Chapter 10

Describing A Numerical Response

10.1 Pictures

So far, the response has been either a dichotomy or a courfbtloavs the Poisson or Binomial
distribution. In this chapter we extend our work to countstthre neither Poisson nor Binomial
and to responses that are measurements.

Suppose the subjects are students in this class. Below are egamples of numerical re-
sponses.

e Counting: Number of zeroes on homework to date; number of credits #nsester; number
of persons living in current household.

e Measuring: Height; weight; age.

As often happens in life, the boundary between these optiansbe blurry. For example,
consider annual income. Literally, annual income is deteech by counting the number of cents
earned in the year, but economists and other researchatdddreat it as a measurement. The
general guideline is that if a count variable has many mahyegin a population, and no one value
dominates others in terms of relative frequency, it is ugualathematically more convenient to
treat the variable as a measurement.

Two important words areprecise and accurate. Accurate means close to the truth. For
example, if | state that my dog Casey lived for 15.5 yearst ihaccurate. If | state that my
grandfather Wardrop lived to be 150, that is highly inactewra

Precise is most useful for measurements. If | state: Yeaydnchn one mile in 250.376 seconds,
this is incredibly precise (to the nearest one-thousanafthssecond), but ridiculously inaccurate.
If | say I ran it ‘In less than one hour’ it is accurate, but no¢ teast precise.

Here is a good general guideline for science: measuremieotddsbe precise enough to create
variation in our population or subjects of interest, butréhis no need to get carried away with it!

Precise is somewhat meaningless for counts that take ot wahads. For example, it is accu-
rate to say that 2 cats live in my house. It is no more precisayd have 2.000 cats!
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Table 10.1: Sorted Speeds, in MPH, by Time, of 100 Cars.

Speeds at 6:00 pm
26 26 27 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28
28 29 29 29 29 29 29 29 29 29 29 29 30 30 30 30 30 30
30 30 31 31 31 31 32 33 33 33 34 34 35 43

Speedsat 11:00 pm
27 28 30 30 30 31 31 31 32 32 32 32 32 32 32 33 33 33
33 33 33 33 34 34 34 34 34 34 35 35 35 35 36 36 36 37
37 37 37 37 37 38 38 39 39 40 40 40 40 40

For large counts, precision does become meaningful. Fanpha if forced to guess, | would
say that there are 300 million people living in the US. | susppleat this is accurate, but clearly |
am not being very precise.

10.1.1 Dot Plot

We begin with an example of measurement data, taken fromdastyroject in my Statistics 301
class.

On a spring evening, a Milwaukee police officer measured pleeds of 100 automobiles. The
data were collected on a street in a “warehouse districth @ispeed limit of 25 MPH. Fifty cars
were measured between roughly 5:45 and 6:15 pm, referredltovias 6:00 pm. The remaining
50 cars were measured between roughly 10:40 and 11:20 panegéfto below as 11:00 pm.

Each car's speed was measured to the nearest MPH. The satéedbytime, are in Table 10.1.
What do these lists reveal? We can see the smallest andtlapgeds, but not much else.

Here is a very important point: With a dichotomous respoiisgeasy to summarize accurately
a list of data; simply count S’s and F's. With a numerical @sge the issue of summarizing is
much more complicated (interesting?).

The first idea is to draw a picture of the data. Statisticiases avariety of pictures; we begin
with dot plots, also calleddot diagrams. The dot plots of the speeds, by time, are given in
Figure 10.1. Examine these plots briefly before reading ohavdo you see?

Statisticians have a number of suggestions for what to ld@ka@n individual dot plot:

e Outliers: The 6:00 plot has one large outlier at 43. For 11:00, | dorét @etliers; but one
could label 27 and 28 as small outliers.

e Gaps. Of course, an outlier creates a gap as we see at 6:00 for thieaya 86 to 42. What
| mean here are interior gaps, which we do not have in our plots

e Peaks. There are two peaks in the 6:00 plot: at 28 and at 33. Therehage peaks in the
11:00 plot: at 32—33, 37 and 40.
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Figure 10.1: Dot Plots of Speeds, by Time.
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e Symmetry: Neither dot plot is symmetric, but it very rare for a dot pldtreal data to be
(perfectly) symmetric. Thus, we look for approximate syntpeln my opinion, neither of
our dot plots is approximately symmetric, but 6:00 is cheanlore asymmetric than 11:00.
We will return to this topic below when we discuss shape.

| find it useful to note that outliers and peaks (and other sanes that we will learn about) can
befragile in some data sets. Fragile is not a standard term, and | daoivkvhy b/c it is very
important to note.

Fragile, the technical term, means pretty much what it doesal life, as in, “Don’t touch your
Great Aunt’s collectibles b/c they are fragile.” Here is whmean, illustrated with our speed data.

An outlier is always fragile in the sense that if the subjeiet/ who gave the outlier hadn't
shown up for the study, it wouldn't be there! For examplehi guy who drove 43 mph at 6:00
had taken a different route, we would have no outliers in @iadets.

Peaks are very interesting to statisticians and scientistsany ways (as we shall see) it is
easier to describe and think about data sets with one pedier @tes, however, it can be very
exciting to note that a data set has more than one peak. Wéehtvd a data set with more than
one peak, | first decide whether any of the peaks are fragile.

Consider the 6:00 data. | consider the peak at 33 to be fragiléf one the persons driving
33 mph had slowed to 32 mph, then the peak would disappeaw, Al this is important, | can’t
think of any reason why 33 would be more popular than its rieagé for the speed of a car. B/c |
view the peak at 33 as fragile, | label it unimportant and de¢hat the 6:00 plot has one important
peak. Of course, you may reasonably disagree with me.

Now, consider the 11:00 data. | would not label any of the pdedgile. Thus, | am resigned
to there being three peaks.

Next, we will consider thehape of a dot plot. B/c it takes a great deal of time to draw pictures
for these notes, | will show pictures of the following in lecs.

One shape for a dot plot iectangular. This dot plot is symmetric with one peak, although
the whole picture is the peak! It is not very important in pice.

The most important shape, by far,bsll-shaped. This shape is symmetric and looks like a
normal curve.

If a plot has one peak and is not symmetric, then we should evaits tails. If the right tail is
longer and heavier (longer is self explanatory, heaviermaenore data) than the left tail, we say
that the dot plot iskewed to theright. If the left tail is longer and heavier than the right tail, we
say that the dot plot iskewed to the left. 1 would describe the 6:00 plot as follows. It has one
important peak at 28 mph and it is skewed to the right with gdautlier at 43.

Note that for dot plots with one peak, the labels: rectangblell-shaped, skewed to the right
and skewed to the left, aret exhaustive. | often have data sets that fit none of these prototypes.
That is ok. These labels are a help, not a requirement.

If a dot plot has multiple peaks | don'’t try to assign a shapg tither than to say, for example,
“It has multiple peaks.”

Thus, | would not assign a name to the shape of the 11:00 dbtlplas three peaks. We will
discuss the meaning (if any) of these peaks in lecture.
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Table 10.2: Sorted Heights, in Inches, of 50 College Men.

63.6 64.1 64.2 643 650 66.0 66.6 66.8 66.8 66.8
66.8 669 669 674 674 675 679 679 683 684
68.4 685 68.6 686 68.7 68.8 688 688 69.0 69.0
69.2 69.2 694 69.6 69.7 699 699 70.1 70.1 70.2
705 711 713 717 719 726 731 738 748 77.2

Table 10.3: Frequency Table of Heights, in Inches, of 50&g@IMen.

Class Width  Frequency Relative Freq. Density
Interval*  (w) (freq) rf = (freq/n) (rf/w)
63.0-65.0 2 4 0.08 0.04
65.0-67.0 2 9 0.18 0.09
67.0-69.0 2 15 0.30 0.15
69.0-71.0 2 13 0.26 0.13
71.0-73.0 2 5 0.10 0.05
73.0-75.0 2 3 0.06 0.03
75.0-77.0 2 0 0.00 0.00
77.0-79.0 2 1 0.02 0.01

Total — n =50 1.00 —

*Each class interval includes its left endpoint but not i¢ght

10.1.2 Histograms

Table 10.2 presents the sorted heights of 50 college mersurezhto the nearest tenth of an inch.
If you draw a dot plot of these data you get a mess (trust meisi).tiBy my count (and | might
be off a bit) there are nine peaks and many gaps. And | reatlit say that any of the peaks are
meaningful or important. And the only reason for the gapkas tve have too little data spread over
too large a range. The only redeeming feature of the dot pltitat it reveals that the tallest man,
at 77.2 inches, might be considered a large outlier. In thisson one should consider removing
some of the detail in the data before drawing a picture. Aolgistm does this for us.

The first step in drawing a histogram is to create a frequealsletof the data, such as the one
shown in Table10.3. Note that each ‘class interval’ has dtiwiwhich is the arithmetic difference
of the endpoints; i.e. it is the upper endpoint minus the logredpoint. In this table, all widths
are the same; this is not a requirement, but see below foessthat can arise if the widths vary. |
hope that the rest of the column headings are self-explanalbhe endpoint convention needs to
be noted. Each class interval includes its left endpointnlot its right endpoint. Thus, the man
who measured 65.0 inches is counted in the class intenak6%.7.0. Figure 10.2 is the frequency
histogram for these data. The directions for drawing it argegsimple:
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Figure 10.2: Frequency Histogram of Heights.
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1. Draw a horizontal number line and label the endpoints efdlass intervals.

2. Above each class interval draw a rectangle with heighaktiuthe frequency of the class
interval.

A frequency histogram is well-suited to answer the questidow many? As in, “How many
men have heights between 67.0 and 69.0 inches?” (remergb@rimendpoint convention). The
answer, from the picture, is 15.

The next type of histogram is the relative frequency hisaagrpictured in Figure 10.3. To
construct a relative frequency histogram, follow step lddrequency histogram, but in step 2
make the height of the rectangle equal to the relative frequef the class interval.

A relative frequency histogram is especially well-suitedhswer the question, “What propor-
tion?” as in “What proportion of men have a height betweer®@thd 71.0 inches?” The answer
is the height of the rectangle above 69.0 to 71.0, which we tede 0.26.

When | compare Figures 10.2 and 10.3, | can’t help but thintkefmoted Rick Moranis film,
Honey, | Shrunk the Kids, b/c, of course, if we take the picture in Figure 10.2 andrdhtine height
of each rectangle by a factor af = 50, we get Figure 10.3. The third, and final, histogram is
the density scale histogram. Horizontally, this histogrartine same as the frequency and relative
frequency histograms; the difference is that now the heiflgach rectangle is its density. The
density scale histogram for the heights is in Figure 10.4wNois true that this density scale
histogram is a shrinkage of the relative frequency histograut this is true b/av = 2 > 1. If
w < 1, the rectangles in the density scale histogram will bert#tlen the rectangles in the relative
frequency histogram and it < 1/n then the rectangles in the density scale histogram will be
taller than even the rectangles in the frequency histogr&m,. we need to remember the very
unnecessary sequélpney | Blew Up the Kid.
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Figure 10.3: Relative Frequency Histogram of Heights.
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Unlike our earlier histograms, the heights in a densityesbt@étogram do not answer any ques-
tion. This is b/c the density scale histogram is about ameaisheights. To see this, note that the
area of any rectangle is

Base x Height = w x E = rf.
w

Thus, the density scale histogram represents relativeiérgjes by areas.

This begs the question: Why do we have density scale higtegftafter all, they require us to
calculate an area to find a number which is the height in tregivel frequency histogram.

There are two reasons why density scale histograms are tengor

1. For the development of theory it is convenient to have tuptowhose total area is one.

2. If we allow the widths to vary, wehould use the density scale histogram. This is explained
below.

For our data on heights of men, we have three histograms eTdrertwo uses for histograms;
one use is relatively unimportant, but the other is very ingoat. The less important reason is to
answer specific questions about the data set. | discusseetittier; frequency histograms are good
for how many questions; relative frequency histograms are goo@fat proportion questions; and
density scale histograms are not particularly good for. thggay that this is relatively unimportant
b/c we can also get answers to these questions just by loakitige data and counting, which is
pretty easy with a computer.

The more important use is to find a shape for the data. For tightsadata, b/c of the shrinking
issue, all three histograms have the same shape. (We cadstapes of histograms with the same
terms we used for shapes of dot plots.)
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Figure 10.4: Density Scale Histogram of Heights.
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Look at any one of the histograms. What shape do you seellytahere is one peak, in the
interval 67 to 69, and the right tail is clearly longer andVieathan the left tail. Thus, the shape
is skewed to the right. But | could also see the histogram asgb#escribed as approximately
symmetric, with a peak at 67 to 71 inches.

It can be difficult to say definitively what a shape is. Thidlisstrated with the height data and
Table 10.4 and its frequency histogram in Figure 10.5. Tiseagain one peak, but now while the
left tail is a bit heavier, the right tail is a bit longer. In nopinion, it does not fit any of our named
shapes very well.

10.1.3 Variable Width Histograms

Thus far, our two examples have had constant-width clagsvals. While it is common for sci-
entists and statisticians to follow thiestriction, often we can do better if we don’t. In particular,
constant width means that we have the same amount of detafsathe range of the data. It of-
ten makes more sense to have more detail where data arefydlant less detail where data are
scarce. (This concept is followed in my road atlas which tesdwo pages to New York City
and one page to Alaska.) | will illustrate these ideas withnealata from the 2009 Major League
Baseball season.

With the help of the website cnnsi.com | found the 100 majagleers with the most official
at-bats during 2009, ranging from a high of 682 for Aaron dflToronto to a low of 514 for Jason
Kubel of Minnesota. For each player | copied his number of @ouns; the sorted values are in
Table 10.5.

Table 10.6 is a frequency table for the number of home rund=égatre 10.6 is its density scale
histogram. Notice the widths of the class intervals all éqa Table 10.7 is a second frequency
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Table 10.4: Frequency Table of Heights, in Inches, of 50&g@IMen.

Class Width  Frequency Relative Freq. Density
Interval*  (w) (freq) rf = (freq/n) (rf /w)
62.0-64.0 2 1 0.02 0.01
64.0-66.0 2 4 0.08 0.04
66.0-68.0 2 13 0.26 0.13
68.0-70.0 2 19 0.38 0.19
70.0-72.0 2 8 0.16 0.08
72.0-74.0 2 3 0.06 0.03
74.0-76.0 2 1 0.02 0.01
76.0-78.0 2 1 0.02 0.01

Total — n = 50 1.00 —

*Each class interval includes its left endpoint but not iggt

Figure 10.5: Frequency Histogram of Heights.
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Table 10.5: Sorted Number of Home Runs of 100 Major League2909.

2
9
11
14
15

20
24
26
31
36

3
9
11
14
16

21
24
27
32
36

4

9
12
15
16

21
25
28
32
36

5

6

6

7

7

8

8

9 10 10 10 11 11 11

12
15
17

22
25
28
32
38

12
15
18

23
25
28
33
39

12
15
18

23
25
28
33
40

12
15
18

23
25
30
34
44

12
15
18

24
25
31
34
45

13
15
20

24
26
31
35
46

13
15
20

24
26
31
35
47

Table 10.6: Frequency Table of Number of Home Runs.

Class  Width Frequency Relative Freq. Density
Interval*  (w) (freq) rf = (freq/n) (rf /w)

0-10 10 14 0.14 0.014
10-20 10 34 0.34 0.034
20-30 10 28 0.28 0.028
30-40 10 19 0.19 0.019
40-50 10 5 0.05 0.005
Total — n = 100 1.00 —

*Each class interval includes its left endpoint but not i¢ght

Table 10.7: Frequency Table of Number of Home Runs.

Class  Width Frequency Relative Freq. Density
Interval*  (w) (freq) rf = (freq/n) (rf/w)
0-5 5 3 0.03 0.006
5-10 5 11 0.11 0.022
10-15 5 18 0.18 0.036
15-20 5 16 0.16 0.032
20-25 5 14 0.14 0.028
25-30 5 14 0.14 0.028
30-40 10 19 0.19 0.019
40-50 10 5 0.05 0.005
Total — n = 100 1.00 —

*Each class interval includes its left endpoint but not i¢ght
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Figure 10.6: Density Scale Histogram of Number of Home Runs.
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Figure 10.8: (Misleading) Variable Width Frequency Histmg of Number of Home Runs.
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table for the number of home runs. Figures 10.7 and 10.8 ardeihsity scale and frequency
histograms. Notice the widths of the class intervals arecoostant. Why do | label the frequency

histogram misleading?
In view of the above, let me summarize.

e If all class intervals have the same width, the three typesistbgrams all give the same
shape.

e If all class intervals do not have the same width, you shosklthe density scale histogram.
The other histograms can be misleading.

10.2 Numerical Summaries
Numerical summaries fall into three broad categories:
e Measuresof Center: The mean, median and mode.
e Measuresof Position: The percentiles and quantiles, including quartiles.
e Measuresof Spread: The range, interquartile range, variance and standardtiemi
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10.2.1 Measures of Center

| will try to keep this brief; first, b/c | suspect you know muohthis and second b/c it is pretty
dull, even by the standards of this course.
Themean of a set of numbers is its arithmetic average. For exampéentban of 5, 1, 4 and
10is:
(5+1+4+10)/4=20/4 =5.

It will help us later if we introduce some notation now. Dematcollection of» numbers by:
T1,X2,X3,...Tp.

With this notation, the mean of the numbers is calculated as

Xt zota3st...+x, YT
T = = )
n n

We denote the mean by, read x-bar. (If the data are denoted 40y instead ofz’s, we call the
mean y-bar; and so on.)

As you have noted above, we often like to sort our data fromlestao largest. We denote the
sorted data by:

.’,U(l), .’,U(Q), x(3)7 s x(n)7

i.e. we put parentheses around the subscripts to denotegsort
For example, suppose we have= 5 numbers:

T = 8,1’2 = 3,373 = 1,.754 = 8,1’5 = 6.
After sorting, these numbers are:
ra) =L@ =325 = 6,20 =8, =8

The idea of themedian of a set a numbers is to find the number in the center positiadheof
sorted list. This requires some care b/c the answer dependdether the sample size is an odd
number or an even number. For example, for the five numbergeatibere is a unique center
position, position 3, and the number in this position, 6his median.

If, however, the sample size is even, we need to be more ¢afedu example, consider four
sorted numbers: 1, 4, 5 and 10. In four positions, positioasa@ 3 have equal claim to being a
center position, so the median is taken to be the arithmeéage of the numbers in positions 2
and 3; in this case the median is the arithmetic average ofl4éagiving us 4.5.

If we denote the data hy's, then the median is denoted byread x-tilde. We have a formula
for calculating the median:

e If nis an odd integer, define= (n + 1)/2, which will be an integer. Then,

T = x(k).
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e If nis an even integer, define= n /2, which will be an integer. Then,
T = e + ren)]/2-

Refer to the above case wheiis an even integer. i) andz ., are different numbers, then
sometimes the intervak ), z(,+1)] is called thenterval of medians.
Finally, I will define themode. Suppose that we have a setrohumbers:

T1,TL2,X3y...Tp.

If these aren different numbers, then each of the numbers is a mode and we bhviouslyn
modes to the data set. If these are nddifferent values , then determine the frequency of each
distinct values. If one of these frequencies is uniquelydingest of the frequencies, then the value
associated with said frequency is the mode. If several gfiguencies tie for being the largest,

then the values associated with this largest frequencyllazalled modes. An example might help.
Suppose we have = 7 sorted values:

2,3,7,12,13,15,19.

This data set has seven modes. If the data are
2.2,7,12,13,15, 19,

then we have one mode, which is equal to 2. If the data set is
2.2,2,12, 15,15, 15,

then we have two modes, which are 2 and 15.
Below is a list of important features of these three measoiresnter.

1. There is one exact connection between a picture of a datendets measure of center:
The mean of a set of data is equal to the center of gravity afdtgplot.

2. The mean is sensitive to the presence of even one wildeouor example, the mean of 1,

4, 5and 10is 5. The mean of 1, 4, 5 and 1000 is 252.5. For eithaf glata the median is
4.5,

3. The median can be fragile and, hence, a misleading meatoeater. Consider the follow-
ing two frequency distributions:

Data Set:

Value A B
0 50 51
1 26 25
2 25 25
Total 101 101
Mean 0.752 0.743
Median 1 0
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These data sets are nearly identical; data set A becomes Banging only a single obser-
vation, out of 101 observations, from 1 to 0. The fact thatdthta sets are nearly identical is
well reflected in the means, they are almost the same. Theamgdiowever, are deceptive
b/c they suggest that the distributions are very different.

4. The mode can be fragile. Consider the sorted data:
1,1,1,1,3,5,6,9,12,12,12.

The mode is 1. If a 1 changes to a 2, there are two modes, 1 artigifhther 1 changes to
anything, the mode is 12.

5. For measurement data the mode depends critically on guspon of the measurement. For
example, for the heights, measured to the nearest tenthiathnof 50 men in Table 10.2,
the mean is 68.842 inches, the median is 68.75 inches anddte i$166.8 inches.

If we now round the heights to the nearest inch, the mean ariamelon’t change much:
the mean becomes 68.86 inches and the median becomes 69. iAdiee mode, however,
changes to 69 inches, which is quite different from 66.8 @sch

| have presented the mean, median and mode as alternatiggtavegscribe a set of data. It is
useful to make this whole idea a bit more rigorous.

We think of a ‘loss’ as a bad thing. Losing money, a job, a parta game, all of these hurt.
Mathematicians like to formalize the notion of loss in thetext of describing a set of data. We
will consider three loss functions:

e A missisasgood asa mile!

e Absoluteerror loss.

e Squared error loss.

Here is the framework. Our data consist of
X1,T2,X3,...Tn.

We want to choose the best numieo describe these data. If we describe= x by ¢, we incur
aloss denoted by (x, ¢). The rules for the loss functioh are:

1. A perfect description incurs 0 loss; symbolically, thisansL(c, ¢) = 0.
2. An imperfect description incurs a positive loggz, ¢) > 0 for anyz # c.

The best choice far is the number that minimizes

zn:L(xZ—,c).

1=1

We call this sum the total loss and denote itbylotal).
We now consider three choices for our loss function L.
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A missisasgood asamile. The loss function id.(x,c) = 1 for anyx # c. The idea is that all
imperfect descriptions are equally bad. Clearly the besioehforc is to set it equal to any one of
the modes. The total lossis— f, wheref is the frequency of any mode.

Absoluteerror loss. The loss function id.(z, ¢c) = |z — ¢/|. It will be shown in lecture that the
best choice ot is the median of the data, If n is an odd integer, then the median is the unique
minimizer of the total loss; if. is an even integer, then any number in the interval of medaalhs
minimize the total loss.

Squared error loss. The loss function id.(x, ¢) = (z — ¢)?. The total loss is

n n

i(zi —¢)? = Z(x —T+T—c)?= Z[(zi — )42z —2) (T — )+ (T — )Y =

n

(i —2)+2(T—¢)> (i —T)+n(@—c)® = (i —2)*+n(T — )

=1 =1 =1
this last equality is true b/E" | (x; — z) = 0. This final expression is minimized by taking= z.
Thus, for squared error loss, the best description is thewrnéthe data.

10.2.2 Measures of Position

We learned about the median earlier in these notes. The medaso called the 50th percentile
and the 0.50 quantile. Quantiles are the decimal versionps#reentile. For example, the 63rd
percentile is the same as the 0.63 quantile.

To make this abstract, but | hope not confusing,ddie a number strictly between 0 and 1;
i.e. 0 < m < 1. Ther quantile is the same number as th#r percentile. My example of the
previous paragraph illustrates this notion with= 0.63; the 0.63 quantile is the same number as
the 100(0.63) = 63rd percentile.

By convention, there are 99 percentiles—correspondingéaritegers 1 thru 99—allowing
to be any of the values: 0.01, 0.02, 0.03, ...0.99.

We begin with a new way to think about the median. As | will shaw, the following defini-
tion agrees with our earlier definition of the median.

e At least one-half of the data atess than or equal to the median.
e Atleast one-half of the data argreater than or equal to the median.

For any odd sample size, there is a unique number that satikfgedefinition, namely the number
in the center position. For our example data of 4, 9 and 20ntimeber in the center position, 9, is
the unique number that satisfies this definition, as argukmhbe

e Two-thirds of the data are less than or equal to 9.

e Two-thirds of the data are greater than or equal to 9.
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Thus, 9 satisfies our definition. But is it unique? Yes. (For eandidate smaller than 9, the first
item fails; for any candidate larger than 9, the second it&its.)

Next, consider an even sample size. This is trickier, so | wge our earlier data of 4, 7, 9
and 20. You can check that our median 8 satisfies both conditiBut it is not unique. Actually,
any number between 7 and 9 inclusive will satisfy our defamitof the median. Also, any number
smaller than 7 or larger than 9 will fail our definition. Thus,a strictly literal math sense, for an
even sample size there can be an entire interval of numbats#tisfy the definition of median.
Most statisticians and mathematicians agree that if the@niinterval of medians, we call the
midpoint of the intervathe median. And we will always do this in this course.

You might well wonder what was the point of all of the above.fde you read this we all
agreed on what the median was, and now | have just made it roorplicated. Well, we need the
above for percentiles and quantiles. | will illustrate.

First, let us be specific. Suppose we want to find the 35th paleewhich we will denote
by P35 = Qo.35, the 0.35 quantile. We define the 35th percentile to be anybeurthat has the
following two properties.

e Atleast 35% of the data arkessthan or equal toit.
e Atleast 65% of the data argreater than or equal to it.

If an entire interval of numbers satisfy both properties,take the 35th percentile to be the mid-
point of the interval.
Next, | give you the algorithm for calculating the 35th pertlke.

1. Calculaték = 0.35n.

2. If k is an integer, then the 35th percentile equals
[z + 2es)]/2

3. If kis not an integer, round it up to the next integer and call.ifThe 35th percentile equals
,I'(k/)
For example, suppose= 100. Then,

0.35n = 0.35(100) = 35

is an integer and the 35th percentile equals

[.T(gg,) + $(36)]/2

Let’s check that this works.

First, suppose thatss) andxss) are different numbers. Then exactly 35% of the data are less
than the percentile and exactly 65% of the data are greaarttie percentile. If 35 andx s are
the same number then at least 36% of the data are less thanairtedhe percentile and at least
66% of the data are greater than or equal to the percentile.
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As another example, suppose that 150. Then
k = 0.35n = 0.35(150) = 52.5

is not an integer, so we round it upA6= 53 and the 35th percentile equalgs). Let’s check that
it works.

First, clearly at least 53 observations are less than orldquass), and53/150 = 0.353 is
at least 35%. Second, at ledst) — 52 = 98 observations are greater than or equat @), and
98/150 = 0.653 is at least 65%.

Now that we understand the 35th percentile, we will consigstgrarbitrary percentile. First, the
definition. We define thé007 percentile to be any number that has the following two propgr

e Atleast 1007% of the data aréess than or equal toit.
e Atleast 100(1 — 7)% of the data argreater than or equal to it.

If an entire interval of numbers satisfies both properties,take thel00w percentile to be the
midpoint of the interval.
Next, | give you the algorithm for calculating ti@07 percentile.

1. Calculatek = mn.
2. If k is an integer, then the)0r percentile equals
[Ty + Tes1)] /2.
3. If kis not an integer, round it up to the next integer and cdll.iThe 1007 percentile equals
{L'(k/)

Final comment. The 25th percentile is called the first glegrtihe 50th percentile—in addition
to being called the median—is called the second quartile tlaa 75th percentile is called the third
guartile. Note the word is quartile, not quantile. To addie tonfusion, the quartiles are denoted
@1, @2 andQs. Thus, &) with a subscript can be a quantile or a quatrtile. If the supsiz1, 2 or
3, its a quatrtile; if the subscript is smaller than 1, it is aqie.

10.2.3 Measures of Spread

All measures of spread must have the following properties.
1. For any data set, the measure of spread is a number thainegative.

2. For any data set, the measure of spread equals 0 if, andfatfigre is no spread in the data
set. (Although see the exception for the IQR.)

3. For two data sets, the data set with the larger value of #esnore of spread is deemed to be
the data set with more spread.
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We will learn about three ways to measure spread. If you hofmtome famous by inventing a
new measure of spread, make sure it satisfies the conditmegao.w. people will ignore your
work and you won’t become famous.

The first measure of spread is thenge, denoted byR. Consider again the data on the number
of home runs in Table 10.5. The smallest number in the datéssetand the largest is 47. In
everyday language, | would say, “The numbers of home range from 2 to 47. But statisticians
don't like to have words (from, to) in a summary, nor do théselito have two numbers (2, 47) in
a summary. Thus, somewhat bizarrely, statisticians deffieeange to be:

R = Maximum — Minimum.

Thus,R = 47 — 2 = 45, for the home run data.
The range is not a very popular measure of spread. It has log/fog bad properties.

1. Just like the mean, the range is sensitive to even one wiléeo

2. Imagine that you are collecting data from a source, onerwbsion at-a-time, building your
data set of sizer. After each new observation you recalculate the range. @aith recal-
culation, the range can remain the same or it can increase;dnd this is the key point—it
can never decrease. Added to this, and this is not at all abyithere is no good way to
adjust for sample size in the range. As a result, a large ramgkt mean a lot of spread in a
small set of data or a moderate amount of spread in a hugeelata s

The next measure of spread is the interquartile range, aialbeel IQR. Recall the definition of
the quartiles in the previous subsection. The IQR is contpase

IQR = @5 — Q1.

| will now explain the motivation behind the IQR. Remembeattthe three quartiles divide (ap-
proximately) the data set into quarters: approximately-quarter of the data are smaller th@n;
approximately one-quarter of the data are betw@erand (),; approximately one-quarter of the
data are betweef), and(@3; and approximately one-quarter of the data are larger ¢panthus,
approximately one-half of the data—the center half—arevbeh(), and(s; for this reason the
IQR is interpreted as the range of the center half of the data.

View the IQR as an attempt to improve on the range. The IQRdeswn the center half of
the data and ignores the values in the lower and upper qaatehe data. As a result, it is not
influenced by a small number of wild outliers. Also, b/c it ises on the center half of the data, it
does adjust for sample size; i.e. it avoids the two bad problef the range.

The IQR has two main weaknesses.

1. It really does not help us solve any scientific problemsuthmarizes the data and that is it.

2. It strikes me as very odd that anyone would want to ignotetha data when measuring
spread. Especially to ignore the smallest and largest epsant the data; isn’t that where we
see spread?
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As a result of this second weakness, we get some rather stearsgvers using the IQR. For exam-
ple, consider the two data sets below:

e Data Set A: 1000, 1000, 1000, 1000 and 1000.

e Data Set B: 0, 1000, 1000, 1000 and 10,000.

You can verify that),; = Q3 = 1000 for both data sets; thus, both data sets have #Q® but it
seems strange to me that one would want to say these setsieas@ne spread or to say that the
second set has no spread.

Many statisticians love the IQR, but | believe they are Igrgeisguided. Many people always
like anything that is new, even if it is nearly worthless.

So, is there any measure of spread that | recommend? Yedatiaasd deviation—and math-
ematically equivalent variance—discussed below. Yessthadard deviation is not perfect, but
especially if we learn and remember its limitations, it issmywuseful tool for us.

10.2.4 The Standard Deviation and Variance

Earlier in these notes we learned about the standard dewjatiand varianceg?, of a probability
distribution. Also, we learned formulas for them for the 8mial and Poisson distributions. In
this section we learn about the standard deviatipand variances?, for a set of numerical data.

We have learned three measures of center: the mode, whiarely used; the median, which
focuses on position in the sorted list of data; and the medichwis obtained by doing arithmetic
(adding, then dividing) on a set of data.

Our three measures of spread are: the range, which is rasely; the IQR, which focuses on
positions in the sorted list of data; and the standard dieviatvhich is obtained by doing arithmetic
(subtracting, squaring, adding, dividing, taking the sgquaot) on a set of data. As a result, there
is a tendency among researchers to match the median witlQfReahd to match the mean with
the standard deviation. Yatan mix them, but usually it makes sense to decide whether positi
or arithmetic is more meaningful for your scientific problemmd data.

Below are two data sets, A and B. Clearly B has more spreadAhamvill use these sets to
introduce the formula for the standard deviation.

A
° ° °
| T T T |
3 4 5 6 7
B
° ° °
| T T T |
3 4 5 6 7

Both data sets have a mean of 5. The first idea behind the stbaielaation is that we measure
spread relative to the center of the data set. ddMm@pare each observation with the center. We
compare by subtracting. Thus, for each observatipwe calculater — z which is called the
deviation inx (relative to the mean). Below are the deviations for data Aeind B.
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A Deviations: —1 0 +1
[ ] [ ] [ ]
[ I I I ]
3 4 5 6 7
B -2 0 +2
[ ] [ ] [}
[ I I I ]
3 4 5 6 7

The second idea is that standard deviation is a functioneofléviations; i.e. two data sets with
the same deviations will have the same standard deviatmmexXample, if we define data set C to
consist of 198, 200, 202, its deviations will b€, 0 and+2. Hence, data set C will have the same
standard deviation as data set B above.

It is helpful to create the following tables.

A B
x r— x r—
4 —1 3 —2
5 0 5 0
6 +1 7 +2
Total 0| Total 0

Note that for both data sets;(x — z) = 0. This is, in fact, true for every data set: the total of the
deviations is always 0.

We say that: deviations havén — 1) degrees of freedom. | will present an example of why
we use this term in lecture.

We need to combine the deviations to get an overall measwsgredd. Clearly, summing them
does not work b/c the negative deviations will cancel thetpesones.

A deviation of 0 denotes no spread and as the deviation mevagfaom 0, in either direction,
it reflects greater distance from the center, and, hencajgrepread.

Thus, it would seem that it would be a good idea to take thelatesgalue of the deviations
before combining them. Sadly, whereas it ‘makes sensek®ttae absolute value, this operation
turns out not to be useful in any way! What turns out to be vesgful—as we shall see—is to
square each deviation, as shown in the table below.

A B
r -7 (z—2?*| z x-7 (x—1)?
4 —1 1 3 —2 4
5 0 0 5 0 0
6 +1 1 7 +2 4
Tot. 0 2 Tot. 0 8




Now we come to a major disagreement between mathematicrahstatisticians. Both agree to
measure spread by using the total of the squared deviatmasboth realize that they must adjust
for sample size. Mathematicians opt to calculate the meaarsd deviation; i.e. they divide by
Statisticians divide by the degrees of freedom to get tHeviahg formula for thevariance:

§2 — §3(37“4f)2.

 on—1

For data set As> = 2/(3 — 1) = 1; and for data set Bs> = 8/(3 — 1) = 4.
The variance would be an acceptable way to measure spreaptdrr two difficulties.

¢ It has no interpretation other than the obvious: the vagasa@almost the mean of the squared
deviations.

¢ It has the units wrong. (Will be discussed in lecture.)

Statisticians prefer the standard deviatienyhich is the (positive) square root of the variance.
For data set As = V/s2 = /1 = 1; and for data set By = V/s2 = /4 = 2.

There is an interpretation fot, but it is bit strange.

Recall the mean: it is the center of gravity of the dot plotaf tlata. This is a direct, exact state-
ment. The interpretation ofis indirect and only approximate. And sometimes the appnaxion
is bad.

Imagine the data are presented as a dot plot and that yousaidirsg at the mean. You decide,

| want to reach out my arms in each direction (imagine you #&stie man/woman)
and capture data within them.

You then ask the question:
How far must | reach to capture 68% of the data?

Theempirical rule (ER) says that you must reach autinits (in both directions).
| will illustrate the ER with several sets of data. Below igalaet D, withn = 100.

-5 67 108 137 160 179 196 210 224 236 248 258 268 278 287
295 304 312 319 327 334 341 348 354 361 367 373 379 385 391
397 403 409 414 420 425 430 436 441 446 452 457 462 467 472
477 482 490 490 497 503 508 513 518 525 525 533 538 543 548
554 559 564 570 575 580 586 591 597 603 609 615 621 627 633
639 649 649 663 663 673 681 688 696 705 713 727 727 742 758
758 776 790 804 821 840 863 892 933 1005

Here are some facts about D: the mean is 500.0, the standaedide is 200.0 and a histogram of
the data is approximately bell-shaped.

By counting, 68 of these numbers are between 300 and QD £), a perfect agreement
with the ER prediction.In general, if the data are approximately bell-shaped, then the ER
approximation isvery good.

Below is data set E, with = 100.
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106
133
175
221
303
384
584

108
134
175
226
306
389
610

109
138
179
228
307
403
635

111
140
180
228
310
411
637

112
141
186
233
314
415
641

112
142
190
239
324
421
651

113
145
194
245
332
421
664

117
146
195
247
337
430
793

117
156
202
250
338
439
973

122
156
202
261
341
449
1324

124
158
204
266
344
472

125
164
206
285
354
472

127
170
207
286
357
523

129
172
207
289
366
529

130
173
217
300
373
567

Here are some facts about E: the mean is 300.0, the standaatiole is 200.0 and a histogram
of the data is strongly skewed to the right.
By counting, 87 of these numbers are between 100 and5680s), a bad agreement with the
ER approximationln general, if thedata are strongly skewed (right or left) the actual amount
of datain theinterval z + s ismuch larger than predicted by the ER.
Finally, below is data set G, with = 100.

63
223
292
388
551
627
704

100
227
298
400
557
631
711

120
233
302
415
564
636
718

135
237
308
420
569
640
726

147
243
312
447
574
645
735

157
247
317
459
580
649
745

166
251
323
472
584
654
757

174
256
328
477
589
659
771

181
260
334
491
594
664
792

188
265
341
504
599
669
828

194
270
347
514
604
674

201
275
354
523
608
679

207
279
361
531
613
685

212
284
369
538
617
691

218
288
378
545
621
697

Here are some facts about G: the mean is 446.0, the standaadide is 200.0 and its histogram
has two peaks and is approximately symmetric.
By counting, 60 of these numbers are between 246 and®46), a somewhat bad agreement
with the ER approximationln general, if the data have two peaks, the actual number of data
pointsin the interval z + s is smaller than predicted by the ER. The more separated the
peaks, the smaller the count in theinterval.
The ER can be generalized. The most common generalizatios&y that approximately 95%

of the data are within two standard deviations of the meath@rintervalz + 2s).

You can check the following counts:

¢ In data set D, 96 observations are in the intefvad, 900].

¢ In data set E, 97 observations are in the intefal00, 700].

¢ In data set G, all 100 observations are in the intej@l846].

In this class, you wilhever be required to calculate

Earlier, we learned about standardizing a random varidddeall that ifX is a random variable
with meanu and standard deviatian then the standardized versionX¥fis denoted by’ and they
are related by the following equation:




This relationship extends to any particular valueXgfdenoted byt, to give

T —p
—.

z =

In this last relationship; is called the z-score af.
A similar idea is developed for data. Given a set of data

L1, X2, T3, ...Tn,

with meanz and standard deviation For any particular: value, define it$-score by

t =

S

Note that this is a t-score, not a z-score. A z-score reqtit@snean and standard deviation of the
population/probability distribution. A t-score requirdkge mean and standard deviation of a set of
data.
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