
Chapter 10

Describing A Numerical Response

10.1 Pictures

So far, the response has been either a dichotomy or a count that follows the Poisson or Binomial
distribution. In this chapter we extend our work to counts that are neither Poisson nor Binomial
and to responses that are measurements.

Suppose the subjects are students in this class. Below are some examples of numerical re-
sponses.

• Counting: Number of zeroes on homework to date; number of credits this semester; number
of persons living in current household.

• Measuring: Height; weight; age.

As often happens in life, the boundary between these optionscan be blurry. For example,
consider annual income. Literally, annual income is determined bycounting the number of cents
earned in the year, but economists and other researchers tend to treat it as a measurement. The
general guideline is that if a count variable has many many values in a population, and no one value
dominates others in terms of relative frequency, it is usually mathematically more convenient to
treat the variable as a measurement.

Two important words are:precise and accurate. Accurate means close to the truth. For
example, if I state that my dog Casey lived for 15.5 years, that is accurate. If I state that my
grandfather Wardrop lived to be 150, that is highly inaccurate.

Precise is most useful for measurements. If I state: Yesterday I ran one mile in 250.376 seconds,
this is incredibly precise (to the nearest one-thousandthsof a second), but ridiculously inaccurate.
If I say I ran it ‘In less than one hour’ it is accurate, but not the least precise.

Here is a good general guideline for science: measurements should be precise enough to create
variation in our population or subjects of interest, but there is no need to get carried away with it!

Precise is somewhat meaningless for counts that take on small values. For example, it is accu-
rate to say that 2 cats live in my house. It is no more precise tosay I have 2.000 cats!
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Table 10.1: Sorted Speeds, in MPH, by Time, of 100 Cars.

Speeds at 6:00 pm
26 26 27 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28
28 29 29 29 29 29 29 29 29 29 29 29 30 30 30 30 30 30
30 30 31 31 31 31 32 33 33 33 34 34 35 43

Speeds at 11:00 pm
27 28 30 30 30 31 31 31 32 32 32 32 32 32 32 33 33 33
33 33 33 33 34 34 34 34 34 34 35 35 35 35 36 36 36 37
37 37 37 37 37 38 38 39 39 40 40 40 40 40

For large counts, precision does become meaningful. For example, if forced to guess, I would
say that there are 300 million people living in the US. I suspect that this is accurate, but clearly I
am not being very precise.

10.1.1 Dot Plot

We begin with an example of measurement data, taken from a student project in my Statistics 301
class.

On a spring evening, a Milwaukee police officer measured the speeds of 100 automobiles. The
data were collected on a street in a “warehouse district” with a speed limit of 25 MPH. Fifty cars
were measured between roughly 5:45 and 6:15 pm, referred to below as 6:00 pm. The remaining
50 cars were measured between roughly 10:40 and 11:20 pm, referred to below as 11:00 pm.

Each car’s speed was measured to the nearest MPH. The sorted data, by time, are in Table 10.1.
What do these lists reveal? We can see the smallest and largest speeds, but not much else.

Here is a very important point: With a dichotomous response,it is easy to summarize accurately
a list of data; simply count S’s and F’s. With a numerical response the issue of summarizing is
much more complicated (interesting?).

The first idea is to draw a picture of the data. Statisticians use a variety of pictures; we begin
with dot plots, also calleddot diagrams. The dot plots of the speeds, by time, are given in
Figure 10.1. Examine these plots briefly before reading on. What do you see?

Statisticians have a number of suggestions for what to look at in an individual dot plot:

• Outliers: The 6:00 plot has one large outlier at 43. For 11:00, I don’t see outliers; but one
could label 27 and 28 as small outliers.

• Gaps: Of course, an outlier creates a gap as we see at 6:00 for the gapfrom 36 to 42. What
I mean here are interior gaps, which we do not have in our plots.

• Peaks: There are two peaks in the 6:00 plot: at 28 and at 33. There are three peaks in the
11:00 plot: at 32–33, 37 and 40.
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Figure 10.1: Dot Plots of Speeds, by Time.
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• Symmetry: Neither dot plot is symmetric, but it very rare for a dot plot of real data to be
(perfectly) symmetric. Thus, we look for approximate symmetry. In my opinion, neither of
our dot plots is approximately symmetric, but 6:00 is clearly more asymmetric than 11:00.
We will return to this topic below when we discuss shape.

I find it useful to note that outliers and peaks (and other summaries that we will learn about) can
be fragile in some data sets. Fragile is not a standard term, and I don’t know why b/c it is very
important to note.

Fragile, the technical term, means pretty much what it does in real life, as in, “Don’t touch your
Great Aunt’s collectibles b/c they are fragile.” Here is what I mean, illustrated with our speed data.

An outlier is always fragile in the sense that if the subject/trial who gave the outlier hadn’t
shown up for the study, it wouldn’t be there! For example, if the guy who drove 43 mph at 6:00
had taken a different route, we would have no outliers in our data sets.

Peaks are very interesting to statisticians and scientists. In many ways (as we shall see) it is
easier to describe and think about data sets with one peak. Other times, however, it can be very
exciting to note that a data set has more than one peak. Whenever I find a data set with more than
one peak, I first decide whether any of the peaks are fragile.

Consider the 6:00 data. I consider the peak at 33 to be fragileb/c if one the persons driving
33 mph had slowed to 32 mph, then the peak would disappear. Also, and this is important, I can’t
think of any reason why 33 would be more popular than its neighbors for the speed of a car. B/c I
view the peak at 33 as fragile, I label it unimportant and decide that the 6:00 plot has one important
peak. Of course, you may reasonably disagree with me.

Now, consider the 11:00 data. I would not label any of the peaks fragile. Thus, I am resigned
to there being three peaks.

Next, we will consider theshape of a dot plot. B/c it takes a great deal of time to draw pictures
for these notes, I will show pictures of the following in lecture.

One shape for a dot plot isrectangular. This dot plot is symmetric with one peak, although
the whole picture is the peak! It is not very important in practice.

The most important shape, by far, isbell-shaped. This shape is symmetric and looks like a
normal curve.

If a plot has one peak and is not symmetric, then we should examine its tails. If the right tail is
longer and heavier (longer is self explanatory, heavier means more data) than the left tail, we say
that the dot plot isskewed to the right. If the left tail is longer and heavier than the right tail, we
say that the dot plot isskewed to the left. I would describe the 6:00 plot as follows. It has one
important peak at 28 mph and it is skewed to the right with a large outlier at 43.

Note that for dot plots with one peak, the labels: rectangular, bell-shaped, skewed to the right
and skewed to the left, arenot exhaustive. I often have data sets that fit none of these prototypes.
That is ok. These labels are a help, not a requirement.

If a dot plot has multiple peaks I don’t try to assign a shape toit, other than to say, for example,
“It has multiple peaks.”

Thus, I would not assign a name to the shape of the 11:00 dot plot. It has three peaks. We will
discuss the meaning (if any) of these peaks in lecture.
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Table 10.2: Sorted Heights, in Inches, of 50 College Men.

63.6 64.1 64.2 64.3 65.0 66.0 66.6 66.8 66.8 66.8
66.8 66.9 66.9 67.4 67.4 67.5 67.9 67.9 68.3 68.4
68.4 68.5 68.6 68.6 68.7 68.8 68.8 68.8 69.0 69.0
69.2 69.2 69.4 69.6 69.7 69.9 69.9 70.1 70.1 70.2
70.5 71.1 71.3 71.7 71.9 72.6 73.1 73.8 74.8 77.2

Table 10.3: Frequency Table of Heights, in Inches, of 50 College Men.

Class Width Frequency Relative Freq. Density
Interval* (w) (freq) rf = (freq/n) (rf/w)
63.0–65.0 2 4 0.08 0.04
65.0–67.0 2 9 0.18 0.09
67.0–69.0 2 15 0.30 0.15
69.0–71.0 2 13 0.26 0.13
71.0–73.0 2 5 0.10 0.05
73.0–75.0 2 3 0.06 0.03
75.0–77.0 2 0 0.00 0.00
77.0–79.0 2 1 0.02 0.01

Total —- n = 50 1.00 —-
*Each class interval includes its left endpoint but not its right

10.1.2 Histograms

Table 10.2 presents the sorted heights of 50 college men, measured to the nearest tenth of an inch.
If you draw a dot plot of these data you get a mess (trust me on this!). By my count (and I might
be off a bit) there are nine peaks and many gaps. And I really can’t say that any of the peaks are
meaningful or important. And the only reason for the gaps is that we have too little data spread over
too large a range. The only redeeming feature of the dot plot is that it reveals that the tallest man,
at 77.2 inches, might be considered a large outlier. In this situation one should consider removing
some of the detail in the data before drawing a picture. A histogram does this for us.

The first step in drawing a histogram is to create a frequency table of the data, such as the one
shown in Table10.3. Note that each ‘class interval’ has a ‘width’ which is the arithmetic difference
of the endpoints; i.e. it is the upper endpoint minus the lower endpoint. In this table, all widths
are the same; this is not a requirement, but see below for issues that can arise if the widths vary. I
hope that the rest of the column headings are self-explanatory. The endpoint convention needs to
be noted. Each class interval includes its left endpoint, but not its right endpoint. Thus, the man
who measured 65.0 inches is counted in the class interval 65.0 to 67.0. Figure 10.2 is the frequency
histogram for these data. The directions for drawing it are quite simple:
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Figure 10.2: Frequency Histogram of Heights.
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1. Draw a horizontal number line and label the endpoints of the class intervals.

2. Above each class interval draw a rectangle with height equal to the frequency of the class
interval.

A frequency histogram is well-suited to answer the question: How many? As in, “How many
men have heights between 67.0 and 69.0 inches?” (remembering our endpoint convention). The
answer, from the picture, is 15.

The next type of histogram is the relative frequency histogram, pictured in Figure 10.3. To
construct a relative frequency histogram, follow step 1 fora frequency histogram, but in step 2
make the height of the rectangle equal to the relative frequency of the class interval.

A relative frequency histogram is especially well-suited to answer the question, “What propor-
tion?” as in “What proportion of men have a height between 69.0 and 71.0 inches?” The answer
is the height of the rectangle above 69.0 to 71.0, which we read to be 0.26.

When I compare Figures 10.2 and 10.3, I can’t help but think ofthe noted Rick Moranis film,
Honey, I Shrunk the Kids, b/c, of course, if we take the picture in Figure 10.2 and shrink the height
of each rectangle by a factor ofn = 50, we get Figure 10.3. The third, and final, histogram is
the density scale histogram. Horizontally, this histogramis the same as the frequency and relative
frequency histograms; the difference is that now the heightof each rectangle is its density. The
density scale histogram for the heights is in Figure 10.4. Now it is true that this density scale
histogram is a shrinkage of the relative frequency histogram, but this is true b/cw = 2 > 1. If
w < 1, the rectangles in the density scale histogram will be taller than the rectangles in the relative
frequency histogram and ifw < 1/n then the rectangles in the density scale histogram will be
taller than even the rectangles in the frequency histogram.So, we need to remember the very
unnecessary sequel,Honey I Blew Up the Kid.
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Figure 10.3: Relative Frequency Histogram of Heights.
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Unlike our earlier histograms, the heights in a density scale histogram do not answer any ques-
tion. This is b/c the density scale histogram is about areas,not heights. To see this, note that the
area of any rectangle is

Base× Height = w × rf
w

= rf.

Thus, the density scale histogram represents relative frequencies by areas.
This begs the question: Why do we have density scale histograms? After all, they require us to

calculate an area to find a number which is the height in the relative frequency histogram.
There are two reasons why density scale histograms are important.

1. For the development of theory it is convenient to have a picture whose total area is one.

2. If we allow the widths to vary, weshould use the density scale histogram. This is explained
below.

For our data on heights of men, we have three histograms. There are two uses for histograms;
one use is relatively unimportant, but the other is very important. The less important reason is to
answer specific questions about the data set. I discussed this earlier; frequency histograms are good
for how many questions; relative frequency histograms are good forwhat proportion questions; and
density scale histograms are not particularly good for this. I say that this is relatively unimportant
b/c we can also get answers to these questions just by lookingat the data and counting, which is
pretty easy with a computer.

The more important use is to find a shape for the data. For the heights data, b/c of the shrinking
issue, all three histograms have the same shape. (We can label shapes of histograms with the same
terms we used for shapes of dot plots.)
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Figure 10.4: Density Scale Histogram of Heights.
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Look at any one of the histograms. What shape do you see? Literally, there is one peak, in the
interval 67 to 69, and the right tail is clearly longer and heavier than the left tail. Thus, the shape
is skewed to the right. But I could also see the histogram as being described as approximately
symmetric, with a peak at 67 to 71 inches.

It can be difficult to say definitively what a shape is. This is illustrated with the height data and
Table 10.4 and its frequency histogram in Figure 10.5. Thereis again one peak, but now while the
left tail is a bit heavier, the right tail is a bit longer. In myopinion, it does not fit any of our named
shapes very well.

10.1.3 Variable Width Histograms

Thus far, our two examples have had constant-width class intervals. While it is common for sci-
entists and statisticians to follow thisrestriction, often we can do better if we don’t. In particular,
constant width means that we have the same amount of detail across the range of the data. It of-
ten makes more sense to have more detail where data are plentiful and less detail where data are
scarce. (This concept is followed in my road atlas which devotes two pages to New York City
and one page to Alaska.) I will illustrate these ideas with some data from the 2009 Major League
Baseball season.

With the help of the website cnnsi.com I found the 100 major leaguers with the most official
at-bats during 2009, ranging from a high of 682 for Aaron Hillof Toronto to a low of 514 for Jason
Kubel of Minnesota. For each player I copied his number of home runs; the sorted values are in
Table 10.5.

Table 10.6 is a frequency table for the number of home runs andFigure 10.6 is its density scale
histogram. Notice the widths of the class intervals all equal 10. Table 10.7 is a second frequency
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Table 10.4: Frequency Table of Heights, in Inches, of 50 College Men.

Class Width Frequency Relative Freq. Density
Interval* (w) (freq) rf = (freq/n) (rf/w)
62.0–64.0 2 1 0.02 0.01
64.0–66.0 2 4 0.08 0.04
66.0–68.0 2 13 0.26 0.13
68.0–70.0 2 19 0.38 0.19
70.0–72.0 2 8 0.16 0.08
72.0–74.0 2 3 0.06 0.03
74.0–76.0 2 1 0.02 0.01
76.0–78.0 2 1 0.02 0.01

Total —- n = 50 1.00 —-
*Each class interval includes its left endpoint but not its right

Figure 10.5: Frequency Histogram of Heights.
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Table 10.5: Sorted Number of Home Runs of 100 Major Leaguers in 2009.

2 3 4 5 6 6 7 7 8 8
9 9 9 9 10 10 10 11 11 11

11 11 12 12 12 12 12 12 13 13
14 14 15 15 15 15 15 15 15 15
15 16 16 17 18 18 18 18 20 20

20 21 21 22 23 23 23 24 24 24
24 24 25 25 25 25 25 25 26 26
26 27 28 28 28 28 30 31 31 31
31 32 32 32 33 33 34 34 35 35
36 36 36 38 39 40 44 45 46 47

Table 10.6: Frequency Table of Number of Home Runs.

Class Width Frequency Relative Freq. Density
Interval* (w) (freq) rf = (freq/n) (rf/w)

0–10 10 14 0.14 0.014
10–20 10 34 0.34 0.034
20–30 10 28 0.28 0.028
30–40 10 19 0.19 0.019
40–50 10 5 0.05 0.005
Total —- n = 100 1.00 —-

*Each class interval includes its left endpoint but not its right

Table 10.7: Frequency Table of Number of Home Runs.

Class Width Frequency Relative Freq. Density
Interval* (w) (freq) rf = (freq/n) (rf/w)

0–5 5 3 0.03 0.006
5–10 5 11 0.11 0.022
10–15 5 18 0.18 0.036
15–20 5 16 0.16 0.032
20–25 5 14 0.14 0.028
25–30 5 14 0.14 0.028
30–40 10 19 0.19 0.019
40–50 10 5 0.05 0.005
Total —- n = 100 1.00 —-

*Each class interval includes its left endpoint but not its right
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Figure 10.6: Density Scale Histogram of Number of Home Runs.
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Figure 10.7: Variable Width Density Scale Histogram of Number of Home Runs.
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Figure 10.8: (Misleading) Variable Width Frequency Histogram of Number of Home Runs.
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table for the number of home runs. Figures 10.7 and 10.8 are its density scale and frequency
histograms. Notice the widths of the class intervals are notconstant. Why do I label the frequency
histogram misleading?

In view of the above, let me summarize.

• If all class intervals have the same width, the three types ofhistograms all give the same
shape.

• If all class intervals do not have the same width, you should use the density scale histogram.
The other histograms can be misleading.

10.2 Numerical Summaries

Numerical summaries fall into three broad categories:

• Measures of Center: The mean, median and mode.

• Measures of Position: The percentiles and quantiles, including quartiles.

• Measures of Spread: The range, interquartile range, variance and standard deviation.
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10.2.1 Measures of Center

I will try to keep this brief; first, b/c I suspect you know muchof this and second b/c it is pretty
dull, even by the standards of this course.

Themean of a set of numbers is its arithmetic average. For example, the mean of 5, 1, 4 and
10 is:

(5 + 1 + 4 + 10)/4 = 20/4 = 5.

It will help us later if we introduce some notation now. Denote a collection ofn numbers by:

x1, x2, x3, . . . xn.

With this notation, the mean of the numbers is calculated as

x̄ =
x1 + x2 + x3 + . . . + xn

n
=

∑n
i=1 xi

n
.

We denote the mean bȳx, read x-bar. (If the data are denoted byy’s instead ofx’s, we call the
mean y-bar; and so on.)

As you have noted above, we often like to sort our data from smallest to largest. We denote the
sorted data by:

x(1), x(2), x(3), . . . x(n);

i.e. we put parentheses around the subscripts to denote sorting.
For example, suppose we haven = 5 numbers:

x1 = 8, x2 = 3, x3 = 1, x4 = 8, x5 = 6.

After sorting, these numbers are:

x(1) = 1, x(2) = 3, x(3) = 6, x(4) = 8, x(5) = 8.

The idea of themedian of a set a numbers is to find the number in the center position ofthe
sorted list. This requires some care b/c the answer depends on whether the sample size is an odd
number or an even number. For example, for the five numbers above, there is a unique center
position, position 3, and the number in this position, 6, is the median.

If, however, the sample size is even, we need to be more careful. For example, consider four
sorted numbers: 1, 4, 5 and 10. In four positions, positions 2and 3 have equal claim to being a
center position, so the median is taken to be the arithmetic average of the numbers in positions 2
and 3; in this case the median is the arithmetic average of 4 and 5, giving us 4.5.

If we denote the data byx’s, then the median is denoted byx̃, read x-tilde. We have a formula
for calculating the median:

• If n is an odd integer, definek = (n + 1)/2, which will be an integer. Then,

x̃ = x(k).
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• If n is an even integer, definek = n/2, which will be an integer. Then,

x̃ = [x(k) + x(k+1)]/2.

Refer to the above case whenn is an even integer. Ifx(k) andx(k+1) are different numbers, then
sometimes the interval[x(k), x(k+1)] is called theinterval of medians.

Finally, I will define themode. Suppose that we have a set ofn numbers:

x1, x2, x3, . . . xn.

If these aren different numbers, then each of the numbers is a mode and we have, obviously,n
modes to the data set. If these are notn different values , then determine the frequency of each
distinct values. If one of these frequencies is uniquely thelargest of the frequencies, then the value
associated with said frequency is the mode. If several of these frequencies tie for being the largest,
then the values associated with this largest frequency are all called modes. An example might help.

Suppose we haven = 7 sorted values:

2, 3, 7, 12, 13, 15, 19.

This data set has seven modes. If the data are

2, 2, 7, 12, 13, 15, 19,

then we have one mode, which is equal to 2. If the data set is

2, 2, 2, 12, 15, 15, 15,

then we have two modes, which are 2 and 15.
Below is a list of important features of these three measuresof center.

1. There is one exact connection between a picture of a data set and its measure of center:

The mean of a set of data is equal to the center of gravity of itsdot plot.

2. The mean is sensitive to the presence of even one wild outlier. For example, the mean of 1,
4, 5 and 10 is 5. The mean of 1, 4, 5 and 1000 is 252.5. For either set of data the median is
4.5.

3. The median can be fragile and, hence, a misleading measureof center. Consider the follow-
ing two frequency distributions:

Data Set:
Value A B
0 50 51
1 26 25
2 25 25
Total 101 101
Mean 0.752 0.743
Median 1 0
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These data sets are nearly identical; data set A becomes B by changing only a single obser-
vation, out of 101 observations, from 1 to 0. The fact that thedata sets are nearly identical is
well reflected in the means, they are almost the same. The medians, however, are deceptive
b/c they suggest that the distributions are very different.

4. The mode can be fragile. Consider the sorted data:

1, 1, 1, 1, 3, 5, 6, 9, 12, 12, 12.

The mode is 1. If a 1 changes to a 2, there are two modes, 1 and 12.If another 1 changes to
anything, the mode is 12.

5. For measurement data the mode depends critically on the precision of the measurement. For
example, for the heights, measured to the nearest tenth of aninch, of 50 men in Table 10.2,
the mean is 68.842 inches, the median is 68.75 inches and the mode is 66.8 inches.

If we now round the heights to the nearest inch, the mean and median don’t change much:
the mean becomes 68.86 inches and the median becomes 69 inches. The mode, however,
changes to 69 inches, which is quite different from 66.8 inches.

I have presented the mean, median and mode as alternative ways to describe a set of data. It is
useful to make this whole idea a bit more rigorous.

We think of a ‘loss’ as a bad thing. Losing money, a job, a partner, a game, all of these hurt.
Mathematicians like to formalize the notion of loss in the context of describing a set of data. We
will consider three loss functions:

• A miss is as good as a mile!

• Absolute error loss.

• Squared error loss.

Here is the framework. Our data consist of

x1, x2, x3, . . . xn.

We want to choose the best numberc to describe these data. If we describexj = x by c, we incur
a loss denoted byL(x, c). The rules for the loss functionL are:

1. A perfect description incurs 0 loss; symbolically, this meansL(c, c) = 0.

2. An imperfect description incurs a positive loss:L(x, c) > 0 for anyx 6= c.

The best choice forc is the number that minimizes
n∑

i=1

L(xi, c).

We call this sum the total loss and denote it byL(Total).
We now consider three choices for our loss function L.
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A miss is as good as a mile. The loss function isL(x, c) = 1 for anyx 6= c. The idea is that all
imperfect descriptions are equally bad. Clearly the best choice forc is to set it equal to any one of
the modes. The total loss isn − f , wheref is the frequency of any mode.

Absolute error loss. The loss function isL(x, c) = |x − c|. It will be shown in lecture that the
best choice ofc is the median of the data,̃x. If n is an odd integer, then the median is the unique
minimizer of the total loss; ifn is an even integer, then any number in the interval of medianswill
minimize the total loss.

Squared error loss. The loss function isL(x, c) = (x − c)2. The total loss is

n∑

i=1

(xi − c)2 =
n∑

i=1

(xi − x̄ + x̄ − c)2 =
n∑

i=1

[(xi − x̄)2 + 2(xi − x̄)(x̄ − c) + (x̄ − c)2] =

n∑

i=1

(xi − x̄)2 + 2(x̄ − c)
n∑

i=1

(xi − x̄) + n(x̄ − c)2 =
n∑

i=1

(xi − x̄)2 + n(x̄ − c)2,

this last equality is true b/c
∑n

i=1(xi − x̄) = 0. This final expression is minimized by takingc = x̄.
Thus, for squared error loss, the best description is the mean of the data.

10.2.2 Measures of Position

We learned about the median earlier in these notes. The median is also called the 50th percentile
and the 0.50 quantile. Quantiles are the decimal version of apercentile. For example, the 63rd
percentile is the same as the 0.63 quantile.

To make this abstract, but I hope not confusing, letπ be a number strictly between 0 and 1;
i.e. 0 < π < 1. Theπ quantile is the same number as the100π percentile. My example of the
previous paragraph illustrates this notion withπ = 0.63; the 0.63 quantile is the same number as
the100(0.63) = 63rd percentile.

By convention, there are 99 percentiles—corresponding to the integers 1 thru 99—allowingπ
to be any of the values: 0.01, 0.02, 0.03, . . . 0.99.

We begin with a new way to think about the median. As I will showyou, the following defini-
tion agrees with our earlier definition of the median.

• At least one-half of the data areless than or equal to the median.

• At least one-half of the data aregreater than or equal to the median.

For any odd sample size, there is a unique number that satisfies this definition, namely the number
in the center position. For our example data of 4, 9 and 20, thenumber in the center position, 9, is
the unique number that satisfies this definition, as argued below.

• Two-thirds of the data are less than or equal to 9.

• Two-thirds of the data are greater than or equal to 9.
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Thus, 9 satisfies our definition. But is it unique? Yes. (For any candidate smaller than 9, the first
item fails; for any candidate larger than 9, the second item fails.)

Next, consider an even sample size. This is trickier, so I will use our earlier data of 4, 7, 9
and 20. You can check that our median 8 satisfies both conditions. But it is not unique. Actually,
any number between 7 and 9 inclusive will satisfy our definition of the median. Also, any number
smaller than 7 or larger than 9 will fail our definition. Thus,in a strictly literal math sense, for an
even sample size there can be an entire interval of numbers that satisfy the definition of median.
Most statisticians and mathematicians agree that if there is an interval of medians, we call the
midpoint of the intervalthe median. And we will always do this in this course.

You might well wonder what was the point of all of the above. Before you read this we all
agreed on what the median was, and now I have just made it more complicated. Well, we need the
above for percentiles and quantiles. I will illustrate.

First, let us be specific. Suppose we want to find the 35th percentile, which we will denote
by P35 = Q0.35, the 0.35 quantile. We define the 35th percentile to be any number that has the
following two properties.

• At least 35% of the data areless than or equal to it.

• At least 65% of the data aregreater than or equal to it.

If an entire interval of numbers satisfy both properties, wetake the 35th percentile to be the mid-
point of the interval.

Next, I give you the algorithm for calculating the 35th percentile.

1. Calculatek = 0.35n.

2. If k is an integer, then the 35th percentile equals

[x(k) + x(k+1)]/2.

3. If k is not an integer, round it up to the next integer and call itk′. The 35th percentile equals
x(k′).

For example, supposen = 100. Then,

0.35n = 0.35(100) = 35

is an integer and the 35th percentile equals

[x(35) + x(36)]/2.

Let’s check that this works.
First, suppose thatx(35) andx(36) are different numbers. Then exactly 35% of the data are less

than the percentile and exactly 65% of the data are greater than the percentile. Ifx(35) andx(36) are
the same number then at least 36% of the data are less than or equal to the percentile and at least
66% of the data are greater than or equal to the percentile.
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As another example, suppose thatn = 150. Then

k = 0.35n = 0.35(150) = 52.5

is not an integer, so we round it up tok′ = 53 and the 35th percentile equalsx(53). Let’s check that
it works.

First, clearly at least 53 observations are less than or equal to x(53), and53/150 = 0.353 is
at least 35%. Second, at least150 − 52 = 98 observations are greater than or equal tox(53), and
98/150 = 0.653 is at least 65%.

Now that we understand the 35th percentile, we will considerany arbitrary percentile. First, the
definition. We define the100π percentile to be any number that has the following two properties.

• At least 100π% of the data areless than or equal to it.

• At least 100(1 − π)% of the data aregreater than or equal to it.

If an entire interval of numbers satisfies both properties, we take the100π percentile to be the
midpoint of the interval.

Next, I give you the algorithm for calculating the100π percentile.

1. Calculatek = πn.

2. If k is an integer, then the100π percentile equals

[x(k) + x(k+1)]/2.

3. If k is not an integer, round it up to the next integer and call itk′. The100π percentile equals
x(k′).

Final comment. The 25th percentile is called the first quartile; the 50th percentile—in addition
to being called the median—is called the second quartile; and the 75th percentile is called the third
quartile. Note the word is quartile, not quantile. To add to the confusion, the quartiles are denoted
Q1, Q2 andQ3. Thus, aQ with a subscript can be a quantile or a quartile. If the subscript is 1, 2 or
3, its a quartile; if the subscript is smaller than 1, it is a quantile.

10.2.3 Measures of Spread

All measures of spread must have the following properties.

1. For any data set, the measure of spread is a number that is nonnegative.

2. For any data set, the measure of spread equals 0 if, and onlyif, there is no spread in the data
set. (Although see the exception for the IQR.)

3. For two data sets, the data set with the larger value of the measure of spread is deemed to be
the data set with more spread.

118



We will learn about three ways to measure spread. If you hope to become famous by inventing a
new measure of spread, make sure it satisfies the conditions above; o.w. people will ignore your
work and you won’t become famous.

The first measure of spread is therange, denoted byR. Consider again the data on the number
of home runs in Table 10.5. The smallest number in the data setis 2 and the largest is 47. In
everyday language, I would say, “The numbers of home runsrange from 2 to 47. But statisticians
don’t like to have words (from, to) in a summary, nor do they like to have two numbers (2, 47) in
a summary. Thus, somewhat bizarrely, statisticians define the range to be:

R = Maximum − Minimum .

Thus,R = 47 − 2 = 45, for the home run data.
The range is not a very popular measure of spread. It has the following bad properties.

1. Just like the mean, the range is sensitive to even one wild outlier.

2. Imagine that you are collecting data from a source, one observation at-a-time, building your
data set of sizen. After each new observation you recalculate the range. Witheach recal-
culation, the range can remain the same or it can increase, but—and this is the key point—it
can never decrease. Added to this, and this is not at all obvious, there is no good way to
adjust for sample size in the range. As a result, a large rangemight mean a lot of spread in a
small set of data or a moderate amount of spread in a huge data set.

The next measure of spread is the interquartile range, abbreviated IQR. Recall the definition of
the quartiles in the previous subsection. The IQR is computed as:

IQR = Q3 − Q1.

I will now explain the motivation behind the IQR. Remember that the three quartiles divide (ap-
proximately) the data set into quarters: approximately one-quarter of the data are smaller thanQ1;
approximately one-quarter of the data are betweenQ1 andQ2; approximately one-quarter of the
data are betweenQ2 andQ3; and approximately one-quarter of the data are larger thanQ3. Thus,
approximately one-half of the data—the center half—are betweenQ1 andQ3; for this reason the
IQR is interpreted as the range of the center half of the data.

View the IQR as an attempt to improve on the range. The IQR focuses on the center half of
the data and ignores the values in the lower and upper quarters of the data. As a result, it is not
influenced by a small number of wild outliers. Also, b/c it focuses on the center half of the data, it
does adjust for sample size; i.e. it avoids the two bad problems of the range.

The IQR has two main weaknesses.

1. It really does not help us solve any scientific problems. Itsummarizes the data and that is it.

2. It strikes me as very odd that anyone would want to ignore half the data when measuring
spread. Especially to ignore the smallest and largest quarters of the data; isn’t that where we
see spread?
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As a result of this second weakness, we get some rather strange answers using the IQR. For exam-
ple, consider the two data sets below:

• Data Set A: 1000, 1000, 1000, 1000 and 1000.

• Data Set B: 0, 1000, 1000, 1000 and 10,000.

You can verify thatQ1 = Q3 = 1000 for both data sets; thus, both data sets have IQR= 0; but it
seems strange to me that one would want to say these sets have the same spread or to say that the
second set has no spread.

Many statisticians love the IQR, but I believe they are largely misguided. Many people always
like anything that is new, even if it is nearly worthless.

So, is there any measure of spread that I recommend? Yes, the standard deviation—and math-
ematically equivalent variance—discussed below. Yes, thestandard deviation is not perfect, but
especially if we learn and remember its limitations, it is a very useful tool for us.

10.2.4 The Standard Deviation and Variance

Earlier in these notes we learned about the standard deviation,σ, and variance,σ2, of a probability
distribution. Also, we learned formulas for them for the Binomial and Poisson distributions. In
this section we learn about the standard deviation,s, and variance,s2, for a set of numerical data.

We have learned three measures of center: the mode, which is rarely used; the median, which
focuses on position in the sorted list of data; and the mean, which is obtained by doing arithmetic
(adding, then dividing) on a set of data.

Our three measures of spread are: the range, which is rarely used; the IQR, which focuses on
positions in the sorted list of data; and the standard deviation, which is obtained by doing arithmetic
(subtracting, squaring, adding, dividing, taking the square root) on a set of data. As a result, there
is a tendency among researchers to match the median with the IQR and to match the mean with
the standard deviation. Youcan mix them, but usually it makes sense to decide whether positions
or arithmetic is more meaningful for your scientific problemand data.

Below are two data sets, A and B. Clearly B has more spread thanA. I will use these sets to
introduce the formula for the standard deviation.

3 4 5 6 7

A • • •

3 4 5 6 7

B • • •

Both data sets have a mean of 5. The first idea behind the standard deviation is that we measure
spread relative to the center of the data set. Wecompare each observation with the center. We
compare by subtracting. Thus, for each observationx, we calculatex − x̄ which is called the
deviation inx (relative to the mean). Below are the deviations for data sets A and B.
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3 4 5 6 7

A •
Deviations: −1

•
0

•
+1

3 4 5 6 7

B • • •
−2 0 +2

The second idea is that standard deviation is a function of the deviations; i.e. two data sets with
the same deviations will have the same standard deviation. For example, if we define data set C to
consist of 198, 200, 202, its deviations will be−2, 0 and+2. Hence, data set C will have the same
standard deviation as data set B above.

It is helpful to create the following tables.

A B
x x − x̄ x x − x̄
4 −1 3 −2
5 0 5 0
6 +1 7 +2

Total 0 Total 0

Note that for both data sets,
∑

(x − x̄) = 0. This is, in fact, true for every data set: the total of the
deviations is always 0.

We say thatn deviations have(n − 1) degrees of freedom. I will present an example of why
we use this term in lecture.

We need to combine the deviations to get an overall measure ofspread. Clearly, summing them
does not work b/c the negative deviations will cancel the positive ones.

A deviation of 0 denotes no spread and as the deviation moves away from 0, in either direction,
it reflects greater distance from the center, and, hence, greater spread.

Thus, it would seem that it would be a good idea to take the absolute value of the deviations
before combining them. Sadly, whereas it ‘makes sense’ to take the absolute value, this operation
turns out not to be useful in any way! What turns out to be very useful—as we shall see—is to
square each deviation, as shown in the table below.

A B
x x − x̄ (x − x̄)2 x x − x̄ (x − x̄)2

4 −1 1 3 −2 4
5 0 0 5 0 0
6 +1 1 7 +2 4

Tot. 0 2 Tot. 0 8
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Now we come to a major disagreement between mathematicians and statisticians. Both agree to
measure spread by using the total of the squared deviations:and both realize that they must adjust
for sample size. Mathematicians opt to calculate the mean squared deviation; i.e. they divide byn.
Statisticians divide by the degrees of freedom to get the following formula for thevariance:

s2 =

∑
(x − x̄)2

n − 1
.

For data set A,s2 = 2/(3 − 1) = 1; and for data set B,s2 = 8/(3 − 1) = 4.
The variance would be an acceptable way to measure spread, except for two difficulties.

• It has no interpretation other than the obvious: the variance is almost the mean of the squared
deviations.

• It has the units wrong. (Will be discussed in lecture.)

Statisticians prefer the standard deviation,s, which is the (positive) square root of the variance.
For data set A,s =

√
s2 =

√
1 = 1; and for data set B,s =

√
s2 =

√
4 = 2.

There is an interpretation fors, but it is bit strange.
Recall the mean: it is the center of gravity of the dot plot of the data. This is a direct, exact state-

ment. The interpretation ofs is indirect and only approximate. And sometimes the approximation
is bad.

Imagine the data are presented as a dot plot and that you are standing at the mean. You decide,

I want to reach out my arms in each direction (imagine you are elastic man/woman)
and capture data within them.

You then ask the question:

How far must I reach to capture 68% of the data?

Theempirical rule (ER) says that you must reach outs units (in both directions).
I will illustrate the ER with several sets of data. Below is data set D, withn = 100.

−5 67 108 137 160 179 196 210 224 236 248 258 268 278 287
295 304 312 319 327 334 341 348 354 361 367 373 379 385 391
397 403 409 414 420 425 430 436 441 446 452 457 462 467 472
477 482 490 490 497 503 508 513 518 525 525 533 538 543 548
554 559 564 570 575 580 586 591 597 603 609 615 621 627 633
639 649 649 663 663 673 681 688 696 705 713 727 727 742 758
758 776 790 804 821 840 863 892 933 1005

Here are some facts about D: the mean is 500.0, the standard deviation is 200.0 and a histogram of
the data is approximately bell-shaped.

By counting, 68 of these numbers are between 300 and 700 (x̄ ± s), a perfect agreement
with the ER prediction.In general, if the data are approximately bell-shaped, then the ER
approximation is very good.

Below is data set E, withn = 100.
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106 108 109 111 112 112 113 117 117 122 124 125 127 129 130
133 134 138 140 141 142 145 146 156 156 158 164 170 172 173
175 175 179 180 186 190 194 195 202 202 204 206 207 207 217
221 226 228 228 233 239 245 247 250 261 266 285 286 289 300
303 306 307 310 314 324 332 337 338 341 344 354 357 366 373
384 389 403 411 415 421 421 430 439 449 472 472 523 529 567
584 610 635 637 641 651 664 793 973 1324

Here are some facts about E: the mean is 300.0, the standard deviation is 200.0 and a histogram
of the data is strongly skewed to the right.

By counting, 87 of these numbers are between 100 and 500 (x̄ ± s), a bad agreement with the
ER approximation.In general, if the data are strongly skewed (right or left) the actual amount
of data in the interval x̄ ± s is much larger than predicted by the ER.

Finally, below is data set G, withn = 100.

63 100 120 135 147 157 166 174 181 188 194 201 207 212 218
223 227 233 237 243 247 251 256 260 265 270 275 279 284 288
292 298 302 308 312 317 323 328 334 341 347 354 361 369 378
388 400 415 420 447 459 472 477 491 504 514 523 531 538 545
551 557 564 569 574 580 584 589 594 599 604 608 613 617 621
627 631 636 640 645 649 654 659 664 669 674 679 685 691 697
704 711 718 726 735 745 757 771 792 828

Here are some facts about G: the mean is 446.0, the standard deviation is 200.0 and its histogram
has two peaks and is approximately symmetric.

By counting, 60 of these numbers are between 246 and 646 (x̄±s), a somewhat bad agreement
with the ER approximation.In general, if the data have two peaks, the actual number of data
points in the interval x̄ ± s is smaller than predicted by the ER. The more separated the
peaks, the smaller the count in the interval.

The ER can be generalized. The most common generalization isto say that approximately 95%
of the data are within two standard deviations of the mean (inthe intervalx̄ ± 2s).

You can check the following counts:

• In data set D, 96 observations are in the interval[100, 900].

• In data set E, 97 observations are in the interval[−100, 700].

• In data set G, all 100 observations are in the interval[46, 846].

In this class, you willnever be required to calculates.
Earlier, we learned about standardizing a random variable.Recall that ifX is a random variable

with meanµ and standard deviationσ, then the standardized version ofX is denoted byZ and they
are related by the following equation:

Z =
X − µ

σ
.
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This relationship extends to any particular value ofX, denoted byx, to give

z =
x − µ

σ
.

In this last relationship,z is called the z-score ofx.
A similar idea is developed for data. Given a set of data

x1, x2, x3, . . . xn,

with meanx̄ and standard deviations. For any particularx value, define itst-score by

t =
x − x̄

s
.

Note that this is a t-score, not a z-score. A z-score requiresthe mean and standard deviation of the
population/probability distribution. A t-score requiresthe mean and standard deviation of a set of
data.
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