 12 13 14 15 16 17
Freq: 1 2 15 38 78 175 250 384 507 699 804 945 1004

Value: 18 19 20 21 22 23 24 25 26 27 28 29 30
Freq: 1012 978 854 720 524 407 286 169 89 28 19 10 2

First, | note that 9 is a pretty small total to obtain when oreqms five casts. So, we begin
by considering lots of 1's in the five-tuples. All 1's will giaws a total of 5, which is no good. Four
1's will work if they are matched with a 5, such as (1,1,1,1,bhere ares such five-tuples, one
for each choice of the position of the 5. The next possibiityo have three 1's. Three 1's can
lead to a total of 9 if they are matched with: a 2 and a 4; or tvgo Zhere are0 five-tuples that
arrange 1,1,1,2,4 antD five-tuples that arrange 1,1,1,3,3. Two 1's can lead to d ¢t if they
are matched with 2,2,3. There &e@five-tuples that arrange 1,1,2,2,3. Finally, one 1 can lead t
total of 9 if it is matched with four 2’s; there aesuch five-tuples.

If we sum the counts in bold-faced type in the previous paplgr we find that there arégd
five-tuples that will yield a total of 9 on the five casts. Thus,

P(X =9) =70/7776 = 0.0090.

| now will show you a way to approximate thi3(X = 9) and similar probabilities.

Consider the CM: Perform = 5 i.i.d. trials of casting a balanced die; compute the sum ef th
five numbers obtainedy . | programmed my computer to operate this CM 10,000 timesarried
a great deal from thisomputer simulation; much more than just an approximation®gX = 9).
Thus, | will present the entire results of it in Table 1.4.

First, note that the total 9 occurred on 78 runs; thus, theprder simulation approximation of
P(X =9)is 0.0078, the relative frequency of occurrence of 9. Retzdit we determined the ac-
tual probability to be 0.0090. In my opinion (feel free toatisee) 0.0078 is a good approximation
of 0.0090.

Usually in practice, we wouldot know the true probability of?(X = 9); we would simply
have its approximation, in this case 0.0078. A natural qae$s: How close is the approximation
to the truth? Well, obviously, we can give a definitive ansteethis questioronly if we know the
truth; knowing the truth | can state, “The approximationde small by 0.0012.” Not knowing the
truth, below is the best we can do.

Denote our approximation, which is a relative frequency,’byDenote the truth, the actual
probability, byr. Let m denote the number of runs in our computer simulation; in tresgnt
example,m equals 10,000. (Remember that if we don’t like the answer atebglow we can
improve it by increasingn.) Calculate the interval:

P+ 37 (1 — ) /m.
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We can beretty certainthat the true probability;, is in this interval. In Chapter 2 the notion of
pretty certainwill be made more precise. Let’s see how this interval works.
In our exampley = 0.0078 and the interval is

0.0078 £ 3\/0.0078(0.9922)/10000 = 0.0078 £ 0.0026 = [0.0052, 0.0104].

In this example, b/c we know that= 0.0090 we know that the interval is correct; i.e. it contains

As a further example, | supplemented my original computausation of 10,000 runs with an
additional 30,000 runs, bringing my total t@ equals 40,000 runs. The total 9 occurred 342 times
in these 40,000 runs, giving a relative frequency ef 342/40000 = 0.00855 and an interval of

0.00855 % 3\/0.00855(0.99145)/40000 = 0.00855 £ 0.00138 = [0.00717,0.01093].

This interval is correct b/c it contains = 0.0090. The result of a four-fold increase in is to
make the interval, roughly, one-half as wide.

The lesson to be learned here: We can use a computer sinmutateppproximate. We can
always get a more precise approximation by increasing tingbeu of runs in the computer simu-
lation.

| will now give you another example of computing probabdgifor a sum. Assume we have
i.i.d. trials with the following probability distributionthe possible values are 0, 1 and 2, with
probabilities 0.5, 0.3 and 0.2, respectively. This is samib our die example, but easier b/c there
are fewer possible values (3 versus 6), but more difficulti®@mo longer have the ELC.

Let X be the sum ofi = 3 trials from this probability distribution. We will find theasnpling
distribution of X .

The possible values of are 0, 1, 2, 3, 4, 5 and 6. | will calculate one of the probabgifor
you. To find P(X = 4) we note that a total of 4 can occur by: 0,2,2 or 1,1,2.

P(0,2,2) = 0.5(0.2)(0.2) = 0.020.
Similarly, P(2,0,2) = P(2,2,0) = 0.020. Next,
P(1,1,2) = 0.3(0.3)(0.2) = 0.018.

Similarly, P(1,2,1) = P(2,1,1) = 0.018. Adding all of these guys, we find th&(X = 4) =
0.114. The entire sampling distribution of is given in the following table.

T 0 1 2 3 4 5 6
P(X =z): 0.125 0.225 0.285 0.207 0.114 0.036 0.008
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